首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We used a novel chromatographic method to rapidly and simply characterize the pharmacokinetics of benidipine enantiomers in human plasma. The stereoisomers of benidipine were extracted from plasma using diethylether under alkaline conditions. After evaporating the organic layer, the residue was reconstituted in the mobile phase (methanol:acetic acid:triethylamine, 100:0.01:0.0001, v/v/v). The enantiomers in the extract were separated on a macrocyclic antibiotic (Vancomycin) chiral stationary phase column. The mobile phase was eluted at 1 ml/min and was split by an interface. One-fifth of the eluent was used to quantify both isomers in a tandem mass spectrometer in multiple reaction-monitoring mode. The coefficient of variation of the precision of the assay was less than 8%, the assay accuracy was between 93.4 and 113.3%, and the limit of detection was 0.05 ng/ml for 1 ml of plasma. The method described above was used to measure the concentration of both benidipine enantiomers in plasma from healthy subjects who received a single oral dose of a racemate of 8 mg benidipine. The C(max) and AUC(inf) values of (+)-alpha benidipine were higher than those of (-)-alpha benidipine by 1.96- and 1.85-fold, respectively (p<0.001), whereas, the T(max) and t(1/2) for each of the benidipine stereoisomers were not significantly different.  相似文献   

3.
A reverse phase high performance liquid chromatography (HPLC) method has been developed for the separation of two geometric isomers of Acrivastine using crude reaction mixture. The resolution between two isomers was found more than 2.9. The geometric isomers have been isolated by preparative HPLC and characterized by spectroscopic techniques, such as NMR, infrared, and MS. The developed method has been validated for the determination of Z‐isomer in Acrivastine. The limit of detection and limit of quantification of the Z‐isomer were 0.05 and 0.2 μg/ml, respectively. The developed method is precise, linear, accurate, rugged and robust for its intended use. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
The current works report the bio-efficacy of Pimenta dioica leaf derived silver nanoparticles (Pd@AgNPs) and leaf extract obtained trough different solvents against the larvae of malaria, filarial and dengue vectors. Synthesis of silver nanoparticles (AgNPs) was done by adding 10 ml of P. dioica leaf extract into 90 ml of 1 mM silver nitrate solution, a slow colour change was observed depicting the formation of AgNPs. Further, Pd@AgNPs was confirmed through Ultraviolet–visible spectroscopy which exhibited characteristic absorption peak at 422 nm wavelength. X-ray diffraction and selected area electron diffraction analysis confirmed monodispersed and crystalline nature of Pd@AgNPs with 32 nm an average size. Scanning electron microscopy and transmission electron microscopy showed the most of Pd@AgNPs were spherical and triangular in shape and energy-dispersive X-ray spectroscopy revealed silver elemental nature of nanoparticles. Zeta potential of Pd@AgNPs is highly negative which confirmed its stable nature. Pd@AgNPs showed prominent absorption peaks at 1015, 1047, 1243, 1634, 2347, 2373, 2697 and 3840 cm?1 which are corresponding to following compounds polysaccharides, carboxylic acids, water, alcohols, esters, ethers, amines, amides and phenol, respectively as reported by Fourier-transform infrared spectroscopy analysis. Gas chromatography–mass spectrometry and Liquid chromatography–mass spectrometry analysis revealed 39 and 70 compounds, respectively, which might be contributed for bio-reduction, capping, stabilization and larvicidal behavior of AgNPs. A comparable lethality (LC50 and LC90) was observed in case of Pd@AgNPs over leaf extract alone. The potential larvicidal activity of Pd@AgNPs was observed against the larvae of Aedes aegypti,(LC50, 2.605; LC90, 5.084 ppm) Anopheles stephensi (LC50, 3.269; LC90, 7.790 ppm) and Culex quinquefasciatus (LC50, 5.373; LC90, 14.738 ppm without affecting non-targeted organism, Mesocyclops thermocyclopoides after 72 hr of exposure. This study entails green chemistry behind synthesis of AgNPs which offers effective technique for mosquito control and other therapeutic applications.  相似文献   

5.
The study of complex biological questions through comparative proteomics is becoming increasingly attractive to plant biologists as the rapidly expanding plant genomic and expressed sequence tag databases provide improved opportunities for protein identification. This review focuses on practical issues associated with comparative proteomic analysis, including the challenges of effective protein extraction and separation from plant tissues, the pros and cons of two-dimensional gel-based analysis and the problems of identifying proteins from species that are not recognized models for functional genomic studies. Specific points are illustrated using data from an ongoing study of the tomato and pepper fruit proteomes.  相似文献   

6.
The enantiomers of mandelic acid and its analogs have been chromatographically separated on a chiral stationary phase (CSP) derived from 4‐(3,5‐dinitrobenzamido) tetrahydrophenanthrene. The rationale of separations of these compounds is discussed with respect to the method development for determining enantiomeric purity and possibility of obtaining enantiomerically pure materials by high‐pressure liquid chromatography. The relationship of analyte structure to the extent of enantiomeric separation has been examined and separation factors (α) are presented for various groups of structurally related compounds. Chiral recognition models have been suggested to account for the observed separations. These models provide mechanistic insights into the chiral recognition process. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
A method for the simultaneous determination of saturated and unsaturated oligogalacturonic acids up to degree of polymerization (dp) of 7 by high-performance liquid chromatography (HPLC) is presented. For this purpose, a Cyclobond I 2000 column and a volatile mobile phase consisting of ammonium formate and methanol were used, allowing direct coupling of HPLC to a mass spectrometer via an electrospray interface (ESI-MS) without additional desalting. The analytical system was used for the characterization of digests obtained by incubation of polygalacturonic acid with commercial enzyme preparations.  相似文献   

9.
Tan X  Hou S  Wang M 《Chirality》2007,19(7):574-580
A novel chiral packing material for high-performance liquid chromatography (HPLC) was prepared by connecting (R)-1-phenyl-2-(4-methylphenyl) ethylamine (PTE) amide derivative of (S)-isoleucine to aminopropyl silica gel through 2-amino-3,5-dinitro-1-carboxamido-benzene unit. This chiral stationary phase was applied to the enantioselective and diastereoselective separation of five pyrethroid insecticides by HPLC under normal phase condition. To achieve satisfactory baseline separation an optimization of the variables of mobile phase composition was required. The two enantiomers of fenpropathrin and four stereoisomers of fenvalerate were baseline separated using hexane-1,2-dichloroethane-2-propanol as mobile phase. The results show that the enantioselectivity of CSP is better than Pirkle type 1-A column for these compounds. Only partial separations for the cypermethrin and cyfluthrin stereoisomers were observed. Seven peaks and eight peaks were observed for cypermethrin and cyfluthrin, respectively. The elution orders were assigned by using different stereoisomer-enriched products.  相似文献   

10.
The HPLC enantiomeric separation of 29 racemic bridged polycyclic compounds was examined on commercially available Chiralcel OD-H and Chiralpak OT(+) columns. The separations were evaluated under normal-phase mode (hexane containing mobile phase) for Chiralcel OD-H and under normal-phase as well as under reversed-phase mode (pure MeOH, temperature 5 degrees C) for Chiralpak OT(+). Almost all compounds were resolved either on Chiralcel OD-H or on Chiralpak OT(+), in some cases on both. The use of trifluoroacetic acid (TFA), as modifier of the hexanic mobile phase, had a beneficial effect on the enantioseparation of some polar and acidic compounds on Chiralcel OD-H. The influence of small chemical structural modifications of the analytes on the enantioseparation behavior is discussed. A structure-retention relationship has been observed on both stationary phases. This chromatographic evaluation may provide some information about the chiral recognition mechanism: in the case of Chiralcel OD-H, hydrogen bonding, pi-pi and distereoselective repulsive are supposed to be the major analyte-CSP interactions. In the case of Chiralpak OT(+), a reversed-phase enantioseparation could take place through hydrophobic interactions between the aromatic moiety of the analytes and the chiral propeller structure of the CSP. The synthesis of some unknown racemic bromobenzobicyclo[2.2.1] analytes is also described.  相似文献   

11.
In the last several years, significant progress has been made in the development of microfluidic-based analytical technologies for proteomic and drug discovery applications. Chip-based nanoelectrospray coupled to a mass spectrometer detector is one of the recently developed analytical microscale technologies. This technology offers unique advantages for automated nanoelectrospray including reduced sample consumption, improved detection sensitivity and enhanced data quality for proteomic studies. This review presents an overview and introduction of recent developments in chip devices coupled to electrospray mass spectrometers including the development of the automated nanoelectrospray ionization chip device for protein characterization. Applications using automated chip-based nanoelectrospray ionization technology in proteomic and bioanalytical studies are also extensively reviewed in the fields of high-throughput protein identification, protein post-translational modification studies, top-down proteomics, biomarker screening by pattern recognition, noncovalent protein–ligand binding for drug discovery and lipid analysis. Additionally, future trends in chip-based nanoelectrospray technology are discussed.  相似文献   

12.
Knowledge of host protein properties is critical for developing purification methods for recombinant proteins from a specific host, or for choosing suitable hosts and targeted expression tissues for a specific recombinant protein. A method to obtain a three-dimensional (3D) map (surface hydrophobicity (SH), isoelectric point (pI), and molecular weight (MW)), of a host's aqueous soluble protein properties was developed. The method consists of hydrophobic partitioning in a PEG 3350 (15.7%)-Na(2)SO(4) (8.9%)-NaCl (3%) aqueous two-phase (ATP) system followed by quantitative, 2D-electrophoretic characterization of the proteins of each equilibrium phase and the original extract. The pI and MW of host proteins were obtained directly through 2D electrophoresis. The partition coefficients of individual proteins were obtained by quantitative matching of protein spots in the top and bottom phase gels and calculating the protein partition coefficients from this information. Correlation of the partition coefficient to a SH scale was established by partitioning several model proteins with known surface hydrophobicities in the same ATP system. The inclusion of the extract gel provided for a spot selection criterion based on satisfactory mass balance closure. The method is illustrated by application to a mixture of model proteins and to complex mixtures, that is, corn germ proteins extracted at pH 7 and pH 4.  相似文献   

13.
Enantiomeric and racemic oxazepam (OX), 3-O-methyloxazepam (MeOX), and 3-O-ethyloxazepam (EtOX) were used to study racemization, heteronucleophilic, and homonucleophilic substitution reactions in anhydrous acidic methanol and ethanol. Kinetics of racemization and nucleophilic substitution reactions in nondeuterated and deuterated solvents were determined by circular dichroism spectropolarimetry, chiral stationary phase high-performance liquid chromatography (HPLC), reversed-phase HPLC, and mass spectrometry. Several reactions occurred when (S)-OX, for example, was dissolved in acidic methanol: (1) (S)-OX itself underwent spontaneous racemization, (2) the 3-hydroxyl group of (S)-OX was stereoselectively substituted by the methoxy group of methanol to form MeOX enriched in (S)-MeOX, (3) the 3-methoxy group of (S)-MeOX was stereoselectively substituted by the methoxy group of methanol to form MeOX enriched in (S)-MeOX, and (4) the 3-methoxy group of (R)-MeOX was stereoselectively substituted by the methoxy group of methanol to form MeOX enriched in (R)-MeOX. Repetitive reactions 3 and 4 eventually resulted in a racemic MeOX. Similar reactions occurred for an enantiomeric OX in acidic ethanol. © 1996 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    14.
    ABSTRACT

    Introduction: Shed by most cells, in response to a myriad of stimuli, extracellular vesicles (EVs) carry proteins, lipids, and various nucleic acids. EVs encompass diverse subpopulations differing for biogenesis and content. Among these, microvesicles (MVs) derived from plasma membrane, are key regulators of physiopathological cellular processes including cancer, inflammation and infection. This review is unique in that it focuses specifically on the MVs as a mediator of information transfer. In fact, few proteomic studies have rigorously distinguished MVs from exosomes.

    Areas covered: Aim of this review is to discuss the proteomic analyses of the MVs. Many studies have examined mixed populations containing both exosomes and MVs. We discuss MVs’ role in cell-specific interactions. We also show their emerging roles in therapy and diagnosis.

    Expert commentary: We see MVs as therapeutic tools for potential use in precision medicine. They may also have potential for allowing the identification of new biomarkers. MVs represent an invaluable tool for studying the cell of origin, which they closely represent, but it is critical to build a repository with data from MVs to deepen our understanding of their molecular repertoire and biological functions.  相似文献   

    15.
    Protein phosphorylation constitutes a major type of post-translational modification that mobilizes a high number of genes, especially in plants, is involved in many crucial cell functions and largely participates to the complexity of the proteomes. For several biological and technical reasons, the characterization of phosphorylation sites requires complex procedures. In this review, the different approaches presently available to select phosphoproteins and phosphopeptides are described. A special emphasis is then given to the numerous strategies that have emerged for the analysis of phosphorylation sites by various techniques of mass spectrometry. Finally, the few attempts proposed for the quantification of phosphorylation events are presented. In another part, the results of the efforts made in the plant area to analyze the phosphoproteome are compared to those in other biological systems. These overviews are put together to delineate, according to the objectives pursued, the different strategies possible and the corresponding challenges.  相似文献   

    16.

    Background

    Deep-sequencing has enabled the identification of large numbers of miRNAs and siRNAs, making the high-throughput target identification a main limiting factor in defining their function. In plants, several tools have been developed to predict targets, majority of them being trained on Arabidopsis datasets. An extensive and systematic evaluation has not been made for their suitability for predicting targets in species other than Arabidopsis. Nor, these have not been evaluated for their suitability for high-throughput target prediction at genome level.

    Results

    We evaluated the performance of 11 computational tools in identifying genome-wide targets in Arabidopsis and other plants with procedures that optimized score-cutoffs for estimating targets. Targetfinder was most efficient [89% ‘precision’ (accuracy of prediction), 97% ‘recall’ (sensitivity)] in predicting ‘true-positive’ targets in Arabidopsis miRNA-mRNA interactions. In contrast, only 46% of true positive interactions from non-Arabidopsis species were detected, indicating low ‘recall’ values. Score optimizations increased the ‘recall’ to only 70% (corresponding ‘precision’: 65%) for datasets of true miRNA-mRNA interactions in species other than Arabidopsis. Combining the results of Targetfinder and psRNATarget delivers high true positive coverage, whereas the intersection of psRNATarget and Tapirhybrid outputs deliver highly ‘precise’ predictions. The large number of ‘false negative’ predictions delivered from non-Arabidopsis datasets by all the available tools indicate the diversity in miRNAs-mRNA interaction features between Arabidopsis and other species. A subset of miRNA-mRNA interactions differed significantly for features in seed regions as well as the total number of matches/mismatches.

    Conclusion

    Although, many plant miRNA target prediction tools may be optimized to predict targets with high specificity in Arabidopsis, such optimized thresholds may not be suitable for many targets in non-Arabidopsis species. More importantly, non-conventional features of miRNA-mRNA interaction may exist in plants indicating alternate mode of miRNA target recognition. Incorporation of these divergent features would enable next-generation of algorithms to better identify target interactions.

    Electronic supplementary material

    The online version of this article (doi:10.1186/1471-2164-15-348) contains supplementary material, which is available to authorized users.  相似文献   

    17.
    Due to the intimate interactions between histones and DNA, the characterization of histones has become the focus of great attention. A series of mass spectrometry-based technologies have been dedicated to the characterization and quantitation of different histone forms. This review focuses on the discussion of mass spectrometry-based strategies used for the characterization of histones and their post-translational modifications.  相似文献   

    18.
    Cationic starches from various semi-technical processes, two 'wet' (slurry and paste modification) and two 'dry' procedures (dry modification and extrusion), each type in a DS range from 0.03 to 0.1, were investigated by electrospray ionisation mass spectrometry (ESIMS) and tandem mass spectrometry (ESIMS2) after enzymatic degradation with alpha-amylase and subsequent glucoamylase digestion. For comparison, chemically derived cationic oligosaccharides were also analysed by ESIMS. The cationisation pattern in the glucosyl units was analysed by GLC after methanolysis, permethylation and Hofmann elimination. Results from ESIMS are discussed and interpreted with respect to enzyme susceptibility, monomer composition and physical properties of the different types of cationic starches.  相似文献   

    19.
    We report the design, chemical synthesis, and structural and functional characterization of a novel reagent for protein sequence analysis by the Edman degradation, yielding amino acid derivatives rapidly detectable at high sensitivity by ion-evaporation mass spectrometry. We demonstrate that the reagent 3-[4'(ethylene-N,N,N-trimethylamino)phenyl]-2-isothiocyanate is chemically stable and shows coupling and cyclization/cleavage yields comparable to phenylisothiocyanate, the standard reagent in chemical sequence analysis, under conditions typically encountered in manual or automated sequence analysis. Amino acid derivatives generated with this reagent were detectable by ion-evaporation mass spectrometry at the subfemtomole sensitivity level at a pace of one sample per minute. Furthermore, derivatives were identified by their mass, thus permitting the rapid and highly sensitive determination of the molecular nature of modified amino acids. Derivatives of amino acids with acidic, basic, polar, or hydrophobic side chains were reproducibly detectable at comparable sensitivities. The polar nature of the reagent required covalent immobilization of polypeptides prior to automated sequence analysis. This reagent, used in automated sequence analysis, has the potential for overcoming the limitations in sensitivity, speed, and the ability to characterize modified amino acid residues inherent in the chemical sequencing methods that are currently used.  相似文献   

    20.
    Antigen B (AgB) is a major protein component of the Echinococcus granulosus metacestode. It is oligomeric and this raises several questions regarding the subunit structure and composition of AgB. Several genes that encode different AgB subunits have been identified, and some of these have been cloned and expressed to produce recombinant subunits. The study of these recombinant subunits may provide new insights into the structure, physical-chemical properties, and functional aspects of AgB. Like native AgB, the AgB8/1, AgB8/2, and AgB8/3 recombinant subunits produced in our laboratory form 120-160 kDa oligomers that have stable secondary structures, are strongly antigenic and immunogenic, and selectively bind hydrophobic compounds. Here, we review these results and discuss their implications for the elucidation of the structure and function of AgB. This includes a possible role for AgB in host-parasite interactions.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号