首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Past studies have shown that serum-free cultures of PC12 cells are a useful model system for studying the neuronal cell death which occurs after neurotrophic factor deprivation. In this experimental paradigm, nerve growth factor (NGF) rescues the cells from death. It is reported here that serum-deprived PC12 cells manifest an endonuclease activity that leads to internucleosomal cleavage of their cellular DNA. This activity is detected within 3 h of serum withdrawal and several hours before any morphological sign of cell degeneration or death. NGF and serum, which promote survival of the cells, inhibit the DNA fragmentation. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases in vitro, suppresses the endonuclease activity and promotes long-term survival of PC12 cells in serum-free cultures. This effect appears to be independent of macromolecular synthesis. In addition, ATA promotes long-term survival of cultured sympathetic neurons after NGF withdrawal. ATA neither promotes nor maintains neurite outgrowth. It is hypothesized that the activation of an endogenous endonuclease could be responsible for neuronal cell death after neurotrophic factor deprivation and that growth factors could promote survival by leading to inhibition of constitutively present endonucleases.  相似文献   

3.
Internucleosomal DNA cleavage and neuronal cell survival/death   总被引:17,自引:0,他引:17       下载免费PDF全文
Serum-free PC12 cell cultures have been used to study the mechanisms of neuronal death after neurotrophic factor deprivation. We previously reported that PC12 cells undergo "apoptotic" internucleosomal DNA cleavage after withdrawal of trophic support. Here, we have used a sensitive method to detect PC12 cell DNA fragmentation within three hrs of serum removal and have exploited this assay to examine several aspects regarding the mechanisms of neuronal survival/death. Major advantages of this assay are that it permits acute experiments to be performed well before other manifest signs of cell death and under conditions that cannot be applied chronically. We find that this apopotic DNA fragmentation is distinct from the random DNA degradation that occurs during necrotic death. Major observations include the following: (a) There is a good correlation between the ability of trophic substances to promote PC12 cell survival and to inhibit early DNA fragmentation. (b) Phorbol ester, an activator of PKC, acutely suppresses DNA fragmentation, but does not promote long-term survival or inhibition of endonuclease activity when applied chronically due to its downregulation of PKC. (c) Cells undergoing apoptosis within 3 h of serum withdrawal have a "commitment point" of only 1.0-1.5 h beyond which they can no longer be rescued by NGF. (d) Aurin, a non-carboxylic analog of the endonuclease inhibitor ATA, also inhibits DNA fragmentation and promotes short-term survival of PC12 cells. (e) Macromolecular synthesis is not required for DNA fragmentation or for NGF to prevent this event. (f) Extracellular Ca2+ is not required for internucleosomal DNA cleavage caused by serum withdrawal or for suppression of this by NGF. (g) DNA fragmentation can also be detected in cultures of rat sympathetic neurons as early as 10 h after removal of NGF. As in PC12 cell cultures, this precedes morphological signs of cell death.  相似文献   

4.
5.
Nerve Growth Factor (NGF) is a neurotrophic factor that prevents apoptosis in neuronal progenitor cells. In rat pheochromocytoma (PC12) cells, tyrosine kinase A receptor (TrkA) mediates neurotrophic or protective effects, while p75 neurotrophin receptor (p75NTR) functions as a death receptor. We have determined whether TrkA mediates any cytotoxic effect. Following serum deprivation, TrkA expression increased 2.2-fold and apoptosis began with expression of Bax proapoptotic protein. Application of NGF halved cell viability but this was reversed by K252a, the TrkA inhibitor. These results confirmed the paradoxical cytotoxic effect of neurotrophic NGF via TrkA in PC12 cells following serum deprivation.  相似文献   

6.
DNase , which cleaves chromosomal DNA into nucleosomal units (DNA ladder formation), has been suggested to be the critical component of apoptotic machinery. Using rat pheochromocytoma PC12 cells, which are differentiated to sympathetic neurons by nerve growth factor (NGF), we investigated whether DNase -like enzyme is present in neuronal cells and is involved in neuronal cell death. The nuclear auto-digestion assay for DNase catalyzing internucleosomal DNA cleavage revealed that nuclei from neuronal differentiated PC12 cells contain acidic and neutral endonucleases, while nuclei from undifferentiated PC12 cells have only acidic endonuclease. The DNA ladder formation observed in isolated nuclei from neuronal differentiated PC12 cells at neutral pH requires both Ca2+ and Mg2+, and is sensitive to Zn2+. The molecular mass of the neutral endonuclease present in neuronal differentiated PC12 cell nuclei is 32000 as determined by activity gel analysis (zymography). The properties of the neuronal endonuclease present in neuronal differentiated PC12 cell nuclei were similar to those of purified DNase from rat thymocytes and splenocytes. Interestingly, in neuronal differentiated PC12 cells, internucleosomal DNA fragmentation is observed following NGF deprivation, whereas undifferentiated PC12 cells fail to exhibit DNA ladder formation during cell death by serum starvation. These results suggest that the DNase -like endonuclease present in neuronal differentiated PC12 cell nuclei is involved in internucleosomal DNA fragmentation during apoptosis, induced by NGF deprivation.  相似文献   

7.
Delayed death of serum-starved PC12 cells on a poly-L-lysine (PLL) matrix was observed, even in the presence of NGF. NGF blocked the apoptotic death of attached but not detached cells, which suggests that delayed death may be related to cell detachment from the PLL matrix. Iron selectively blocked this anoikis-like death by increasing cell attachment. Interestingly, the addition of > 10 microM FeCl2 to the culture medium generated gelatinous iron precipitates, and the removal of the precipitates abolished the iron effect. Attachment experiments using poly-HEMA supported the role of iron precipitates on cell-to-matrix adhesion. The expression of integrin beta1, neither N-cadherin nor alpha/beta-catenin, was also significantly increased by iron. In addition to its effect on cell viability, iron promoted the outgrowth of neurites. Our results collectively indicate that iron functions as a necessary co-element for NGF by enhancing cell attachment, survival, and neurite extension.  相似文献   

8.
v-Crk is a member of a class of SH2 and SH3-containing adaptor proteins that have been implicated in regulating the TrkA receptor tyrosine kinase and potentiating Nerve Growth Factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells (Hempstead et al, Mol. Cell Biol. 14: 1964 - 1971). Given the fact that NGF induces both differentiation and survival by binding to TrkA, we examined the rate of apoptotic cell death elicited by NGF-withdrawal in native, v-Crk, and TrkA-expressing PC12 cells. While more than 50% of native PC12 cells underwent apoptosis within 48 h of NGF withdrawal, the v-Crk and TrkA-expressing cells were much more resistant to apoptosis under these conditions, whereby approximately 70 and 95%, respectively, of the cells were alive. The ability of v-Crk to delay apoptosis required prior NGF-dependent differentiation, since naive undifferentiated v-Crk expressing PC12 cells or cells that express v-Crk mutants that are defective in NGF signaling were not protected from apoptosis during growth factor withdrawal. Moreover, addition of 50 ng/ml EGF to serum and NGF deprived v-Crk expressing cells, which also causes neurite outgrowth, promoted complete and long-term survival, although such EGF replacement had no neurotrophic effect on wild-type PC12 cells or PC12 cells overexpressing Human Bcl-2. These experiments suggest that v-Crk potentiation of a receptor tyrosine kinase under conditions of growth factor deprivation is essential for preventing apoptosis. However, unlike native PC12 cells, neither v-Crk or TrkA-expressing PC12 cells exhibited a G1 arrest when incubated for 2 weeks in NGF. Thus, v-Crk and TrkA may protect NGF deprived PC12 by preventing cell cycle arrest and hence an aborted entry into a defective cell cycle. Moreover, during NGF-withdrawal, v-CrkPC12 cells exhibited down regulation in MAP kinase and JNK activities while in native cells, these activities increased within 6 - 8 h after NGF deprivation. Thus, unlike v-Crk-mediated augmentation of differentiation, sustained activation of MAP kinase may not be required for v-Crk-induced cell survival.  相似文献   

9.
10.
《The Journal of cell biology》1993,123(5):1207-1222
The time course of molecular events that accompany degeneration and death after nerve growth factor (NGF) deprivation and neuroprotection by NGF and other agents was examined in cultures of NGF-dependent neonatal rat sympathetic neurons and compared to death by apoptosis. Within 12 h after onset of NGF deprivation, glucose uptake, protein synthesis, and RNA synthesis fell precipitously followed by a moderate decrease of mitochondrial function. The molecular mechanisms underlying the NGF deprivation-induced decrease of protein synthesis and neuronal death were compared and found to be different, demonstrating that this decrease of protein synthesis is insufficient to cause death subsequently. After these early changes and during the onset of neuronal atrophy, inhibition of protein synthesis ceased to halt neuronal degeneration while readdition of NGF or a cAMP analogue remained neuroprotective for 6 h. This suggests a model in which a putative killer protein reaches lethal levels several hours before the neurons cease to respond to readdition of NGF with survival and become committed to die. Preceding loss of viability by 5 h and concurrent with commitment to die, the neuronal DNA fragmented into oligonucleosomes. The temporal and pharmacological characteristics of DNA fragmentation is consistent with DNA fragmentation being part of the mechanism that commits the neuron to die. The antimitotic and neurotoxin cytosine arabinoside induced DNA fragmentation in the presence of NGF, supporting previous evidence that it mimicked NGF deprivation-induced death closely. Thus trophic factor deprivation- induced death occurs by apoptosis and is an example of programmed cell death.  相似文献   

11.
Previous work showed that the adapter protein SH2B adapter protein 1beta (SH2B1) (SH2-B) binds to the activated form of the nerve growth factor (NGF) receptor TrkA and is critical for both NGF-dependent neurite outgrowth and maintenance. To identify SH2B1beta-regulated genes critical for neurite outgrowth, we performed microarray analysis of control PC12 cells and PC12 cells stably overexpressing SH2B1beta (PC12-SH2B1beta) or the dominant-negative SH2B1beta(R555E) [PC12-SH2B1beta(R555E)]. NGF-induced microarray expression of Plaur and Mmp10 genes was greatly enhanced in PC12-SH2B1beta cells, whereas NGF-induced Plaur and Mmp3 expression was substantially depressed in PC12-SH2B1beta(R555E) cells. Plaur, Mmp3, and Mmp10 are among the 12 genes most highly up-regulated after 6 h of NGF. Their protein products [urokinase plasminogen activator receptor (uPAR), matrix metalloproteinase 3 (MMP3), and MMP10] lie in the same pathway of extracellular matrix degradation; uPAR has been shown previously to be critical for NGF-induced neurite outgrowth. Quantitative real-time PCR analysis revealed SH2B1beta enhancement of NGF induction of all three genes and the suppression of NGF induction of all three when endogenous SH2B1 was reduced using short hairpin RNA against SH2B1 and in PC12-SH2B1beta(R555E) cells. NGF-induced levels of uPAR and MMP3/10 and neurite outgrowth through Matrigel (MMP3-dependent) were also increased in PC12-SH2B1beta cells. These results suggest that SH2B1beta stimulates NGF-induced neuronal differentiation at least in part by enhancing expression of a specific subset of NGF-sensitive genes, including Plaur, Mmp3, and/or Mmp10, required for neurite outgrowth.  相似文献   

12.
Differentiation-dependent sensitivity to apoptogenic factors in PC12 cells   总被引:3,自引:0,他引:3  
We have investigated the role of the mitochondrial pathway during cell death following serum and nerve growth factor (NGF)/dibutyryl cyclic AMP (Bt(2)cAMP) withdrawal in undifferentiated or NGF/Bt(2)cAMP-differentiated PC12 cells, respectively. Holocytochrome c, Smac/DIABLO, and Omi/HtrA2 are released rapidly following trophic factor deprivation in PC12 cells. Bcl-2 and Akt inhibited this release. The protection, however, persisted longer in differentiated PC12 cells. In differentiated, but not undifferentiated cells, Bcl-2 and Akt also inhibited apoptosis downstream of holocytochrome c release. Thus, undifferentiated PC12 cells showed marked sensitivity to induction of apoptosis by microinjected cytochrome c even in the presence of NGF, Bcl-2, or Akt. In contrast, in differentiated cells these factors suppressed cell death. Consistent with these observations, in vitro processing of procaspase 9 in response to cytochrome c was observed in extracts from undifferentiated but not differentiated cells expressing Akt or Bcl-2. Endogenous caspase 9 was cleaved during cell death, whereas dominant negative caspase 9 inhibited cell death. The results from determining the role of inhibitors of apoptosis (IAPs) suggest that acquisition of inhibition by IAPs is part of the differentiation program. Ubiquitin-DeltaN-AVPI Smac/DIABLO induced cell death in differentiated cells only. c-IAP-2 is unregulated in differentiated cells, whereas X-linked IAP levels decreased in these cells coincident with cell death. Moreover, expressing X-linked IAP rendered undifferentiated cells resistant to microinjected cytochrome c. Overall, the inhibitory regulation, of cell death at the level of release of mitochondrial apoptogenic factors and at post-mitochondrial activation of caspase 9 observed in differentiated PC12 cells, is reduced or absent in the undifferentiated counterparts.  相似文献   

13.
Neuronal apoptosis in rat pheochromocytoma PC12 cells, which was confirmed by TUNEL (terminal transferase-mediated dUTP-biotin nick end-labeling) staining and detection of chromatin condensation, appeared within 8 h after nerve growth factor (NGF) deprivation. Prostaglandin (PG) E1 (10(-7)-10(6) M) reduced the incidence of apoptotic cell death in PC12 cells. The genes encoding PG transporter specific to prostaglandins such as PGE2 or PGF2alpha were expressed in the cell lines as shown by RT-PCR. Bromcresol green, an inhibitor of PG transporter, reversed the antiapoptotic effect of PGE1. Moreover, treatment of PC12 cells with an antisense oligonucleotide corresponding to PG transporter cDNA also blocked the inhibitory effects of PGE1 on apoptotic cell death. In addition, PGE1 counteracted the increased activities of stress-activated protein kinase/cJun N-terminal kinase within 1-2 h after NGF deprivation in PC12 cells. These results indicated that the antiapoptotic effect of PGE1 in NGF-deprived PC12 cells was achieved by inhibitory signals following uptake into neurons through the PG transporter.  相似文献   

14.
Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme and a novel ligand of tyrosine kinase (TrkA) receptors but not of neurotrophin receptor p75NTR. Here, we show that TS targets TrkB receptors on TrkB-expressing pheochromocytoma PC12 cells and colocalizes with TrkB receptor internalization and phosphorylation (pTrkB). Wild-type TS but not the catalytically inactive mutant TSDeltaAsp98-Glu induces pTrkB and mediates cell survival responses against death caused by oxidative stress in TrkA- and TrkB-expressing cells like those seen with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). These same effects are not observed in Trk deficient PC12(nnr5) cells, but are re-established in PC12(nnr5) cells stably transfected with TrkA or TrkB, are partially blocked by inhibitors of tyrosine kinase (K-252a), mitogen-activated protein/mitogen-activated kinase (PD98059) and completely blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Both TrkA- and TrkB-expressing cells pretreated with TS or their natural ligands are protected against cell death caused by serum/glucose deprivation or from hypoxia-induced neurite retraction. The cell survival effects of NGF and BDNF against oxidative stress are significantly inhibited by the neuraminidase inhibitor, Tamiflu. Together, these observations suggest that trypanosome TS mimics neurotrophic factors in cell survival responses against oxidative stress, hypoxia-induced neurite retraction and serum/glucose deprivation.  相似文献   

15.
G Ferrari  L A Greene 《The EMBO journal》1994,13(24):5922-5928
We have used the nerve growth factor (NGF)-responsive PC12 cell line as a model to examine the role of cell cycle progression in apoptotic neuronal cell death triggered by withdrawal of trophic support. Because p21 Ras plays a key role in mitogenic signaling, we tested whether interference with the activity of this protein would affect cell cycle progression and thereby apoptotic death after trophic factor deprivation. For this purpose, we exploited PC12 cells transfected with an inducible form of dominant-inhibitory Ras. In contrast to non-transfected and uninduced cells, which continue to synthesize DNA when deprived of trophic support, PC12 cells induced to express dominant-inhibitory Ras showed little thymidine incorporation. When non-transfected and uninduced cells were deprived of trophic support, these underwent rapid apoptotic death that could be prevented by NGF. However, cells in which dominant-inhibitory Ras was induced and which were consequently quiescent did not die upon withdrawal of trophic support and showed long-term survival in the absence of NGF or other trophic factors. Moreover, induction of dominant-inhibitory Ras also rescued non-dividing, neuronally differentiated PC12 cells from death caused by NGF withdrawal. These findings suggest a relationship between proliferative capacity and neuronal apoptosis and raise the hypothesis that following withdrawal of trophic support, neurons undergo an unsuccessful and fatal attempt to re-enter the cell cycle.  相似文献   

16.
This report addresses the relation between Bcl-2 and mitochondrial membrane potential (DeltaPsi(m)) in apoptotic cell death. Rat pheochromocytoma (PC12) cells are differentiated into neuron-like cells with nerve growth factor (NGF). It is known that Bcl-2 can attenuate apoptosis induced by deprivation of neurotrophic factor. The protective effect of Bcl-2 has been correlated with preservation of DeltaPsi(m). Protonophores, such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), collapse the proton gradient across the mitochondrial inner membrane, resulting in a complete abolition of the mitochondrial membrane potential. Based on the analysis of morphology, of phosphatidylserine exposure and of nuclear fragmentation we conclude that FCCP induces apoptosis in PC12 cells, which can be prevented by overexpression of Bcl-2. To determine whether the cytoprotective effect of Bcl-2 is due to stabilization of DeltaPsi(m), we investigated the effect of Bcl-2 on changes in DeltaPsi(m), induced by FCCP in PC12 cells. We showed that treatment with FCCP induced a reduction in DeltaPsi(m), as assessed with the lipophilic cationic membrane potential-sensitive dye JC-1, and that Bcl-2 protects against FCCP-induced changes in NGF differentiated PC12 cells. Our data indicate that Bcl-2 protects against FCCP-induced cell death by stabilizing DeltaPsi(m).  相似文献   

17.
Li X  Liu T  Song K  Guan S  Zhu L  Ge D  Cui Z 《Biotechnology progress》2007,23(4):952-957
Neural stem cells (NSCs) have a bright application prospect to be used to treat neurodegenerative diseases due to their capacity to give rise to the appropriate cell types when they are grafted. At present, however, the function of NSCs after transplantation is not quite ensured, whether to replace the degenerative cells or to secrete nutrient factors. On the other hand, pheochromocytoma cell line 12 (PC12) cells have been widely used for investigating Parkinson's disease (PD) since their apoptosis is similar to that of dopaminergic neuron cells. Therefore, the possible cytoprotective effects of NSCs on the apoptosis of PC12 cells induced by serum deprivation were investigated in this paper. PC12 cells were cocultured with NSCs in DMEM/F12 medium free of serum, and their morphologies, viabilities, and survival were observed with an inverted microscope and assessed with a CCK-8 assay. In addition, the concentrations of glial derived neurotrophic factor (GDNF) in different medium were detected with a GDNF Elisa kit, and the mechanism of NSC's protective effect on PC12 cell apoptosis induced by serum deprivation was analyzed. The results showed that (1) PC12 cell apoptosis induced by serum deprivation increased with time, and only about 44.25% PC12 cells survived after 72 h; (2) NSCs culture medium protected against PC12 cell apoptosis insignificantly; (3) NSCs' supernatant and NSCs mildly prevented PC12 cells from apoptosis; (4) the amount of GDNF secreted by NSCs increased after the coculture with the apoptotic PC12 cells induced by serum deprivation. It can be concluded that there exists clear interaction between NSCs and apoptotic PC12 cells, and that GDNF secretion from NSCs is one of the important mechanisms to prevent the apoptosis of PC12 cells.  相似文献   

18.
Abstract: Expression of the BCL-2 protein family members, BAX, BAK, BAD, BCL-xL, BCL-xS, and BCL-2, was measured (by western blotting using specific antibodies) in PC12 cells before and during apoptosis induced by either H2O2 treatment or by serum deprivation and during rescue from apoptosis by nerve growth factor (NGF). H2O2-induced apoptosis, as measured by DNA fragmentation, caused: (a) a dose-dependent increase in BAX, (b) a dose-independent increase in BAK, and (c) a dose-dependent inhibition of BAD expression. By comparison, apoptosis induced by serum deprivation resulted in a time-dependent decrease in both BAX and BAK, along with a dramatic and sudden decrease in BAD expression. However, when PC12 cells were incubated in an apoptosis-sparing medium (i.e., NGF-supplemented serum-free medium), both BAX and BAK were increased significantly, whereas BAD expression remained inhibited. BCL-xL expression was increased by H2O2 but unaffected by serum deprivation or long-term NGF treatment. Neither BCL-2 nor BCL-xS expression could be detected in PC12 cells under the experimental conditions tested. Our results show that the expression of BAX, BAK, BAD, and BCL-xL is altered in a stimulus-dependent manner but cannot be used to define whether a cell will undergo or survive apoptosis. The similarity between changes in expression of BCL-2-related proteins induced by H2O2 exposure and NGF rescue could reflect activation in part of a common antioxidant pathway.  相似文献   

19.
The purpose of this study was to examine, using glycogen synthase kinase (GSK) inhibitors, whether GSK-3 is involved in cyclosporine A (CsA)- and FK506-induced apoptosis in PC12 cells. CsA and FK506 increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation or fragmentation. Nerve growth factor (NGF) completely blocked cell death. Caspase-3 activation was accompanied by CsA- and FK506-induced cell death and inhibited by NGF. GSK-3 inhibitors such as alsterpaullone and SB216763 prevented CsA- and FK506-induced apoptosis. These results suggest that CsA and FK506 induce caspase-dependent apoptosis and that GSK-3 activation is involved in CsA- and FK506-induced apoptosis in PC12 cells.  相似文献   

20.
We have investigated the influence of culture substrata upon glycosaminoglycans produced in primary cultures of mouse mammary epithelial cells isolated from the glands of late pregnant mice. Three substrata have been used for experiments: tissue culture plastic, collagen (type I) gels attached to culture dishes, and collagen (type I) gels that have been floated in the culture medium after cell attachment. These latter gels contract significantly. Cells cultured on all three substrata produce hyaluronic acid, heparan sulfate, chondroitin sulfates and dermatan sulfate but the relative quantities accumulated and their distribution among cellular and extracellular compartments differ according to the nature of the culture substratum. Notably most of the glycosaminoglycans accumulated by cells on plastic are secreted into the culture medium, while cells on floating gels incorporate almost all their glycosaminoglycans into an extracellular matrix fraction. Cells on attached collagen gels secrete approx. 30% of their glycosaminoglycans and assemble most of the remainder into an extracellular matrix. Hyaluronic acid is produced in significant quantities by cells on plastic and attached gels but in relatively reduced quantity by cells on floating gels. In contrast, iduronyl-rich dermatan sulfate is accumulated by cells on floating gels, where it is primarily associated with the extracellular matrix fraction, but is proportionally reduced in cells on plastic and attached gels. The results are discussed in terms of polarized assembly of a morphologically distinct basal lamina, a process that occurs primarily when cells are on floating gels. In addition, as these cultures secrete certain milk proteins only when cultured on floating gels, we discuss the possibility that cell synthesized glycosaminoglycans and proteoglycans may play a role in the maintenance of a differentiated phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号