首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross talk between adrenergic and insulin signaling systems may represent a fundamental molecular basis of insulin resistance. We have characterized a newly established beta(3)-adrenoceptor-deficient (beta(3)-KO) brown adipocyte cell line and have used it to selectively investigate the potential role of novel-state and typical beta-adrenoceptors (beta-AR) on insulin signaling and action. The novel-state beta(1)-AR agonist CGP-12177 strongly induced uncoupling protein-1 in beta(3)-KO brown adipocytes as opposed to the beta(3)-selective agonist CL-316,243. Furthermore, CGP-12177 potently reduced insulin-induced glucose uptake and glycogen synthesis. Neither the selective beta(1)- and beta(2)-antagonists metoprolol and ICI-118,551 nor the nonselective antagonist propranolol blocked these effects. The classical beta(1)-AR agonist dobutamine and the beta(2)-AR agonist clenbuterol also considerably diminished insulin-induced glucose uptake. In contrast to CGP-12177 treatment, these negative effects were completely abrogated by metoprolol and ICI-118,551. Stimulation with CGP-12177 did not impair insulin receptor kinase activity but decreased insulin receptor substrate-1 binding to phosphatidylinositol (PI) 3-kinase and activation of protein kinase B. Thus the present study characterizes a novel cell system to selectively analyze molecular and functional interactions between novel and classical beta-adrenoceptor types with insulin action. Furthermore, it indicates insulin receptor-independent, but PI 3-kinase-dependent, potent negative effects of the novel beta(1)-adrenoceptor state on diverse biological end points of insulin action.  相似文献   

2.
The effect of CGP-12177, originally developed as a radioligand with antagonist properties for binding studies of beta-adrenergic receptors, was investigated in brown adipose tissue. Contrary to expectations, CGP-12177 showed clear agonist properties in experiments with hamster brown-fat cells, with a maximal effect in stimulating oxygen consumption similar to that of the physiological stimulator noradrenaline, and also with a potency similar to that of noradrenaline [EC50 (50% effective concn.) approx. 70 nM]. This value could be contrasted with the very high affinity of CGP-12177 (KD about 1 nM) for ligand-binding sites on the cells. It is therefore suggested that the high-affinity binding site may not be the one that mediates the CGP-12177-stimulated thermogenesis in isolated cells. Also, when injected into cold-adapted rats, CGP-12177 stimulated non-shivering thermogenesis similarly to noradrenaline. This observation, in conjunction with the reported low general sympathomimetic effect of CGP-12177, may indicate that CGP-12177 could be of interest for the development of anti-obesity drugs.  相似文献   

3.
The atypical beta3-adrenergic receptor (AR) agonist CGP-12177 has been used to define a novel atypical beta-AR subtype, the putative beta4-AR. Recent evaluation of recombinant beta-AR subtypes and beta-AR-deficient mice, however, has established the identity of the pharmacological beta4-AR as a novel state of the beta1-AR protein. The ability of aryloxypropanolamine ligands like CGP-12177 to independently interact with agonist and antagonist states of the beta1-AR has important implications regarding receptor classification and the potential development of tissue-specific beta-AR agonists.  相似文献   

4.
Abstract

CGP-12177, like isoproterenol, has a lower affinity for desensitized receptors. Experiments were performed to study whether this property of CGP-12177 is due to its partial agonist activity or its impermeability for membranes. Reduced binding of [3H]DHA to desensitized receptors at 0°C as well as a reversal of the reduced binding in the presence of digitonin indicate a permeability barrier. A partial agonist effect of CGP-12177 was only found in intact C6 cells and neither in C6 membranes nor in S49 cells. This peculiar effect in intact C6 cells is stereospecific and not due to an inhibition of phosphodiesterases.  相似文献   

5.
Human A431 and rat glioma C6 cells exposed to isoproterenol underwent a time- and dose-dependent loss of isoproterenol-stimulated adenylate cyclase activity. Desensitization was accompanied by sequestration of beta-adrenergic receptors, which became less accessible to the hydrophilic antagonist 3H-labeled 4-(3-tert-butylamino-2-hydroxypropoxy)benzimidazole-2-one hydrochloride ([3H]CGP-12177) and redistributed from the heavier density plasma membrane fraction to a lighter density membrane fraction. Prior treatment of the cells with concanavalin A or phenylarsine oxide blocked sequestration of the receptors but not desensitization of the agonist-stimulated adenylate cyclase. The membranes from such pretreated cells were exposed to alkali to inactivate adenylate cyclase, and the receptors were transferred to a foreign adenylate cyclase by membrane fusion with polyethylene glycol. beta receptors from desensitized cells exhibited a reduced ability to maximally stimulate the foreign adenylate cyclase, but remained accessible to [3H]CGP-12177 in the fused membranes. When isoproterenol-treated cells were washed free of agonist, there was a time-dependent recovery of agonist responsiveness and [3H]CGP-12177-binding sites. Using the fusion technique, the receptors recovered their functional activity in the resensitized cells. In concanavalin A-treated cells, desensitization and resensitization appeared to occur in the absence of receptor sequestration. Finally, membranes from desensitized cells pretreated with concanavalin A were fused with polyethylene glycol and assayed for agonist-stimulated adenylate cyclase. There was no reversal of the desensitized state. Thus, the primary, essential step in the desensitization process is a reduction in functional activity of the beta-adrenergic receptor. In contrast, sequestration of the receptors is not a prerequisite, but a secondary event during desensitization.  相似文献   

6.
The ability of different adrenergic agents to stimulate nonshivering thermogenesis in Syrian hamsters was investigated. The hamsters were cold-acclimated to 6 °C and their thermogenic response was investigated in an open-circuit system at 24 °C. Both norepinephrine and the β3-specific adrenergic agonist CGP-12177 induced a high rate of nonshivering thermogenesis. However, neither CGP-12177 nor other β3-selective agonists (BRL-37344, ICI-D7114) could induce nonshivering thermogenesis fully to the extent induced by norepinephrine. It was further observed that an apparent “thermogenic refractoriness” was induced by certain adrenergic agents (isoprenaline, CGP-12177) but not by others (norepinephrine, BRL-37344, ICI-D7114). It is discussed whether the refractoriness could be secondary to effects of these agents on the vascular system. It is pointed out that the thermogenic response to adrenergic stimulation observed in the intact animal does not always fully correspond to what would be predicted from corresponding studies with isolated brown-fat cells.  相似文献   

7.
We have examined whether a qualitative switch occurs in the response of the ribonucleotide reductase (RNR) genes to the effect of the physiological cAMP-elevating agent norepinephrine (NE) during the development of brown adipocytes. Basal expression of the genes for both RNR subunits, R1 and R2, was high in proliferating cells, but was markedly down-regulated in parallel with adipocyte differentiation. NE stimulation, which promotes DNA synthesis and proliferation of brown preadipocytes, resulted in an increased expression of the R2 gene in proliferating cells (1.6-fold), but was without effect on R1 expression. In contrast, NE stimulation of confluent differentiating brown adipocytes reduced both R1 and R2 expression. The NE stimulation of R2 expression in preadipocytes was mimicked by forskolin and abolished by H89, demonstrating mediation via cAMP and protein kinase A (PKA). Also, inhibitors of Src and of Erk1/2 kinases markedly reduced NE-stimulated R2 expression. We conclude that adrenergic stimulation of brown adipocytes by NE specifically elevates expression of the RNR subunit R2 gene in the proliferative stage of brown adipocyte development, the mediating pathway being a cAMP/PKA cascade further involving Src and the MAP kinase Erk1/2. These results suggest that adrenergic stimulation of brown adipocyte proliferation may act at the level of gene expression of the limiting subunit for RNR activity, R2, and demonstrate a qualitative switch in the response of the R2 gene to cAMP-elevating agents as a consequence of the switch from proliferating to differentiating cell status.  相似文献   

8.
The nature of the sustained norepinephrine-induced depolarization in brown fat cells was examined by patch-clamp techniques. Norepinephrine (NE) stimulation led to a whole cell current response consisting of two phases: a first inward current, lasting for only 1 min, and a sustained inward current, lasting as long as the adrenergic stimulation was maintained. The nature of the sustained current was here investigated. It could be induced by the alpha(1)-agonist cirazoline but not by the beta(3)-agonist CGP-12177A. Reduction of extracellular Cl(-) concentration had no effect, but omission of extracellular Ca(2+) or Na(+) totally eliminated it. When unstimulated cells were studied in the cell-attached mode, some activity of approximately 30 pS nonselective cation channels was observed. NE perfusion led to a 10-fold increase in their open probability (from approximately 0.002 to approximately 0.017), which persisted as long as the perfusion was maintained. The activation was much stronger with the alpha(1)-agonist phenylephrine than with the beta(3)-agonist CGP-12177A, and with the Ca(2+) ionophore A-23187 than with the adenylyl cyclase activator forskolin. We conclude that the sustained inward current was due to activation of approximately 30 pS nonselective cation channels via alpha(1)-adrenergic receptors and that the effect may be mediated via an increase in intracellular free Ca(2+) concentration.  相似文献   

9.
The beta-adrenergic receptors of isolated human fat cells were identified using a new hydrophilic beta-adrenergic radioligand (+/-)[3H]CGP-12177. The results were compared with those from [3H]dihydroalprenolol binding to fat cells and membranes. [3H]CGP-12177 binding to isolated fat cells showed lower nonspecific binding (less than 15% of total binding) than the lipophilic [3H]dihydroalprenolol (40-60%) at 3 times the KD. At 37 degrees C, [3H]CGP-12177 binding was rapid, reversible, of high affinity (1.2 +/- 0.3 nM) and saturable. The total number of binding sites per cell in subcutaneous adipocytes was 25,000 +/- 6,000 and was equivalent to that found using membrane fractions. Displacement of [3H]CGP-12177 bound to adipocytes by propranolol was stereoselective, consistent with competition at a single site, and had the same characteristics as in membranes. The displacement curves of the beta 1-selective antagonists (atenolol and betaxolol) were biphasic, the high affinity displacement accounting for 70% of the total binding sites. Beta-adrenergic agonists also competed with [3H]CGP-12177 binding in the order of potency: (-) isoproterenol greater than (-) norepinephrine greater than (-) epinephrine, similar to that found in membranes and in in vitro studies on the lipolytic activity of isolated fat cells. This study demonstrates that the sites specifically labeled by [3H]CGP-12177 are the physiological beta-adrenoceptors and also shows that the ligand is better than [3H]dihydroalprenolol for the accurate identification of these receptors in intact human adipocytes. The methodology, which requires biopsies of less than 1 gram of adipose tissue, can be of potential interest for clinical studies investigating the status of fat cell beta-adrenoceptors in various pathophysiological situations.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) synthesis in astrocytes induced by noradrenaline (NA) is a receptor-mediated process utilizing two parallel adrenergic pathways: beta1/beta2-adrenergic/cAMP and the novel alpha1-adrenergic/PKC pathway. BDNF is produced by astrocytes, in addition to neurons, and the noradrenergic system plays a role in controlling BDNF synthesis. Since astrocytes express various subtypes of alpha- and beta-adrenergic receptors that have the potential to be activated by synaptically released NA, we focused our present study on the mediatory role of adrenergic receptors in the noradrenergic up-regulation of BDNF synthesis in cultured neonatal rat cortical astrocytes. NA (1 microM) elevates BDNF levels by four-fold after 6 h of incubation. Its stimulation was partly inhibited by either the beta1-adrenergic antagonist atenolol, the beta2-adrenergic antagonist ICI 118,551, or by the alpha1-adrenergic antagonist prazosin, while the alpha2-adrenergic antagonist yohimbine showed no effect. BDNF levels in astrocytes were increased by the specific beta1-adrenergic agonist dobutamine and the beta2-adrenergic agonist salbutamol, as well as by adenylate cyclase activation (by forskolin) and PKA activation (by dBcAMP). However, none of the tested agonists or mediators of the intracellular beta-adrenergic pathways were able to reach the level of NA's stimulatory effect. BDNF cellular levels were also elevated by the alpha1-adrenergic agonist methoxamine, but not by the alpha2-adrenergic agonist clonidine. The increase in intracellular Ca2+ by ionophore A23187 showed no effect, whereas PKC activation by phorbol 12-myristate 13-acetate (TPA) potently stimulated BDNF levels in the cells. The methoxamine-stimulated BDNF synthesis was inhibited by desensitizing pretreatment with TPA, indicating that the alpha1-stimulation was mediated via PKC activation. In conclusion, the synthesis of astrocytic BDNF stimulated by noradrenergic neuronal activity is an adaptable process using multiple types (alpha1 and beta1/beta2) of adrenergic receptor activation.  相似文献   

11.
1. In order to determine the selectivity of classical and novel adrenergic agents for alpha 1- and beta-adrenergic receptors in brown adipose tissue, the ability of these agents to compete for binding sites labelled with [3H]prazosin and [3H]CGP-12177, respectively, was investigated. 2. The beta-antagonist propranolol, known to inhibit norepinephrine-induced respiration in micromolar concentrations, bound to the [3H]CGP-12177 site with nanomolar affinity. 3. Among agonists, only isoprenaline showed high selectivity for beta-receptors, and only oxymetazoline for alpha 1-receptors. 4. Unexpectedly, the novel thermogenic agonists (BRL-agonists), shown to be potent and selective stimulators of brown fat thermogenesis, were unselective and bound only with low affinity to the [3H]CGP-12177 binding sites. 5. These results suggest that the beta-adrenergic binding site in brown adipose tissue identified here with [3H]CGP-12177 may not be the one (or not the only one) coupled to thermogenesis.  相似文献   

12.
Important differences in binding characteristics between agonists and antagonists of the beta-adrenergic receptor have been described. However, these observations have been complicated since most available antagonists are much more lipophilic than agonists. In order to separate out those binding characteristics of agonist vs. antagonist from those characteristics of lipophilic vs. hydrophilic ligands, we have studied competition of the hydrophilic ligands isoproterenol (agonist) and CGP-12177 (antagonist) with [125I]iodopindolol binding in intact human lymphocytes. Analyzing competition curves from assays performed at 13 degrees C, 25 degrees C and 37 degrees C we demonstrated that at lower temperatures there was a decrease in IC50 for isoproterenol but not for CGP-12177. Using cells preincubated with isoproterenol then extensively washed, competition curves with both isoproterenol and CGP-12177 were biphasic, and characterized by the appearance of a population of receptors with a low affinity for both hydrophilic ligands. Furthermore, at lower temperatures the biphasic nature of these curves was accentuated and was characterized by a 6-fold and 40-fold increase in the apparent KD of a population of low affinity sites for isoproterenol and CGP-12177, respectively.  相似文献   

13.
Agonist treatment of C6-glioma cells induces two altered states in beta-adrenergic receptors, a low affinity for the hydrophilic antagonist CGP-12177 and a low affinity for agonists like isoproterenol. We present evidence that, in cells not treated to inhibit receptor internalization, the two properties occur with a different time course, the low affinity for isoproterenol preceding that for CGP-12177. In that the low affinity for CGP-12177 is due to the internalization of the receptor, the results indicate that uncoupling of the receptor, indicated by the low affinity for isoproterenol, occurs while the receptor is still located on the cell surface. Removal of the agonist leads to reappearance of the receptor to the plasma membrane followed by loss of the uncoupled state.  相似文献   

14.
In the present study, the effects of the thiol oxidising agent diamide upon the properties of rat brain beta1-adrenergic and human platelet serotonin2A receptor recognition sites have been investigated using [3H](-)CGP-12177 (in the presence of ICI-118551) and [3H]LSD as ligands. (-)Isoprenaline inhibited [3H](-)CGP-12177 binding with nH values of 0.87, 0.67, and 0.56 for added Mg2+ concentrations of 0, 2.5, and 25 mM, respectively. Pretreatment with diamide increased the nH to above unity for the inhibition of the binding by (-)isoprenaline, without a concomitant effect on the inhibition of the binding by (-)propranolol. In contrast, diamide reduced the affinity of human platelet serotonin2A-receptors for antagonists, but did not consistently induce nH values above unity for the inhibition of antagonist binding by serotonin. These results suggest that cooperative interactions reported for cardiac muscarinic receptors may also occur for beta1-adrenergic receptors in the rat brain.  相似文献   

15.
Isoprenaline treatment of C6-glioma cells induced a fast decrease in the number of beta-adrenergic receptors as determined by binding of [3H]CGP-12177, which paralleled the decrease in the hormonally stimulated adenylate cyclase activity. The total number of receptors, as determined by binding of (-)-[3H]dihydroalprenolol, did not decrease. Separation of the beta-adrenergic receptors on a sucrose density gradient showed that the decrease in the number of receptors detectable with CGP-12177 was due to a movement of the receptors from the plasma membrane to a vesicular cell compartment. By using both (-)-[3H]dihydroalprenolol and [3H]CGP-12177 it is thus possible to differentiate between the total number of receptors and those present at the plasma membrane in an unfractionated cell lysate.  相似文献   

16.
Mutant clones resistant to ACTH-induced desensitization of adenylyl cyclase (Y1DR) were previously isolated from the Y1 mouse adrenocortical tumor cell line. In this study, both parental Y1 cells (Y1DS) and a Y1DR mutant were transfected with a gene encoding the mouse beta 2-adrenergic receptor, and transfectants isolated from both Y1DS and Y1DR cells were shown to express beta 2-adrenergic receptors. These transfectants responded to the beta-adrenergic agonist isoproterenol with increases in adenylyl cyclase activity and steroidogenesis and changes in cell shape. The transfectants were analyzed to determine whether the Y1DR mutation was specific for ACTH-induced desensitization of adenylyl cyclase or also affected desensitization of adenylyl cyclase via the beta 2-adrenergic receptor. Treatment of intact Y1DS transfectants with isoproterenol caused a rapid desensitization of the adenylyl cyclase system to further stimulation by the beta-adrenergic agonist. Treatment of intact cells with isoproterenol did not affect ACTH-stimulated adenylyl cyclase activity, indicating that desensitization was agonist specific or homologous. Y1DR transfectants were resistant to the desensitizing effects of isoproterenol in intact cells as well as in cell homogenates. These results indicate that the mutation in Y1DR transfectants affects a component that is common to the pathways of isoproterenol-induced desensitization and ACTH-induced desensitization of adenylyl cyclase. As determined using the hydrophilic beta-receptor antagonist CGP-12177, isoproterenol caused a rapid sequestration of cell surface receptors in both Y1DS and Y1DR transfectants. From these results we infer that the DR phenotype does not arise from mutations affecting receptor sequestration and that receptor number does not limit the response to isoproterenol in these transfectants.  相似文献   

17.
In order to characterize the biogenesis of unique thermogenic mitochondria of brown adipose tissue, differentiation of precursor cells isolated from mouse brown adipose tissue was studied in cell culture. Synthesis of mitochondrial uncoupling protein (UCP), F1-ATPase, and cytochrome oxidase was examined by L-[35S]methionine labeling and immunoblotting. For the first time, synthesis of physiological amounts of the UCP, a key and tissue-specific component of thermogenic mitochondria, was observed in cultures at about confluence (day 6), indicating that a complete differentiation of brown adipocytes was achieved in vitro. In postconfluent cells (day 8) the content of UCP decreased rapidly, in contrast to some other mitochondrial proteins (beta subunit of F1-ATPase, cytochrome oxidase). In these cells, it was possible, by using norepinephrine, to induce specifically the synthesis of the UCP but not of F1-ATPase or cytochrome oxidase. The maximal response was observed at 0.1 microM norepinephrine and the synthesis of UCP remained activated for at least 24 h. Detailed analysis revealed a major role of the beta-adrenergic receptors and elevated intracellular concentration of cAMP in stimulation of UCP synthesis. A quantitative recovery of the newly synthesized UCP in the mitochondrial fraction indicated completed biogenesis of functionally competent thermogenic mitochondria.  相似文献   

18.
Prolonged agonist stimulation results in down-regulation of most G protein-coupled receptors. When we exposed baby hamster kidney cells stably expressing the human beta1-adrenergic receptor (beta 1AR) to agonist over a 24-h period, we instead observed an increase of approximately 30% in both beta 1AR binding activity and immune-detected receptors. In contrast, beta 2AR expressed in these cells exhibited a decrease of > or =50%. We determined that the basal turnover rates of the two subtypes were similar (t(1/2) approximately 7 h) and that agonist stimulation increased beta 2AR but not beta 1AR turnover. Blocking receptor trafficking to lysosomes with bafilomycin A1 had no effect on basal turnover of either subtype but blocked agonist-stimulated beta 2AR turnover. As beta 1AR mRNA levels increased in agonist-stimulated cells, beta 1AR up-regulation appeared to result from increased synthesis with no change in degradation. To explore the basis for the subtype differences, we expressed chimeras in which the C termini had been exchanged. Each chimera responded to persistent agonist stimulation based on the source of its C-tail; beta 1AR with a beta 2AR C-tail underwent down-regulation, and beta 2AR with a beta 1AR C-tail underwent up-regulation. The C-tails had a corresponding effect on agonist-stimulated receptor phosphorylation and internalization with the order being beta 2AR > beta 1AR with beta 2AR C-tail > beta 2AR with a beta 1AR C-tail > beta 1AR. As internalization may be a prerequisite for down-regulation, we addressed this possibility by co-expressing each subtype with arrestin-2. Although beta 1AR internalization was increased to that of beta 2AR, down-regulation still did not occur. Instead, beta 1AR accumulated inside the cells. We conclude that in unstimulated cells, both subtypes appear to be turned over by the same mechanism. Upon agonist stimulation, both subtypes are internalized, and beta 2AR but not beta 1AR undergoes lysosomal degradation, the fate of each subtype being regulated by determinants in its C-tail.  相似文献   

19.
Gender-related differences in brown adipose tissue (BAT) thermogenesis of 110-day-old rats were studied by determining the morphological and functional features of BAT. The adrenergic control was assessed by studying the levels of beta(3)- and alpha(2A)-adrenergic receptors (AR) and by determining the lipolytic response to norepinephrine (beta(1)-, beta(2)-, beta(3)-, and alpha(2)-AR agonist), isoprenaline (beta(1)-, beta(2)-, and beta(3)-AR agonist), and CGP12177A (selective partial beta(3)-AR agonist but beta(1)- and beta(2)-AR antagonist) together with post-receptor agents, forskolin and dibutyryl cyclic AMP. The female rats that had greater oxygen consumption showed higher UCP1 content, a higher multilocular arrangement, and both longer cristae and higher cristae dense mitochondria in BAT indicating heightened thermogenic capacity and activity; this picture is accompanied by a more sensitive beta(3)-AR to norepinephrine signal (EC(50) 10-fold lower for CGP12177A) and a lower expression of alpha(2A)-AR than male rats. Taken together, our results support the idea that the BAT hormonal environment could be involved in the control of different elements of lipolytic and thermogenic adrenergic pathways. Gender dimorphism is both at receptor (changing alpha(2A)-AR density and beta(3)-AR affinity) and post-receptor (modulating the links involved in the adrenergic signal transduction) levels. These changes in adrenergic control could be responsible, at least in part, both for the important mitochondrial recruitment differences and functional and morphological features of BAT in female rats under usual rodent housing temperatures.  相似文献   

20.
BACKGROUND: Evidences have shown that beta1 and beta2 adrenoceptors co-exist in human fibroblasts, but it is not yet clear the functional expression of beta3 adrenoceptor in these cells. The aim of this study was to investigate the expression and biological effect of beta3 adrenoceptor activation in human skin fibroblast and the different signaling pathways involved in its effect. Methods: For this purpose in vitro cultures of human skin fibroblast were established from human foreskin and grown in Dulbecco's modified Eagle's medium. The effect of ZD 7114 (beta3 agonist) on cell DNA synthesis, radioligand binding assay, cyclic GMP and cyclic AMP accumulation and nitric oxide synthase (NOS) activity were evaluated. RESULTS: 3H-CGP binding to human fibroblast membranes was a saturable process to a single class of binding site. The equilibrium parameters were: Kd 20+/-3 pM and Bmax 222+/-19 fmol/mg protein. Ki values showed that these cells express a high number of beta(3)adrenoceptor subtypes. ZD 7114 stimulation of beta3 adrenoceptor exerts a concentration-dependent inhibition of DNA synthesis and cAMP accumulation with parallel increase in NOS activity that led to cGMP accumulation. All these effects were blocked by the beta3 adrenoceptor antagonist (SR 59230A). The effect of ZD 7114 on DNA synthesis significantly correlated with its action either on cAMP or NOS-cGMP signaling system. Inhibitors of NOS activity and NO-sensitive guanylate cyclase prevented the inhibitory effect of ZD 7114 on DNA synthesis. In addition, the beta3 adrenoceptor-dependent increase in cGMP and activation of NOS were blocked by the inhibition of phospholipase C (PLC), calcium/calmodulin (CaM), endothelial NOS activity and cGMP accumulation. CONCLUSIONS: beta3 adrenoceptor activation exerts inhibitory effect on human fibroblast DNA synthesis as a result of the activation of NO-cGMP pathway and the inhibition of adenylate cyclase activity. The mechanism appears to occurs secondarily to stimulation of PLC and CaM. This in turn triggers cascade reaction leading to increase production of NO-cGMP with decrease in cAMP accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号