首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 776 毫秒
1.
Telomere elongation by telomerase balances the progressive shortening of chromosome ends due to the succession of replication cycles [1] [2]. Telomerase activity is regulated in vivo at its site of action by the telomere itself. In yeast and human cells, the mean telomere length is maintained at a constant value through a cis-inhibition of telomerase by factors specifically bound to the telomeric DNA [3] [4] [5] [6] [7]. Here, we address an unexplored aspect of telomerase regulation by testing the link between telomere dynamics and cell cycle progression in the budding yeast Saccharomyces cerevisiae. We followed the elongation of an abnormally shortened telomere and observed that, like telomere shortening in the absence of telomerase, telomere elongation is linked to the succession of cell divisions. In cells progressing synchronously through the cell cycle, telomere elongation coincided with the time of telomere replication. On a minichromosome, a replication defect partially suppressed telomere elongation, suggesting a coupling between in vivo telomerase activity and conventional DNA replication.  相似文献   

2.
S Ahmed  H Sheng  L Niu  E Henderson 《Genetics》1998,150(2):643-650
Telomere length is dynamic in many organisms. Genetic screens that identify mutants with altered telomere lengths are essential if we are to understand how telomere length is regulated in vivo. In Tetrahymena thermophila, telomeres become long at 30 degrees, and growth rate slows. A slow-growing culture with long telomeres is often overgrown by a variant cell type with short telomeres and a rapid-doubling rate. Here we show that this variant cell type with short telomeres is in fact a mutant with a genetic defect in telomere length regulation. One of these telomere growth inhibited forever (tgi) mutants was heterozygous for a telomerase RNA mutation, and this mutant telomerase RNA caused telomere shortening when overexpressed in wild-type cells. Several other tgi mutants were also likely to be heterozygous at their mutant loci, since they reverted to wild type when selective pressure for short telomeres was removed. These results illustrate that telomere length can regulate growth rate in Tetrahymena and that this phenomenon can be exploited to identify genes involved in telomere length regulation.  相似文献   

3.
4.
Bianchi A  Shore D 《Cell》2007,128(6):1051-1062
The maintenance of an appropriate number of telomere repeats by telomerase is essential for proper chromosome protection. The action of telomerase at the telomere terminus is regulated by opposing activities that either recruit/activate the enzyme at shorter telomeres or inhibit it at longer ones, thus achieving a stable average telomere length. To elucidate the mechanistic details of telomerase regulation we engineered specific chromosome ends in yeast so that a single telomere could be suddenly shortened and, as a consequence of its reduced length, elongated by telomerase. We show that shortened telomeres replicate early in S phase, unlike normal-length telomeres, due to the early firing of origins of DNA replication in subtelomeric regions. Early telomere replication correlates with increased telomere length and telomerase activity. These data reveal an epigenetic effect of telomere length on the activity of nearby replication origins and an unanticipated link between telomere replication timing and telomerase action.  相似文献   

5.
Telomere length can be maintained by telomerase or by a recombination-based pathway. Because individual telomeres in cells using the recombination-based pathway of telomere maintenance appear to periodically become extremely short, cells using this pathway to maintain telomeres may be faced with a continuous state of crisis. We expressed telomerase in a human cell line that uses the recombination-based pathway of telomere maintenance to test whether telomerase would prevent telomeres from becoming critically short and examine the effects that this might have on the recombination-based pathway of telomere maintenance. In these cells, telomerase maintains the length of the shortest telomeres. In some cases, the long heterogeneous telomeres are completely lost, and the cells now permanently contain short telomeres after only 40 population doublings. This corresponds to a telomere reduction rate of 500 base pairs/population doubling, a rate that is much faster than expected for normal telomere shortening but is consistent with the rapid telomere deletion events observed in cells using the recombination-based pathway of telomere maintenance (Murnane, J. P., Sabatier, L., Marder, B. A., and Morgan, W. F. (1994) EMBO J. 13, 4953-4962). We also observed reductions in the fraction of cells containing alternative lengthening of telomere-associated promyelocytic leukemia bodies and extrachromosomal telomere repeats; however, no alterations in the rate of sister chromatid exchange were observed. Our results demonstrate that human cells using the recombination-based pathway of telomere maintenance retain factors required for telomerase to maintain telomeres and that once the telomerase-based pathway of telomere length regulation is engaged, recombination-based elongation of telomeres can be functionally inhibited.  相似文献   

6.
We investigated the control of telomere length by the human telomeric proteins TRF1 and TRF2. To this end, we established telomerase-positive cell lines in which the targeting of these telomeric proteins to specific telomeres could be induced. We demonstrate that their targeting leads to telomere shortening. This indicates that these proteins act in cis to repress telomere elongation. Inhibition of telomerase activity by a modified oligonucleotide did not further increase the pace of telomere erosion caused by TRF1 targeting, suggesting that telomerase itself is the target of TRF1 regulation. In contrast, TRF2 targeting and telomerase inhibition have additive effects. The possibility that TRF2 can activate a telomeric degradation pathway was directly tested in human primary cells that do not express telomerase. In these cells, overexpression of full-length TRF2 leads to an increased rate of telomere shortening.  相似文献   

7.
8.
Telomeres protect the chromosome ends from unscheduled DNA repair and degradation. Telomeres are heterochromatic domains composed of repetitive DNA (TTAGGG repeats) bound to an array of specialized proteins. The length of telomere repeats and the integrity of telomere-binding proteins are both important for telomere protection. Furthermore, telomere length and integrity are regulated by a number of epigenetic modifications, thus pointing to higher order control of telomere function. In this regard, we have recently discovered that telomeres are transcribed generating long, non-coding RNAs, which remain associated with the telomeric chromatin and are likely to have important roles in telomere regulation. In the past, we showed that telomere length and the catalytic component of telomerase, Tert, are critical determinants for the mobilization of stem cells. These effects of telomerase and telomere length on stem cell behaviour anticipate the premature ageing and cancer phenotypes of telomerase mutant mice. Recently, we have demonstrated the anti-ageing activity of telomerase by forcing telomerase expression in mice with augmented cancer resistance. Shelterin is the major protein complex bound to mammalian telomeres; however, its potential relevance for cancer and ageing remained unaddressed to date. To this end, we have generated mice conditionally deleted for the shelterin proteins TRF1, TPP1 and Rap1. The study of these mice demonstrates that telomere dysfunction, even if telomeres are of a normal length, is sufficient to produce premature tissue degeneration, acquisition of chromosomal aberrations and initiation of neoplastic lesions. These new mouse models, together with the telomerase-deficient mouse model, are valuable tools for understanding human pathologies produced by telomere dysfunction.  相似文献   

9.
Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells proliferation potential is strictly limited and senescence follows approximately 50–70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. No doubt, DNA polymerase is not capable to completely copy DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis, and cell death. However, in tumor cells the system of telomere length maintenance is activated. Besides catalytic telomere elongation, independent telomerase functions can be also involved in cell cycle regulation. Inhibition of the telomerase catalytic function and resulting cessation of telomere length maintenance will help in restriction of tumor cell replication potential. On the other hand, formation of temporarily active enzyme via its intracellular activation or due to stimulation of expression of telomerase components will result in telomerase activation and telomere elongation that can be used for correction of degenerative changes. Data on telomerase structure and function are summarized in this review, and they are compared for evolutionarily remote organisms. Problems of telomerase activity measurement and modulation by enzyme inhibitors or activators are considered as well.  相似文献   

10.
11.
12.
Hug N  Lingner J 《Chromosoma》2006,115(6):413-425
  相似文献   

13.
14.
Telomere length regulation is an important aspect of cell maintenance in eukaryotes, since shortened telomeres can lead to a number of defects, including impaired cell division. Although telomere length is correlated with lifespan in some bird species, its possible role in aging and lifespan determination is still poorly understood. Here we investigate telomere dynamics (changes in telomere length and attrition rate) and telomerase activity in the ant Lasius niger, a species in which different groups of individuals have evolved extraordinarily different lifespans. We found that somatic tissues of the short-lived males had dramatically shorter telomeres than those of the much longer-lived queens and workers. These differences were established early during larval development, most likely through faster telomere shortening in males compared with females. Workers did not, however, have shorter telomeres than the longer-lived queens. We discuss various molecular mechanisms that are likely to cause the observed sex-specific telomere dynamics in ants, including cell division, oxidative stress and telomerase activity. In addition, we discuss the evolutionary causes of such patterns in ants and in other species.  相似文献   

15.
Rat hepatic stem-like epithelial cells, LE/2, LE/6, and WB-F344, share some phenotypic properties with oval cells, observed in the early stages of hepatocarcinogenesis. Here, we describe regulations of telomerase and telomere length during in vitro aging of LEs and WB-F344. These cells displayed no apparent aging phenotypes for over 140 passages. Telomerase activity and telomere length of these cells progressively decreased with the passages, and at the late passages, telomere shortening appeared to be reduced as telomerase activity increased. Regulation of TERT and TR, key components of telomerase, was similar to that of the telomerase activity. LEs possessed weak telomerase activity with a slow rate of proliferation compared to WB-F344, and were not tumorigenic, whereas WB-F344 was transformed in vitro from intermediate passage. In conclusion, LEs and WB-F344 have different biochemical properties, and telomerase activation and short telomeres are unlikely necessary for the transformation of WB-F344. TERT and TR seem to be the regulators of the telomerase activity. The relationship between telomere length and telomerase activity suggests that telomerase contributes to the regulation of telomere length in these cells. Our findings provide a better understanding of mechanisms in neoplastic transformation of rat hepatic stem-like epithelial cells.  相似文献   

16.
17.
POT1 is a single-copy gene in yeast and humans that encodes a single-strand telomere binding protein required for chromosome end protection and telomere length regulation. In contrast, Arabidopsis harbors multiple, divergent POT-like genes that bear signature N-terminal OB-fold motifs, but otherwise share limited sequence similarity. Here, we report that plants null for AtPOT1 show no telomere deprotection phenotype, but rather exhibit progressive loss of telomeric DNA. Genetic analysis indicates that AtPOT1 acts in the same pathway as telomerase. In vitro levels of telomerase activity in pot1 mutants are significantly reduced and are more variable than wild-type. Consistent with this observation, AtPOT1 physically associates with active telomerase particles. Although low levels of AtPOT1 can be detected at telomeres in unsynchronized cells and in cells arrested in G2, AtPOT1 binding is significantly enhanced during S-phase, when telomerase is thought to act at telomeres. Our findings indicate that AtPOT1 is a novel accessory factor for telomerase required for positive telomere length regulation, and they underscore the coordinate and extraordinarily rapid evolution of telomere proteins and the telomerase enzyme.  相似文献   

18.
The absence of telomerase in many eukaryotes leads to the gradual shortening of telomeres, causing replicative senescence. In humans, this proliferation barrier constitutes a tumor suppressor mechanism and may be involved in cellular aging. Yet the heterogeneity of the senescence phenotype has hindered the understanding of its onset. Here we investigated the regulation of telomere length and its control of senescence heterogeneity. Because the length of the shortest telomeres can potentially regulate cell fate, we focus on their dynamics in Saccharomyces cerevisiae. We developed a stochastic model of telomere dynamics built on the protein-counting model, where an increasing number of protein-bound telomeric repeats shift telomeres into a nonextendable state by telomerase. Using numerical simulations, we found that the length of the shortest telomere is well separated from the length of the others, suggesting a prominent role in triggering senescence. We evaluated this possibility using classical genetic analyses of tetrads, combined with a quantitative and sensitive assay for senescence. In contrast to mitosis of telomerase-negative cells, which produces two cells with identical senescence onset, meiosis is able to segregate a determinant of senescence onset among the telomerase-negative spores. The frequency of such segregation is in accordance with this determinant being the length of the shortest telomere. Taken together, our results substantiate the length of the shortest telomere as being the key genetic marker determining senescence onset in S. cerevisiae.  相似文献   

19.
Prevention of telomere erosion through acquisition of telomerase activity is thought to be an essential mechanism in most human cancer cells for avoidance of cellular senescence and crisis. It has been generally assumed that once telomerase has been activated, no further telomere shortening should ensue. We show here, however, that a much more complex pattern of telomere dynamics can exist in telomerase-positive immortal cancer cells. Using a panel of subclones derived from a human thyroid cancer cell line, K1E7, we found that some clones show persistent decline in mean telomere restriction fragment (TRF) length by up to 2 kb over 450 population doublings (pd), despite sustained high telomerase activity (as assessed by thein vitro“TRAP” assay). TRF length subsequently stabilized at around 5 kb, but with no corresponding increase in telomerase activity. One clone showed an even more unexpected biphasic time course, with the mean TRF length initially increasing by 1.5 kb over 90 pd, before “plateauing” and then returning over a similar period to its original value, again without any correlation to TRAP activity. Such dissociations between telomere dynamics and telomerase activity support the existence of additional controls on telomere length in the intact cell. Our observations are consistent with current negative-feedback models of telomere length regulation by telomere binding proteins and these cell lines should prove useful experimental tools for their further evaluation.  相似文献   

20.
POT1 is a 3' telomeric single-stranded overhang binding protein that has been implicated in chromosome end protection, the regulation of telomerase function, and defining the 5' chromosome terminus. In human cancer cells that exhibit constitutive hTERT activity, hPOT1 exerts control over telomere length. Primary human fibroblasts express low levels of catalytically active hTERT in an S-phase-restricted manner that fails to counteract telomere attrition with cell division. Here, we show that diploid human fibroblasts in which hPOT1 expression has been suppressed harbor telomeres that are longer than control cells. This difference in telomere length delays the onset of replicative senescence and is dependent on S-phase-restricted hTERT expression. These findings are consistent with the view that hPOT1 promotes a nonextendable telomere state resistant to extension by S-phase-restricted telomerase. Manipulating this function of hPOT1 may thus hasten the cytotoxic effects of telomerase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号