首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Asexual, vertically transmitted endophytes are well known for increasing competitive abilities of agronomic grasses, but little is known about endophyte–host interactions in native grasses. We tested whether the asexual Neotyphodium endophyte enhances competitive abilities in a native grass, Arizona fescue, in a field experiment pairing naturally infected (E+) and uninfected (E?) plants, and in a greenhouse experiment pairing E+ and E? (experimentally removed) plants, under varying levels of soil water and nutrients. In the field experiment, E? plants had greater vegetative, but not reproductive, growth than E+ plants. In the greenhouse experiment, where plant genotype was strictly controlled, E? plants consistently outperformed their E+ counterparts in terms of root and shoot biomass. Thus, Neotyphodium infection decreases host fitness via reduced competitive properties, at least in the short term. These findings contrast starkly with most endophyte studies involving introduced, agronomic grasses where infection increases competitive abilities, and the interaction is viewed as highly mutualistic.  相似文献   

2.
Effects of a belowground mutualism on an aboveground mutualism   总被引:3,自引:1,他引:2  
Studies of multitrophic interactions between below‐ and aboveground communities have generally focused on soil organisms and antagonists of plant shoots and leaves (herbivores). Despite the widespread occurrence of plant mutualists below‐ and aboveground which can occur on the same host plant, the potential for interactions between them has not been considered. Here we demonstrate that aboveground plant mutualists, insect pollinators, are strongly influenced by belowground plant mutualists, arbuscular mycorrhizal fungi. The presence of arbuscular mycorrhizal fungi in the roots of Chamerion angustifolium increased pollinator visitation and per cent seed set of this plant in the field by up to two times compared with non‐mycorrhizal plants. We propose that interactions between belowground and aboveground mutualisms are widespread and may play important functional roles in populations and communities.  相似文献   

3.
The outcome of dual infection of the grass Lolium perenne L. by arbuscular mycorrhizal (AM) fungi and the parasitic angiosperm Rhinanthus minor L. was investigated in a glasshouse study. Colonization of L. perenne roots by AM fungi was significantly reduced by the presence of R. minor , as was host growth which fell by 44–51%. It was concluded that these two responses were linked, with AM colonization declining in response to the reduction in availability of host carbon. Parasite growth and reproductive output rose by 58% and 47% respectively when the hosts were mycorrhizal. These trends were unrelated to the attachment success of the parasite, but were accompanied by a significant increase in the formation of secondary haustoria. The benefits afforded the parasite when the hosts were mycorrhizal were attributed to increased carbon and nutrient flux resulting from alternations in sink strength. Host responses to parasitism and mycorrhizal colonization were not affected by the interaction between the two symbionts. However, the suggestion is made that the interaction between the AM fungi and parasite might have long-term ecological implications for the host species via its impact on parasite fecundity.  相似文献   

4.
1. All plants form symbioses with microfungi, known as endophytes, which live within plant tissues. Numerous studies have documented endophyte–herbivore antagonism in grass systems, but plant–endophyte–insect interactions are highly variable for forbs and woody plants. 2. The net effect of endophytes on insect herbivory may be modified by their interactions with higher trophic levels, such as predators. Including these multitrophic dynamics may explain some of the variability among endophyte studies of non‐grass plants, which are currently based exclusively on bitrophic studies. 3. The abundance of natural foliar endophytes in a Neotropical vine was manipulated and beetles were fed high or low endophyte diets. Experimental assays assessed whether dietary endophyte load affected beetle growth, leaf consumption, and susceptibility to ant predation. 4. Beetles feeding on high‐ versus low‐endophyte plants had almost identical growth and leaf consumption rates. 5. In a field bioassay, however, it was discovered that feeding on an endophyte‐rich diet increased a beetle's odds of capture by predatory ants nine‐fold. 6. Endophytes could thus provide an indirect, enemy‐mediated form of plant defence that operates even against specialist herbivores. We argue that a multitrophic approach is necessary to untangle the potentially diverse types of endophyte defence among plants.  相似文献   

5.
Abstract.— Coevolution may lead to local adaptation of parasites to their sympatric hosts. Locally adapted parasites are, on average, more infectious to sympatric hosts than to allopatric hosts of the same species or their fitness on the sympatric hosts is superior to that on allopatric hosts. We tested local adaptation of a hemiparasitic plant, Rhinanthus serotinus (Scrophulariaceae), to its host plant, the grass Agrostis capillaris . Using a reciprocal cross-infection experiment, we exposed host plants from four sites to hemiparasites originating from the same four sites in a common environment. The parasites were equally able to establish haustorial connections to sympatric and allopatric hosts, and their performance was similar on both host types. Therefore, these results do not indicate local adaptation of the parasites to their sympatric hosts. However, the parasite populations differed in average biomass and number of flowers per plant and in their effect on host biomass. These results indicate that the virulence of the parasite varied among populations, suggesting genetic variation. Theoretical models suggest that local adaptation is likely to be detected if the host and the parasite have different evolutionary potentials, different migration rates, and the parasite is highly virulent. In the interaction between R. serotinus and A. capillaris all the theoretical prerequisites for local adaptation may not be fulfilled.  相似文献   

6.
Despite their minute biomass, microbial symbionts of plants potentially alter herbivory, diversity and community structure. Infection of grasses by asexual endophytic fungi often decreases herbivore loads and alters arthropod diversity. However, most studies to date have involved agronomic grasses and often consider only infection status (infected vs. uninfected), without explicitly measuring endophyte-produced alkaloids, which vary among endophyte isolates and may impact consumers. We combined field experiments and population surveys to investigate how endophyte infection and associated alkaloids influence abundances, species richness, evenness and guild structure of arthropod communities on a native grass, Achnatherum robustum (sleepygrass). Surprisingly, we found that endophyte-produced alkaloids were associated with increased herbivore abundances and species richness. Our results suggest that, unlike what has been found in agronomic grass systems, high alkaloid levels in native grasses may not protect host grasses from arthropod herbivores, and may instead more negatively affect natural enemies of herbivores.
Ecology Letters (2010) 13: 106–117  相似文献   

7.
1.  Plant association with arbuscular mycorrhizal fungi (AMF) has been considered a factor increasing plant tolerance to herbivory. However, this positive effect could decrease with colonization density if the benefit : cost ratio of the AMF–plant association changes. We measured plant performance and tolerance to defoliation across a gradient of commercial AMF ( Glomus sp.) inoculum concentration.
2.  Six genetic families of Datura stramonium were grown under greenhouse conditions and subjected to five increasing levels of AMF inoculum concentration and to defoliation treatments, i.e. the presence/absence of 50% artificial damage, following a full-factorial design.
3.  AMF colonization increased linearly with inoculum concentration while foliar area, root mass, flowering phenology and seed production expressed nonlinear functions. Plant genetic variation in the benefit function of AMF colonization was also detected. We show a negative interaction between AMF concentration and plant tolerance to defoliation.
4.   Synthesis . The negative correlation between plant tolerance and AMF concentration suggests that defoliation can reduce AMF benefits and that natural variations in AMF can limit the evolution of optimum levels of tolerance. Moreover, genetic variation in the shape of the reaction norms to AMF in the presence/absence of defoliation suggests that plants may evolve in response to variation in densities of AMF and herbivores.  相似文献   

8.
Plant symbiotic fungi (endophytes) of the genus Neotyphodium [anamorphs, asexual derivatives of Epichloë (Ascomycota: Clavicipitaceae)] often associate with grass species of the subfamily Pooideae, which includes important forage and turf species. These endophytes are known to produce a range of alkaloids that enhance their host's resistance to insects or are toxic to grazing animals. Among the alkaloids, loline alkaloids (saturated 1‐aminopyrrolizidines) are generally observed in the highest concentrations in many Neotyphodium–grass symbiotic associations, and are known to be toxic to insects but not to mammals. Some Neotyphodium‐infected grasses have enhanced resistance to rice leaf bug, Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae), one of the major pests for rice production in Japan. Our laboratory experiments quantified the effects of purified loline (N‐formylloline) and in planta synthesis of loline alkaloids by meadow fescue [Lolium pratense (Huds.) S.J. Darbyshire (syn. Festuca pratensis Huds.)]–Neotyphodium uncinatum (Gams, Petrini & Schmidt) Glenn, Bacon & Hanlin and Italian ryegrass (Lolium multiflorum Lam.)–Neotyphodium occultans Moon, Scott & Christensen associations on the development and survival of T. caelestialium. No‐choice feeding assays with laboratory populations of the insect revealed that their growth was significantly decreased by the infected grasses, and the effect was greater for N. uncinatum than for N. occultans, in keeping with differences in N‐formylloline concentrations in the plants. Artificial feeding of N‐formylloline through feeding sachets indicated that the chemical has an adverse effect on survival of larvae, even at the lowest concentration tested (50 µg/g), which was considerably lower than the typical concentrations in many Neotyphodium–grass associations. The results confirmed the ability of Neotyphodium‐infected forage grasses to control T. caelestialium propagation in meadows, which may cause damages to nearby rice paddies.  相似文献   

9.
10.
Evolutionary dynamics of pathogen resistance and tolerance   总被引:18,自引:0,他引:18  
Abstract.— Host organisms can respond to the threat of disease either through resistance defenses (which inhibit or limit infection) or through tolerance strategies (which do not limit infection, but reduce or offset its fitness consequences). Here we show that resistance and tolerance can have fundamentally different evolutionary outcomes, even when they have equivalent short-term benefit for the host. As a gene conferring disease resistance spreads through a population, the incidence of infection declines, reducing the fitness advantage of carrying the resistance gene. Thus genes conferring complete resistance cannot become fixed (i.e., universal) by selection in a host population, and diseases cannot be eliminated solely by natural selection for host resistance. By contrast, as a gene conferring disease tolerance spreads through a population, disease incidence rises, increasing the evolutionary advantage of carrying the tolerance gene. Therefore, any tolerance gene that can invade a host population will tend to be driven to fixation by selection. As predicted, field studies of diverse plant species infected by rust fungi confirm that resistance traits tend to be polymorphic and tolerance traits tend to be fixed. These observations suggest a new mechanism for the evolution of mutualism from parasitism, and they help to explain the ubiquity of disease.  相似文献   

11.
12.
13.
  • Plant facilitation promotes coexistence by maintaining differences in the regeneration niche because some nurse species recruit under arid conditions, whereas facilitated species recruit under more mesic conditions. In one Mexican community, 95% of species recruit through facilitation; Mimosa luisana being a keystone nurse for many of them. M. luisana individuals manifest greater fitness when growing in association with their facilitated plants than when growing in isolation. This observation suggests that nurses also benefit from their facilitated plants, a benefit thought to be mediated by mycorrhizal fungi.
  • Under field conditions, we experimentally tested whether mycorrhizal fungi mediate the increased fitness that M. luisana experiences when growing in association with its facilitated plants. We applied fungicide to the soil for nurse plants growing alone and growing in association with their facilitated plants in order to reduce the mycorrhizal colonisation of roots. We then assessed the quantity and quality of seed production of M. luisana in four treatments (isolated‐control, isolated‐fungicide, associated‐control and associated‐fungicide).
  • Fungicide application reduced the percentage root length colonised by mycorrhizae and reduced fitness of M. luisana when growing in association with their facilitated plants but not when growing in isolation. This reduction was reflected in the total number of seeds, number of seeds per pod, seed mass and seed viability.
  • These results suggest that nurses benefit from the presence of their facilitated plants through links established by mycorrhizae, indicating that both plants and belowground mutualistic communities are all part of one system, coexisting by means of intrinsically linked interactions.
  相似文献   

14.
Although elevated CO2 may affect various forms of ecological interactions, the effect of elevated CO2 on interactions between parasitic plants and their hosts has received little attention. We examined the effect of elevated CO2 (590 μl l−1) at two nutrient (NPK) levels on the interactions of the facultative root hemiparasite Rhinanthus alectorolophus with two of its hosts, the grass Lolium perenne and the legume Medicago sativa. To study possible effects on parasite mediation of competition between hosts, the parasite was grown with each host separately and with both hosts simultaneously. In addition, all combinations of hosts were grown without the parasite. Both the parasite and the host plants responded to elevated CO2 with increased growth, but only at high nutrient levels. The CO2 response of the hemiparasite was stronger than that of the hosts, but depended on the host species available. With L. perenne and M. sativa simultaneously available as hosts, the biomass of the parasite grown at elevated CO2 was 5.7 times that of parasites grown at ambient CO2. Nitrogen concentration in the parasites was not influenced by the treatments and was not related to parasite biomass. The presence of the parasite strongly reduced both the biomass of the hosts and total productivity of the system. This effect was much stronger at low than at high nutrient levels, but was not influenced by CO2 level. Elevated CO2 did not influence the competitive balance between the two different hosts grown in mixture. The results of this study support the hypothesis that hemiparasites may influence community structure and suggest that these effects are robust to changes in CO2 concentration. Received: 17 August 1998 / Accepted: 3 March 1999  相似文献   

15.
16.
The symbiotic relationships between Neotyphodium endophytes (Clavicipitacea) and certain cool‐season (C3) grasses result in the synthesis of several alkaloids that defend the plant against herbivory. Over a 3 month period we evaluated the effects of temperature on the expression of these alkaloids in tall fescue, Festuca arundinacea Schreb, and perennial ryegrass, Lolium perenne L. (Poaceae). Response surface regression analysis indicated that month, temperature, and their interaction had an impact on the alkaloid levels in both grasses. We aimed to identify the alkaloids most closely associated with enhanced resistance to the fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), and clarify the role of temperature in governing the expression of these alkaloids. The dry weights and survival of fall armyworms feeding on endophyte‐infected tall fescue or perennial ryegrass were significantly lower than for those feeding on uninfected grass, whereas endophyte infection had no significant influence on survival. For tall fescue, a four‐alkaloid model consisting of a plant alkaloid, perloline, and the fungal alkaloids ergonovine chanoclavine, and ergocryptine, explained 47% of the variation in fall armyworm dry weight, whereas a three‐alkaloid model consisting of the plant alkaloid perloline methyl ether and the fungal alkaloids ergonovine and ergocryptine explained 70% of the variation in fall armyworm dry weight on perennial ryegrass. Although temperature had a significant influence on overall alkaloid expression in both grasses, the influence of temperature on individual alkaloids varied over time. The levels of those alkaloids most closely linked to armyworm performance increased linearly or curvilinearly with increasing temperature during the last 2 months of the study. We conclude that the growth temperature of grasses can influence the performance of fall armyworm, and that this effect may be mediated through a set of plant‐ and endophyte‐related alkaloids.  相似文献   

17.
To examine putative specialization of a hemiparasitic plant to the most beneficial host species, we studied genetic variation in performance and trade-offs between performance on different host species in the generalist hemiparasite, Rhinanthus serotinus. We grew 25 maternal half-sib families of the parasite on Agrostis capillaris and Trifolium pratense and without a host in a greenhouse. Biomass and number of flowers of the parasite were the highest when grown on T. pratense. There were significant interactions between host species and R. serotinus seed-family indicating that the differences in performance on the two hosts and without a host varied among the families. However, we found no significant negative correlations between performance of R. serotinus on the host species or between performance on the two hosts and autotrophic performance. Thus, the genetic factors studied here are not likely to affect the evolution of specialization of R. serotinus to the most beneficial host.  相似文献   

18.
19.
Neotyphodium coenophialum (Glenn, Bacon, Price & Hanlin) (Ascomycota: Clavicipitaceae) is an endophytic fungus that lives symbiotically within grasses and produces alkaloids that can help protect its hosts from some insect pests. We used laboratory‐based experiments to investigate whether fungal genotype influences an herbivore and its parasitoid. We tested whether variation in novel isolates, plus a control lacking fungal infection, affected preference by fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae: Amphipyrini), and growth and survival of Euplectrus comstockii Howard (Hymenoptera: Eulophidae: Euplectrini), a parasitoid of fall armyworm. Caterpillars preferred leaf blades in choice experiments from uninfected tall fescue [Lolium arundinaceum (Schreb.) Darbysh., cultivar Jesup (Poaceae)] and tended to avoid blades from plants containing fungal isolates AR502, AR542, or the most common strain from pastures in Georgia, USA, in tall fescue. However, caterpillars fed as much on leaf blades from plants containing isolate AR502 as from those lacking infection. Parasitoid pupal mass was not influenced by fungal isolate, yet fungal isolate did influence parasitoid survival. Survival was higher than expected for parasitoids reared from hosts fed plants lacking fungal infection, but was lower than expected for those reared from hosts fed plants infected with the common strain or AR542 isolates. In contrast, parasitoids reared from hosts fed plants infected with isolate AR502 did not experience higher mortality than expected by chance. Our results show that N. coenophialum can modify bottom‐up trophic cascades through direct effects on herbivores, as well as indirect effects on a natural enemy of the herbivores and that the fungus may influence the tritrophic interaction in ways that counterbalance herbivore protection provided by the symbiont. Our work also shows that these effects are influenced by fungal genotype. As attempts are made to produce forage cultivars with strains of fungal endophyte that lack negative influences on livestock, it will be prudent for investigators to assess the multi‐trophic effects of these novel associations within agroecosystems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号