首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells carrying the thermosensitive nrdA101 allele are able to replicate entire chromosomes at 42°C when new DNA initiation events are inhibited. We investigated the role of the recombination enzymes on the progression of the DNA replication forks in the nrdA101 mutant at 42°C in the presence of rifampin. Using pulsed-field gel electrophoresis (PFGE), we demonstrated that the replication forks stalled and reversed during the replication progression under this restrictive condition. DNA labeling and flow cytometry experiments supported this finding as the deleterious effects found in the RecB-deficient background were suppressed specifically by the absence of RuvABC; however, this did not occur in a RecG-deficient background. Furthermore, we show that the RecA protein is absolutely required for DNA replication in the nrdA101 mutant at restrictive temperature when the replication forks are reversed. The detrimental effect of the recA deletion is not related to the chromosomal degradation caused by the absence of RecA. The inhibition of DNA replication observed in the nrdA101 recA mutant at 42°C in the presence of rifampin was reverted by the presence of the wild-type RecA protein expressed ectopically but only partially suppressed by the RecA protein with an S25P mutation [RecA(S25P)], deficient in the rescue of the stalled replication forks. We propose that RecA is required to maintain the integrity of the reversed forks in the nrdA101 mutant under certain restrictive conditions, supporting the relationship between DNA replication and recombination enzymes through the stabilization and repair of the stalled replication forks.  相似文献   

2.
Although the nrdA101 allele codes for a ribonucleoside diphosphate (rNDP) reductase that is essentially destroyed in less than 2 min at 42 degrees C, and chemical inhibition of the enzyme by hydroxyurea stops DNA synthesis at once, we found that incubation at 42 degrees C of an Escherichia coli strain containing this allele allows DNA replication for about 40min. This suggests that mutant rNDP reductase is protected from thermal inactivation by some hyperstructure. If, together with the temperature upshift, RNA or protein synthesis is inhibited, the thermostability time of the mutant rNDP reductase becomes at least as long as the replication time and residual DNA synthesis becomes a run-out replication producing fully replicated chromosomes. This suggests that cessation of replication in the nrdA101 mutant strain is not the result of inactivation of its gene product but of the activity of a protein reflecting the presence of a partially altered enzyme. The absence of Tus protein, which specifically stops the replication complex by inhibiting replicative helicase activity, allows forks to replicate for a longer time at the restrictive temperature in the nrdA101 mutant strain. We therefore propose that rNDP reductase is a component of the replication complex, and that this association with other proteins protects the protein coded by allele nrdA101 from thermal inactivation.  相似文献   

3.
In response to DNA damage and replication pausing, eukaryotes activate checkpoint pathways that prevent genomic instability by coordinating cell cycle progression with DNA repair. The intra-S-phase checkpoint has been proposed to protect stalled replication forks from pathological rearrangements that could result from unscheduled recombination. On the other hand, recombination may be needed to cope with either stalled forks or double-strand breaks resulting from hydroxyurea treatment. We have exploited fission yeast to elucidate the relationship between replication fork stalling, loading of replication and recombination proteins onto DNA, and the intra-S checkpoint. Here, we show that a functional recombination machinery is not essential for recovery from replication fork arrest and instead can lead to nonfunctional fork structures. We find that Rad22-containing foci are rare in S-phase cells, but peak in G2 phase cells after a perturbed S phase. Importantly, we find that the intra-S checkpoint is necessary to avoid aberrant strand-exchange events during a hydroxyurea block.  相似文献   

4.
5.
Cockayne syndrome group B (CSB) protein has been implicated in the repair of a variety of DNA lesions that induce replication stress. However, little is known about its role at stalled replication forks. Here, we report that CSB is recruited to stalled forks in a manner dependent upon its T1031 phosphorylation by CDK. While dispensable for MRE11 association with stalled forks in wild-type cells, CSB is required for further accumulation of MRE11 at stalled forks in BRCA1/2-deficient cells. CSB promotes MRE11-mediated fork degradation in BRCA1/2-deficient cells. CSB possesses an intrinsic ATP-dependent fork reversal activity in vitro, which is activated upon removal of its N-terminal region that is known to autoinhibit CSB’s ATPase domain. CSB functions similarly to fork reversal factors SMARCAL1, ZRANB3 and HLTF to regulate slowdown in fork progression upon exposure to replication stress, indicative of a role of CSB in fork reversal in vivo. Furthermore, CSB not only acts epistatically with MRE11 to facilitate fork restart but also promotes RAD52-mediated break-induced replication repair of double-strand breaks arising from cleavage of stalled forks by MUS81 in BRCA1/2-deficient cells. Loss of CSB exacerbates chemosensitivity in BRCA1/2-deficient cells, underscoring an important role of CSB in the treatment of cancer lacking functional BRCA1/2.  相似文献   

6.
Deoxyribonucleic acid (DNA) topoisomerases are essential for removing the supercoiling that normally builds up ahead of replication forks. The camptothecin (CPT) Top1 (topoisomerase I) inhibitors exert their anticancer activity by reversibly trapping Top1-DNA cleavage complexes (Top1cc's) and inducing replication-associated DNA double-strand breaks (DSBs). In this paper, we propose a new mechanism by which cells avoid Top1-induced replication-dependent DNA damage. We show that the structure-specific endonuclease Mus81-Eme1 is responsible for generating DSBs in response to Top1 inhibition and for allowing cell survival. We provide evidence that Mus81 cleaves replication forks rather than excises Top1cc's. DNA combing demonstrated that Mus81 also allows efficient replication fork progression after CPT treatment. We propose that Mus81 cleaves stalled replication forks, which allows dissipation of the excessive supercoiling resulting from Top1 inhibition, spontaneous reversal of Top1cc, and replication fork progression.  相似文献   

7.
Restarting stalled replication forks is vital to avoid fatal replication errors. Previously, it was demonstrated that hydroxyurea-stalled replication forks rescue replication either by an active restart mechanism or by new origin firing. To our surprise, using the DNA fibre assay, we only detect a slightly reduced fork speed on a UV-damaged template during the first hour after UV exposure, and no evidence for persistent replication fork arrest. Interestingly, no evidence for persistent UV-induced fork stalling was observed even in translesion synthesis defective, Polη(mut) cells. In contrast, using an assay to measure DNA molecule elongation at the fork, we observe that continuous DNA elongation is severely blocked by UV irradiation, particularly in UV-damaged Polη(mut) cells. In conclusion, our data suggest that UV-blocked replication forks restart effectively through re-priming past the lesion, leaving only a small gap opposite the lesion. This allows continuation of replication on damaged DNA. If left unfilled, the gaps may collapse into DNA double-strand breaks that are repaired by a recombination pathway, similar to the fate of replication forks collapsed after hydroxyurea treatment.  相似文献   

8.
The protein kinase Hsk1 is essential for DNA replication in Schizosaccharomyces pombe. It associates with Dfp1/Him1 to form an active complex equivalent to the Cdc7-Dbf4 protein kinase in Saccharomyces cerevisiae. Swi1 and Swi3 are subunits of the replication fork protection complex in S. pombe that is homologous to the Tof1-Csm3 complex in S. cerevisiae. The fork protection complex helps to preserve the integrity of stalled replication forks and is important for activation of the checkpoint protein kinase Cds1 in response to fork arrest. Here we describe physical and genetic interactions involving Swi1 and Hsk1-Dfp1/Him1. Dfp1/Him1 was identified in a yeast two-hybrid screen with Swi1. Hsk1 and Dfp1/Him1 both co-immunoprecipitate with Swi1. Swi1 is required for growth of a temperature-sensitive hsk1 (hsk1ts) mutant at its semi-permissive temperature. Hsk1ts cells accumulate Rad22 (Rad52 homologue) DNA repair foci at the permissive temperature, as previously observed in swi1 cells, indicating that abnormal single-stranded DNA regions form near the replication fork in hsk1ts cells. hsk1ts cells were also unable to properly delay S-phase progression in the presence of a DNA alkylating agent and were partially defective in mating type switching. These data suggest that Hsk1-Dfp1/Him1 and Swi1-Swi3 complexes have interrelated roles in stabilization of arrested replication forks.  相似文献   

9.
Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Cells with impaired MRN complex experienced severe replication stress and gained substrates for gene amplification during replication, as evidenced by the increase of replication-associated single-stranded breaks that were converted to DSBs most likely through replication fork reversal. Impaired MRN complex directly compromised ATM/ATR-mediated checkpoints and allowed cells to progress through cell cycle in the presence of DSBs. Such compromised intra-S phase checkpoints promoted gene amplification independently from mutant p53. Finally, cells adapted to endogenous replication stress by globally suppressing genes for DNA replication and cell cycle progression. Our results indicate that the MRN complex suppresses gene amplification by stabilizing replication forks and by securing DNA damage response to replication-associated DSBs.  相似文献   

10.
Tourrière H  Pasero P 《DNA Repair》2007,6(7):900-913
S phase is a period of great vulnerability for the genome of eukaryotic cells. Many complicated processes are undertaken during this critical phase of the cell cycle, including the complete unwinding and the duplication of enormously complex DNA molecules. During this process, replication forks frequently encounter obstacles that impede their progression. Arrested forks are unstable structures that have to be stabilized and restarted in order to prevent the formation of double-strand breaks and/or unscheduled homologous recombination. To this aim, cells have evolved complex surveillance mechanisms sensing DNA damage and replication stress. The past decade has seen a dramatic advance in our understanding of how these regulatory pathways act in response to exogenous replication stress. However, the mechanism by which fork integrity is maintained at natural replication-impeding sequences remains obscure. Here, we discuss recent findings about how checkpoint-dependent and -independent mechanisms cooperate to prevent genomic instability at stalled forks, both in normal S phase and in the presence of exogenous genotoxic stress.  相似文献   

11.
The S-phase checkpoint activated at replication forks coordinates DNA replication when forks stall because of DNA damage or low deoxyribonucleotide triphosphate pools. We explore the involvement of replication forks in coordinating the S-phase checkpoint using dun1Delta cells that have a defect in the number of stalled forks formed from early origins and are dependent on the DNA damage Chk1p pathway for survival when replication is stalled. We show that providing additional origins activated in early S phase and establishing a paused fork at a replication fork pause site restores S-phase checkpoint signaling to chk1Delta dun1Delta cells and relieves the reliance on the DNA damage checkpoint pathway. Origin licensing and activation are controlled by the cyclin-Cdk complexes. Thus, oncogene-mediated deregulation of cyclins in the early stages of cancer development could contribute to genomic instability through a deficiency in the forks required to establish the S-phase checkpoint.  相似文献   

12.
RAD51 is important for restarting stalled replication forks and for repairing DNA double-strand breaks (DSBs) through a pathway called homology-directed repair (HDR). However, analysis of the consequences of specific RAD51 mutants has been difficult since they are toxic. Here we report on the dominant effects of two human RAD51 mutants defective for ATP binding (K133A) or ATP hydrolysis (K133R) expressed in mouse embryonic stem (ES) cells that also expressed normal mouse RAD51 from the other chromosome. These cells were defective for restarting stalled replication forks and repairing breaks. They were also hypersensitive to camptothecin, a genotoxin that generates breaks specifically at the replication fork. In addition, these cells exhibited a wide range of structural chromosomal changes that included multiple breakpoints within the same chromosome. Thus, ATP binding and hydrolysis are essential for chromosomal maintenance. Fusion of RAD51 to a fluorescent tag (enhanced green fluorescent protein [eGFP]) allowed visualization of these proteins at sites of replication and repair. We found very low levels of mutant protein present at these sites compared to normal protein, suggesting that low levels of mutant protein were sufficient for disruption of RAD51 activity and generation of chromosomal rearrangements.  相似文献   

13.
Schlacher K  Christ N  Siaud N  Egashira A  Wu H  Jasin M 《Cell》2011,145(4):529-542
Breast cancer suppressor BRCA2 is critical for maintenance of genomic integrity and resistance to agents that damage DNA or collapse replication forks, presumably through homology-directed repair of double-strand breaks (HDR). Using single-molecule DNA fiber analysis, we show here that nascent replication tracts created before fork stalling with hydroxyurea are degraded in the absence of BRCA2 but are stable in wild-type cells. BRCA2 mutational analysis reveals that a conserved C-terminal site involved in stabilizing RAD51 filaments, but not in loading RAD51 onto DNA, is essential for this fork protection but dispensable for HDR. RAD51 filament disruption in wild-type cells phenocopies BRCA2 deficiency. BRCA2 prevents chromosomal aberrations on replication stalling, which are alleviated by inhibition of MRE11, the nuclease responsible for this form of fork instability. Thus, BRCA2 prevents rather than repairs nucleolytic lesions at stalled replication forks to maintain genomic integrity and hence likely suppresses tumorigenesis through this replication-specific function.  相似文献   

14.
A common feature of progeria syndromes is a premature aging phenotype and an enhanced accumulation of DNA damage arising from a compromised repair system. HGPS (Hutchinson-Gilford progeria syndrome) is a severe form of progeria in which patients accumulate progerin, a mutant lamin A protein derived from a splicing variant of the lamin A/C gene (LMNA). Progerin causes chromatin perturbations which result in the formation of DSBs (double-strand breaks) and abnormal DDR (DNA-damage response). In the present article, we review recent findings which resolve some mechanistic details of how progerin may disrupt DDR pathways in HGPS cells. We propose that progerin accumulation results in disruption of functions of some replication and repair factors, causing the mislocalization of XPA (xeroderma pigmentosum group A) protein to the replication forks, replication fork stalling and, subsequently, DNA DSBs. The binding of XPA to the stalled forks excludes normal binding by repair proteins, leading to DSB accumulation, which activates ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) checkpoints, and arresting cell-cycle progression.  相似文献   

15.
Mms1 and Mms22 form a Cul4(Ddb1)-like E3 ubiquitin ligase with the cullin Rtt101. In this complex, Rtt101 is bound to the substrate-specific adaptor Mms22 through a linker protein, Mms1. Although the Rtt101(Mms1/Mms22) ubiquitin ligase is important in promoting replication through damaged templates, how it does so has yet to be determined. Here we show that mms1Δ and mms22Δ cells fail to properly regulate DNA replication fork progression when replication stress is present and are defective in recovery from replication fork stress. Consistent with a role in promoting DNA replication, we find that Mms1 is enriched at sites where replication forks have stalled and that this localization requires the known binding partners of Mms1-Rtt101 and Mms22. Mms1 and Mms22 stabilize the replisome during replication stress, as binding of the fork-pausing complex components Mrc1 and Csm3, and DNA polymerase ε, at stalled replication forks is decreased in mms1Δ and mms22Δ. Taken together, these data indicate that Mms1 and Mms22 are important for maintaining the integrity of the replisome when DNA replication forks are slowed by hydroxyurea and thereby promote efficient recovery from replication stress.  相似文献   

16.
Arrest of replication forks by various internal and external threats evokes a myriad of cellular reactions, collectively known as DNA replication checkpoint responses. In bacteria, PriA is essential for restoration of stalled replication forks and recombinational repair of double-stranded DNA breaks and is a candidate sensor protein that may recognize arrested forks. Here, we report that PriA protein specifically recognizes 3' termini of arrested nascent DNA chains at model stalled replication forks in vitro. Mutations in the putative "3' terminus binding pocket" present in the N-terminal segment of PriA result in reduced binding to stalled replication fork structures and loss of its biological functions. The results suggest a mechanism by which stalled replication forks are recognized by a sensor protein for checkpoint responses.  相似文献   

17.
Restarting stalled replication forks partly depends on the break-induced recombination pathway, in which a DNA double-stranded break (DSB) is created on the stalled replication fork to initiate the downstream recombination cascades. Single-stranded DNA gaps accumulating on stalled replication forks are potential targets for endonucleases to generate DSBs. However, it is unclear how this process is executed and which nucleases are involved in eukaryotic cells. Here, we identify a novel gap endonuclease (GEN) activity of human flap endonuclease 1 (FEN-1), critical in resolving stalled replication fork. In response to replication arrest, FEN-1 interacts specifically with Werner syndrome protein for efficient fork cleavage. Replication protein A facilitates FEN-1 interaction with DNA bubble structures. Human FEN-1, but not the GEN-deficient mutant, E178A, was shown to rescue the defect in resistance to UV and camptothecin in a yeast FEN-1 null mutant.  相似文献   

18.
Replication stress from stalled or collapsed replication forks is a major challenge to genomic integrity. The anticancer agent camptothecin (CPT) is a DNA topoisomerase I inhibitor that causes fork collapse and double-strand breaks amid DNA replication. Here we report that hMSH5 promotes cell survival in response to CPT-induced DNA damage. Cells deficient in hMSH5 show elevated CPT-induced γ-H2AX and RPA2 foci with concomitant reduction of Rad51 foci, indicative of impaired homologous recombination. In addition, CPT-treated hMSH5-deficient cells exhibit aberrant activation of Chk1 and Chk2 kinases and therefore abnormal cell cycle progression. Furthermore, the hMSH5-FANCJ chromatin recruitment underlies the effects of hMSH5 on homologous recombination and Chk1 activation. Intriguingly, FANCJ depletion desensitizes hMSH5-deficient cells to CPT-elicited cell killing. Collectively, our data point to the existence of a functional interplay between hMSH5 and FANCJ in double-strand break repair induced by replication stress.  相似文献   

19.
Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.  相似文献   

20.
To investigate the influence of the ribosomal DNA enhancer on initiation of replication and recombination at the ribosomal array, we used yeast S. cerevisiae strains with adjacent, tagged rRNA genes. We found that the enhancer is an absolute requirement for replication fork barrier function, while it only modulates initiation of replication. Moreover, the formation of monomeric extrachromosomal ribosomal circles depends on this element. Our data indicate that DNA double-strand breaks occur at specific sites in the parental leading arm of replication forks stalled at the replication fork barrier. Additionally, nicks upstream of the replication fork barrier were visualized by nucleotide-resolution mapping. They coincide with essential sequences of the mitotic hyperrecombination site HOT1, which previously has been determined at ectopic sites. Interestingly, these nicks are strictly dependent on the replication fork blocking-protein (Fob1), but are replication independent, suggesting that intrachromosomal ribosomal DNA recombination may occur outside of S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号