首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of the non-selective muscarinic antagonist [3H]quinuclidinyl benzilate (QNB) to rat parotid membranes was characterized. Under equilibrium conditions, [3H]QNB bound to a homogenous population of muscarinic receptors (Kd, 118 +/- 19 pM; Bmax, 572 +/- 42 fmol/mg membrane protein, n = 12). The addition of G protein activators AlF4- or guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) + Mg2+ increased the Kd by 77 +/- 7% (n = 4, P less than 0.05) and 83 +/- 27% (n = 7, P less than 0.05), respectively, without a change in the Bmax or homogeneity of the binding site. GTP gamma S added without exogenous Mg2+ did not affect [3H]QNB binding. Thus, optimal QNB binding requires a muscarinic receptor/G protein interaction.  相似文献   

2.
J P Joad  T B Casale 《Life sciences》1987,41(13):1577-1584
Quinuclidinyl benzilate, a muscarinic antagonist, has previously been used in its tritiated form ([3H]-QNB) to study the lung muscarinic receptor. We investigated whether a newer iodinated form of QNB ([125I]-QNB) of higher specific activity would be an appropriate ligand to study the human peripheral lung muscarinic receptor. Both the tritiated and iodinated ligands bound specifically to human lung at 23 degrees C. At 37 degrees C the specific binding of [3H]-QNB increased slightly, but no specific binding of [125I]-QNB was found. The data from multiple equilibrium binding experiments covering a wide range of radiolabeled QNB concentrations were combined and analyzed using the computer modeling program, LIGAND. The tritiated QNB identified a single affinity human lung binding site with a Kd of 46 +/- 9 pM and a receptor concentration of 34 +/- 3 fmol/mg protein. The iodinated QNB identified a single higher affinity human lung binding site (Kd = 0.27 +/- 0.32 pM) of much smaller quantity (0.62 +/- 0.06 fmol/mg protein). Competition studies comparing the binding of unlabeled QNB relative to labeled QNB indicated that unlabeled QNB had the same Kd as that measured for [3H]-QNB, but a 5 log greater Kd than that measured for [125I]-QNB. Other muscarinic receptor agonists and antagonists competed with [3H]-QNB, but not [125I]-QNB for binding to muscarinic receptors with the expected magnitude and rank order of potency. We conclude that of the 2 radiolabeled forms of QNB available, only the tritiated form should be used to study the human peripheral lung muscarinic receptor.  相似文献   

3.
Muscarinic cholinergic receptor sites in dog portal veins were analyzed directly using [3H]quinuclidinyl benzilate (QNB) as a ligand. Specific [3H]QNB binding to crude membrane preparations from the isolated veins was saturable, reversible and of high affinity (KD = 15.5 +/- 2.8 pM) with a Bmax of 110 +/- 14.7 fmol/mg protein. Scatchard and Hill plot analyses of the data indicated one class of binding sites. From kinetic analysis of the data, association and dissociation rate constants of 1.91 X 10(9) M-1 min-1 and 0.016 min-1, respectively, were calculated. The dissociation constant calculated from the equation KD = K-1/K+1 was 8.3 pM, such being in good agreement with the Scatchard estimate of KD (15.5 pM). Specific binding of [3H]QNB was displaced by muscarinic agents. Nicotinic cholinergic agents, alpha-bungarotoxin, nicotine and hexamethonium, were ineffective in displacing [3H]QNB binding at 10 microM. Our findings provide direct evidence for the existence of muscarinic cholinergic receptors in dog portal veins.  相似文献   

4.
Two new polypeptides were isolated and purified from the venom of the snake Dendroaspis angusticeps, which also contains other neuroactive peptides such as Dendrotoxins and Fasciculins. The amino acid composition of the peptides was determined and the first 10 amino acids from the MTX2 N-terminal fragment were sequenced. The so-called muscarinic toxins (MTX1 and MTX2) have been shown to inhibit the specific binding of [3H]QNB (0.15 nM), [3H]PZ (2.5 nM) and [3H]oxoM (2 nM) to bovine cerebral cortex membranes by 60, 88 and 82% respectively. In contrast, they caused only a 30% blockade of the [3H]QNB specific binding to similar membrane preparations from the brainstem. The Hill number for the [3H]PZ binding inhibition by the putative muscarinic toxin MTX2 was 0.95 suggesting homogeneity in the behaviour of the sites involved. The data from [3H]oxoM binding gave a Hill number of 0.83. The decreases in the specific binding involved increases in KD for the three different ligands (8-fold for [3H]QNB, 4-fold for [3H]PZ and 3.5-fold for [3H]oxoM) without significant changes in Bmax, except for a slight decrease in the [3H]oxoM binding sites (-19%); such results suggest that there may be a competitive inhibition between the MTXs and these ligands. The Ki for MTX2/[3H]PZ was 22.58 +/- 3.52 nM; for MTX2/[3H]oxoM, 144.9 +/- 21.07 nM and for MTX2/[3H]QNB, 134.98 +/- 18.35 nM. The labelling of MTX2 with 125I allowed direct demonstration of specific and saturable binding to bovine cerebral cortex synaptosomal membranes. In conclusion, the results reported in this study strongly support the hypotheses that the two polypeptides isolated from D. angusticeps venom selectively inhibit specific ligand binding to central muscarinic receptors, in a competitive manner at least for the antagonist [3H]PZ and that the MTX2 specifically binds to a central site that is suggested to be a muscarinic receptor of the M1 subtype.  相似文献   

5.
The selective muscarinic antagonist L-[3H]-quinuclidinyl benzilate (L-[3H]QNB) binds reversibly and with high affinity (KD = 0.3 nM) to a single population (Bmax = 105 fmol/mg protein) of specific sites in nervous tissue of the crab Cancer magister. The binding site is stereoselective; (-)QNB is over 200 times more potent than (+)QNB as an inhibitor of specific L-[3H]QNB binding. The muscarinic antagonists scopolamine and atropine are over 10,000 times more potent inhibitors of L-[3H]QNB binding than the nicotinic antagonists decamethonium and d-tubocurarine. The muscarinic agonists oxotremorine, pilocarpine, arecoline, and carbachol also compete effectively for the L-[3H]QNB binding site. This pharmacological profile strongly suggests the presence of classical muscarinic receptors in the crab nervous system. These receptors are localized to nervous tissue containing cell bodies and neuropil, whereas specific L-[3H]QNB binding is low or absent in peripheral nerve, skeletal muscle, and artery.  相似文献   

6.
Electrolyte and fluid secretion by the avian salt gland is regulated by activation of muscarinic acetylcholine receptors (R). In this study, these receptors were characterized and quantitated in homogenates of salt gland from domestic ducks adapted to conditions of low (freshwater, FW) and high (saltwater, SW) salt stress using the cholinergic antagonist [3H]-quinuclidinyl benzilate (QNB). Specific binding of the antagonist to receptors in both FW- and SW-adapted glands reveals a single population of high affinity binding sites (KdFW = 40.1 +/- 3.0 pM; KdSW = 35.1 +/- 2.1 pM). Binding is saturable; RLmaxFW = 1.73 +/- 0.10 fmol/micrograms DNA; RLmaxSW = 4.16 +/- 0.31 fmol/micrograms DNA (where L is [3H]QNB and RL the high affinity complex). Calculated average cellular receptor populations of 5,800 sites/cell in FW-adapted glands and 14,100 sites/cell in SW-adapted glands demonstrate that upward regulation of acetylcholine receptors in the secretory epithelium follows chronic salt stress. The receptor exhibits typical pharmacological specificities for muscarinic cholinergic antagonists (QNB, atropine, scopolamine) and agonists (oxotremorine, methacholine, carbachol). In addition, the loop diuretic furosemide, which interferes with ion transport processes in the salt gland, competitively inhibits [3H]QNB binding. Preliminary studies of furosemide effects on [3H]QNB binding to rat exorbital lacrimal gland membranes showed a similar inhibition, although the diuretic had no effect on antagonist binding to rat brain or atrial receptors.  相似文献   

7.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

8.
[3H]Pirenzepine [( 3H]PZ) and [3H] (-)Quinuclidinylbenzilate [( 3H] (-)QNB) specific binding to soluble rat brain muscarinic cholinergic receptors was assessed as a function of time subsequent to receptor solubilization. The soluble brain muscarinic receptor is stable at 4 degrees C when assayed by [3H] (-)QNB binding (t 1/2 = 80 hrs). In contrast the pirenzepine state of the receptor decays rapidly (t 1/2 = 3.0 hrs). Prior occupation of the receptor with [3H] (-)QNB or [3H]PZ increases the receptor stability by two to five fold (t 1/2 QNB greater than 1,000 hrs; t 1/2 PZ = 6.5 hrs). These data indicate that pirenzepine binds to an allosteric state of the muscarinic receptor and that caution should be employed in the assignment of receptor subtypes based solely upon the binding of ligands which recognize unique conformational states.  相似文献   

9.
Nicotinic and muscarinic cholinergic receptors were studied in autopsied brains from four histologically normal controls and five histopathologically verified cases of Alzheimer-type dementia (ATD), using ligand binding techniques. Nicotinic and muscarinic cholinergic receptors were assessed by (-)-[3H]nicotine and [3H]quinuclidinyl benzilate [( 3H]QNB), respectively. Compared with the controls, (-)-[3H]nicotine binding sites in the ATD brain regions examined were significantly reduced in the putamen and the nucleus basalis of Meynert (NbM). [3H]QNB binding was significantly reduced in the hippocampus and NbM. These findings suggest that there are significant changes of nicotinic and muscarinic cholinergic receptors in selected regions of ATD brains.  相似文献   

10.
Muscarinic receptors were assessed by [3H]-quinuclidinyl benzilate (QNB) binding in 900 xg supernatants of bovine superior cervical ganglia (SCG). At 30 degrees C half maximal binding was reached within 3 min and equilibrium within 30 min. Scatchard analysis revealed a single population of binding sites with dissociation constant (Kd) = 0.15 +/- 0.01 nM and site concentration (Bmax) = 101 +/- 4 fmoles/mg prot. Binding was specific for muscarinic drugs. Incubation of bovine SCG with different hormones (10(-7)M) indicated that LH, TRH and testosterone depressed significantly Bmax, and that prolactin decreased both Kd and Bmax of [3H] -QNB binding. Several other hormones tested (TSH, GH, FSH, LHRH, angiotensin II, bradykinin, melatonin, estradiol, thyroxine and triiodothyronine) did not affect QNB binding. Hormone effects were not due to a direct interference with radioligand binding to membrane. The injection of LH to orchidectomized rats depressed Bmax of SCG QNB binding without changing the Kd. These results suggest that muscarinic cholinergic neurotransmission in SCG may be affected by hormones.  相似文献   

11.
The interaction of the potassium channel blocker 4-aminopyridine (4-AP) and its analogs with muscarinic acetylcholine receptors was studied in rat brain homogenate. 4-AP displaced specific [3H]quinuclidinyl benzilate [( 3H]QNB) binding in a concentration-dependent fashion. Hill coefficient values decreased with increasing the concentration of [3H]QNB and different analogs of 4-AP demonstrated varying potencies. Scatchard analysis of saturation isotherms of specific [3H]QNB binding showed that low concentrations of 4-AP slightly reduced maximum binding without affecting the equilibrium dissociation constant, whereas higher concentrations reduced maximum binding further and significantly increased the equilibrium dissociation constant. Schild plots of these data resulted in curvilinear functions. The results are discussed in terms of possible allosteric interactions between potassium channels and muscarinic receptor binding sites.  相似文献   

12.
Although prior studies have supported the validity of measuring total muscarinic receptor binding in postmortem brain, there has not been a study of postmortem effects on muscarinic receptor subtypes, M1 and M2, defined by high and low affinity for pirenzepine, respectively. We have examined in rat brain the effect of postmortem delay at room temperature, storage at 4 degrees C and -20 degrees C, and multiple freeze/thaw cycles on total muscarinic binding, measured with [3H]quinuclidinylbenzilate ([3H]QNB) and on M1 muscarinic binding, measured with [3H]pirenzepine ([3H]Pir). We found that delay at room temperature up to 4 h, or storage at 4 degrees C for 24 h or at -20 degrees C for 4 weeks, or 3 freeze/thaw cycles had no effect on [3H]QNB or [3H]Pir binding. Exposure of brain to room temperature for 15 h, however, led to an increase in [3H]QNB binding, without change in [3H]Pir. Scatchard analysis showed an increase in binding sites without a change in affinity. We conclude that [3H]QNB and [3H]Pir are valid measures of total and M1 muscarinic binding, respectively, under these circumstances, but that caution must be used in the interpretation of indirect measures of M2 binding.  相似文献   

13.
Some atypical muscarinic drugs were compared with classical drugs with respect to inhibition of specific binding of [3H]pirenzepine ([3H]PZ) and [3H]quinuclidinyl benzilate ([3H]QNB) to membrane preparations of rat brain. The interactions of the agonists McN-A343 and carbachol with [3H]QNB at muscarinic sites in brain stem preparations were differently modulated in the presence of an excess of PZ. Moreover, McN-A343 exhibited a preferential affinity for [3H]PZ sites in whole brain membranes whereas carbachol bound with high affinity to [3H]QNB sites in brain stem preparations. Various muscarinic agonists and antagonists displayed different affinity patterns in the [3H]PZ and [3H]QNB binding. These data are indicative of two populations of pharmacologically distinguishable binding sites and support the concept of muscarinic receptor heterogeneity in rat brain.  相似文献   

14.
In isolated rat hearts L-alphacetylmethadol (LAAM) produced a concentration-dependent decrease in the spontaneous beating rate. This effect was completely prevented by 1.0 microM atropine. Chronic treatment of rats with LAAM increased the number of striatal dopamine receptors measured by [3H]spiroperidol binding. The affinity of these binding sites for [3H]spiroperidol was unchanged by LAAM treatment. There were no significant changes in the number or affinity of binding sites for the labeled muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB) with chronic LAAM treatment. The ability of LAAM, nor-LAAM, or dinor-LAAM to antagonize the binding of [3H]spiroperidol (40 pM) or [3H]QNB (125 pM) to striatal membrane fragments was tested. The measured affinity constants for LAAM and metabolites were 100-3000 times higher than the affinity constants of unlabeled spiroperidol at [3H]spiroperidol binding sites. The affinity constants of LAAM and metabolites at muscarinic binding sites were 10-20 times higher than pilocarpine and 5000-8000 times higher than atropine. These results suggest that LAAM can produce some of its effects by acting as a weak agonist at muscarinic receptor sites.  相似文献   

15.
J B Cheng  R G Townley 《Life sciences》1982,30(24):2079-2086
This study was undertaken to compare the activity of muscarinic and beta adrenergic receptors in bovine peripheral lung to the corresponding receptor activity in tracheal smooth muscle. We used [3H] quinuclidinyl benzilate (QNB) and [3H]dihydroalprenolol (DHA) to measure muscarinic and beta receptor activity, respectively. Binding to QNB and DHA at 25 degrees C was rapid, reversible, saturable and of high affinity. The order of potency for cholinergic and adrenergic agents competing for binding was compatible with muscarinic and beta 2 adrenergic potencies. We found that the concentration of muscarinic receptor binding sites was 37-fold greater in the tracheal muscle preparation (2805 +/- 309 fmol/mg protein) than in the peripheral lung preparation (76 +/- 28 fmol/mg protein). Unlike muscarinic receptors, the lung contained 8-fold higher concentration of the beta adrenergic receptors than did the tracheal muscle (1588 +/- 417 vs. 199 +/- 42 fmol/mg protein). The dissociation constant or the agonist's inhibitory constant (Ki) for either receptor binding site, however, was not significantly different between the two tissues. Furthermore, in vitro contraction studies showed that the response of tracheal muscle strips to methacholine was markedly greater than the response of peripheral lung strips, a finding consistent with the QNB binding result. The muscle but not the peripheral lung strip exhibited a relaxing response to epinephrine. Our data indicate a striking quantitative difference in muscarinic and beta adrenergic receptors between lung tissue and tracheal muscle, and that each receptor in the lung is qualitatively similar to the corresponding receptor in the muscle.  相似文献   

16.
Incubation of 1321N1 human astrocytoma cells with carbachol resulted in a rapid loss of binding of [3H]N-methylscopolamine ([3H]NMS) to muscarinic cholinergic receptors measured at 4 degrees C on intact cells; loss of muscarinic receptors in lysates from the same cells measured with [3H]quinuclidinyl benzilate [( 3H]QNB) at 37 degrees C occurred at a slower rate. Upon removal of agonist from the medium, the lost [3H]NMS binding sites measured on intact cells recovered with a t1/2 of approximately 20 min, but only to the level to which [3H]QNB binding sites had been lost; no recovery of "lost" [3H]QNB binding sites occurred over the same period. Based on these data and the arguments of Galper et al. (Galper, J. B., Dziekan, L. C., O'Hara, D. S., and Smith, T. W. (1982) J. Biol. Chem. 257, 10344-10356) regarding the relative hydrophilicity of [3H]NMS versus [3H]QNB, it is proposed that carbachol induces a rapid sequestration of muscarinic receptors that is followed by a loss of these receptors from the cell. These carbachol-induced changes are accompanied by a change in the membrane form of the muscarinic receptor. Although essentially all of the muscarinic receptors from control cells co-purified with the plasma membrane fraction on sucrose density gradients, 20-35% of the muscarinic receptors from cells treated for 30 min with 100 microM carbachol migrated to a much lower sucrose density. This conversion of muscarinic receptors to a "light vesicle" form occurred with a t1/2 approximately 10 min, and reversed with a t1/2 approximately 20 min. In contrast to previous results in this cell line regarding beta-adrenergic receptors (Harden, T. K., Cotton, C. U., Waldo, G. L., Lutton, J. K., and Perkins, J. P. (1980) Science 210, 441-443), agonist binding to muscarinic receptors in the light vesicle fraction obtained from carbachol-treated cells was still regulated by GTP. One interpretation of these data is that agonists induce an internalization of muscarinic receptors with the retention of their functional interaction with a guanine nucleotide regulatory protein.  相似文献   

17.
Male rats were treated for 10 days with the organophosphorus insecticide, acetylcholinesterase inhibitor, O,O-diethyl S-[2-(ethylthio)ethyl]phosphorodithioate (disulfoton, 2 mg/kg/day by gavage). At the end of the treatment, binding of [3H]quinuclidinyl benzilate ([3H]QNB) to cholinergic muscarinic receptors and cholinesterase (ChE) activity were assayed in the pancreas. Functional activity of pancreatic muscarinic receptor was investigated by determining carbachol-stimulated secretion of α-amylase in vitro. ChE activity and [3H]QNB binding were significantly decreased in the pancreas from disulfoton-treated rats. The alteration of [3H]QNB binding was due to a decrease in muscarinic receptor density with no change in the affinity. Basal secretion of amylase from pancreas in vitro was not altered, but carbachol-stimulated secretion was decreased. The effect appeared to be specific since pancreozymin was able to induce the same amylase release from pancreases of control and treated rats. The results suggest that repeated exposures to sublethal doses of an organophosphorus insecticide lead to a biochemical and functional alteration of cholinergic muscarinic receptors in the pancreas.  相似文献   

18.
Muscarinic stimulation of submucosal glands in swine trachea   总被引:1,自引:0,他引:1  
The properties of muscarinic acetylcholine receptors (mAChR) on tracheal explants and isolated submucosal gland cells were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and N-[3H]methylscopolamine ([3H]NMS) as ligands. Analysis of competitive displacement of ([3H]NMS binding by pirenzepine demonstrated the presence of M1- (27 +/- 2%) and M2G- (73 +/- 2%) receptors on isolated tracheal submucosal gland cells (TSGC's) in control. Daily administration of diisopropylfluorophosphate (DFP) inhibited cholinesterase activity by greater than 95%. After 7 days of DFP treatment, [3H]QNB binding to intact TSGC's decreased from 14.2 +/- 0.6 to 6.3 +/- 0.8 fmol/10(6) cells; similarly, [3H]NMS binding fell from 8.1 +/- 1.9 to 2.0 +/- 0.8 fmol/10(6) cells. The loss of mAChR's was predominantly of the M2G subtype with the relative proportion dropping to 33%. In addition, 90% of the receptors assumed the high-affinity state for carbachol displacement of [3H]NMS. Mucus secretion was quantitated by measuring the release of 3H-labeled mucus macromolecules from explants of tracheal submucosal glands and isolated cells. Acetylcholine (ACh), 2 X 10(-5) M, stimulated mucus secretion by 2.5 and 2.3 times the basal rate, respectively. Elimination of acetylcholinesterase (AChe) by DFP increased the ACh sensitivity by 18- and 5-fold. Tracheal explants or TSGC's obtained 2 h after an in vivo DFP treatment showed a 6- and 3-fold ACh stimulation. This ACh sensitivity decreased during the continued daily dosing with DFP such that only a 1.3- and 1.1-fold ACh stimulation was apparent after 7 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Expression of human muscarinic cholinergic receptors in tobacco   总被引:1,自引:0,他引:1  
We expressed human m1, m2 and chimeric muscarinic cholinergic receptors (MAChR) in tobacco plants and in cultured BY2 tobacco cells using Agrobacterium-mediated transformation. The membranes of most transgenic plants and calli bound muscarinic ligands with appropriate affinities, kinetics and pharmacologic specificity, as determined by direct and competitive binding measurements using the muscarinic ligand [3H]quinuclidinyl benzylate (QNB). Membranes of untransformed plants and calli or those transformed with vector alone did not bind [3H]QNB. Preliminary experiments did not suggest regulation of endogenous plant G protein signalling pathways by the recombinant receptors. Membranes from one callus clone expressed m1 MAChR at the level of 2.0–2.5 pmol [3H]QNB bound per mg membrane protein, more than the number of m1 MAChR in mammalian brain and comparable to that expressed in Sf9 insect cells using baculovirus vectors. This work demonstrates high level expression of active G protein-coupled receptors in plants, such that signaling might be genetically reconstituted by co-expression of appropriate G proteins and effectors.  相似文献   

20.
Receptors for the specific muscarinic radioligand [3H]quinuclidinyl benzilate ([3H]QNB) were solubilized by digitonin from a particulate preparation of bovine brain without significant alteration in binding affinities for muscarinic antagonists. Electron microscopy and sucrose density gradient sedimentation analysis confirmed the solubility of these receptors in aqueous solutions of digitonin. Equilibrium and kinetic studies of [3H]QNB binding to solubilized receptors indicated that binding was stereoselective and was blocked by muscarinic compounds. These tests permit tentative identification of digitonin-solubilized [3H]QNB binding sites as muscarinic acetylcholine receptors. Digitonin-solubilized receptors were homogeneous with respect to sedimentation behavior and binding affinities for agonist and antagonist drugs, unlike membrane-bound receptors. Enzyme digestion studies and treatment with group-specific reagents indicated that muscarinic receptors are proteins whose binding activity could be disrupted by reduction with dithiothreitol or by modification of sulfhydryl residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号