首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SslI, a type II restriction endonuclease, was purified from Streptococcus salivarius subsp. thermophilus strain BSN 45. SslI is an isoschizomer of BstNI. SslI activity was maximum at pH 8.8, 0 to 50 mM NaCl, 2 to 8 mM Mg2+, and 42 degrees C. Activity against phage DNA in vitro was demonstrated.  相似文献   

2.
Caffeine has been reported to have a positive and (or) a negative inotropic effect on cardiac muscle. In this study, the force-frequency and postrest characteristics of rat atrium were studied in the presence of caffeine (1.0-10 mM) to see if the interval between beats affected the response of cardiac muscle to caffeine. When stimulation frequency was 0.5 or 2.0 Hz, there was a positive followed by a negative inotropic response with 1, 5, or 10 mM caffeine. Incomplete relaxation occurred under these circumstances, giving rise to contracture. At low frequency of stimulation (0.1 Hz) caffeine had only a negative inotropic effect, and this effect was greater with 1 mM caffeine than with 5 mM caffeine. In the absence of caffeine, when stimulation at 0.5 or 3 Hz was interrupted, a pause of 2-20 s resulted in potentiation. When caffeine was present (2.0 mM), postrest potentiation was severely attenuated, but the steady-state contraction amplitude within the range 0.5-3.0 Hz was not different. These results are consistent with the hypothesis that caffeine induces a leak of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is extruded from the cell, possibly by Na+/Ca2+ exchange. Sarcoplasmic reticular uptake of Ca2+ and the translocation to release sites appear not to be affected by caffeine within 1-5 mM concentrations.  相似文献   

3.
Mature rat hepatocytes were cultured on collagen coated dishes in serum-free alpha-modified Eagle's minimum essential medium containing 0.1 microM insulin, 0.1 microM dexamethasone, 10 mM pyruvate and Ca2+ at concentrations of 0-2 mM. Survival of nondivided cells was best in medium containing 2 mM Ca2+. Proliferation during 5-day culture was greatest with 0.4 mM Ca2+, but DNA synthesis was scarcely affected by the concentration of Ca2+. Both the activities of alkaline phosphatase, 5'-nucleotidase, gamma-glutamyltransferase and lactate dehydrogenase and the number of cell nuclei of cultures in 0.1 mM and 2 mM Ca2+ media were assayed over a 5-day period, and their activities were calculated as enzyme activities per unit number of cell nuclei. Alkaline phosphatase activity increased rapidly during the first day of culture in both media, and its activity in 0.1 mM medium was higher than that in 2 mM medium after culture for 3 days. The activity of 5'-nucleotidase became higher in 0.1 mM medium than in 2 mM medium from day 2 and was maximal on day 3 in both media. gamma-Glutamyltransferase activity increased and lactate dehydrogenase activity decreased with time in culture, both activities showing no appreciable difference in the two media.  相似文献   

4.
The soluble galactosyltransferase of human plasma catalysed the transfer of galactose from UDP-galactose to high- and low-molecular-weight derivatives of N-acetylglucosamine, forming a beta-1-4 linkage. The enzyme was purified by using (NH4)2SO4 precipitation and affinity chromatography on an alpha-lactalbumin-Sepharose column. The galactosyltransferase was maximally bound to this column in the presence of N-acetylglucosamine, and the enzyme was eluted by omitting the amino sugar from the developing buffer. The molecular weight of the enzyme was estimated to be 85000 by gel filtration. The assay conditions for optimum enzymic activity was 30 degrees C and pH7.5. Mn2+ ion was found to be an absolute requirement for transferase activity. The Km for Mn2+ was 0.4 mM and that for the substrate, UDP-galactose, was 0.024 mM. The Km for the acceptors was 0.21 mM for alpha1-acid glycoprotein and 3.9 mM for N-acetylglucosamine. In the presence of alpha-lactalbumin, glucose became a good acceptor for the enzyme and had a Km value of 2.9 mM. Results of the kinetic study indicated that the free enzyme reacts with Mn2+ under conditions of thermodynamic equilibrium, and the other substrates are added sequentially.  相似文献   

5.
Nitrate reductase (NaR) linked to reduced methyl viologen from Clostridium perfringens was purified by ammonium sulfate precipitation. DEAE-cellulose chromatography, disc electrophoresis on polyacrylamide gel, and triple DEAE-Sephadex chromatography. The specific activity was increased 1,200-fold with a yield of 9%. The purified preparation was nearly homogeneous in disc electrophoresis. It was brown, and its spectrum showed a slight shoulder near 420 nm as well as a peak at 280 nm. The molecular weight was found to be 90,000 based on s020,w (5.8S) and 80,000 by Sephadex G-100 gel filtration. In SDS-polyacrylamide electrophoresis, it showed only a single band with a molecular weight of 90,000; it had no subunit structure. The isoelectric point was pH 5.5, and the optimum pH was 9. Mn2+, Fe2+, Mg2+, and Ca2+ stimulated the activity. Km for nitrate was 0.10 mM, and nitrate was stoichiometrically reduced to nitrite in the presence of 2 mM Mn2+. Ferredoxin fraction obtained from extracts of the bacterium was utilizable as an electron donor at pH 8. Cyanide and azide inhibited the enzyme. The formation of NaR was induced by nitrate and inhibited by 0.5 mM tungstate, but recovered in the presence of 0.1 mM molybdate; NaR of C. perfringens appears to be a molybdo-iron-sulfur protein.  相似文献   

6.
A E Simpson  R B Jones 《Life sciences》1999,64(16):1427-1434
BTS 67582 (1,1-dimethyl-2-(2-morpholinophenyl) guanidine fumarate) is an insulin-releasing agent currently in phase II clinical trials. Its effect on advanced glycation end product (AGE) formation was measured in the BSA/D-glucose and L-lysine/glucose-6-phosphate assay systems and Amadori product formation was measured in the BSA/D-glucose assay system, following a 3 week incubation period. In the BSA/D-glucose assay system, 200 mM BTS 67582 caused an approximate 70% inhibition in AGE formation (p<0.001), whilst at 20 mM and 2 mM it caused a marginal inhibition (21%, (p<0.001) and 8% respectively). 200 mM and 20 mM aminoguanidine-HCl inhibited AGE formation by 95% and 69% (p<0.001), respectively, whereas 2 mM aminoguanidine-HCl had no significant effect. Tolbutamide (200 microM) and glibenclamide (100 microM) had significant, but only marginal, effects on AGE formation (16% and 17%, respectively, p<0.01). In the BSA/D-glucose assay system 200 mM BTS 67582 and 200 mM aminoguanidine-HCl retarded Amadori product formation by 88% (p<0.001) and 60% (p<0.01), respectively. BTS 67582 at 20 mM and 2 mM was shown to inhibit Amadori product formation by 67% and 57%, respectively, (p<0.01). In the lysine and glucose-6-phosphate assay system 200 mM BTS 67582 and 200 mM aminoguanidine-HCl were shown to inhibit AGE formation by about 70% and 96% (p<0.001), respectively. Tolbutamide (200 microM) and glibenclamide (100 microM) had no significant effect on AGE formation.  相似文献   

7.
Some effects of salts on the adenylate cyclase of partially purified plasma membranes from rat liver have been studied. Under conditions where cyclic adenosine 3':5'-monophosphate formation was linear with respect to time and protein concentration, the enzyme was stimulated 3- to 6-fold by 10 mM NaF, 10- to 30-fold by 1 muM glucagon, 4- to 5-fold by 0.1 mM 5'-guanylylimidodiphosphate, and in the presence of 3 muM GTP, 2-fold by 10 mug/ml of prostaglandin E1. Various salts were found to stimulate basal activity slightly, but enhanced the response to NaF 3- to 4-fold, to glucagon 1.5- to 2-fold, to 5'-guanylylimidodiphosphate 2- to 3-fold, and to prostaglandin E1 1.5-fold. This enhancement was observed at maximally effective concentrations of each of the respective activators. Of the salts tested, NaN3 and the Na- or K-halides were most effective. Their action appeared to be due to the respective anions. Stimulation was detectable with 1.5 mM NaN3 or 3 mM NaCl and was maximal with 30 mM NaN3 or 60 mM NaCl. The stimulatory effect of NaN3 was not due to ATP-sparing, nor to an altered cyclic adenosine 3':5'-monophosphate recovery. It was independent of the chromatography and assay methods used, and was therefore not due to procedural artifact. Fluoride-stimulated cyclase activity was enhanced by salts to a greater degree than were 5'-guanylylimidodiphosphate-, glucagon-, or (prostaglandin E1 + GTP)-stimulated activities. The effects of NaN3 were not the result of significant changes in the enzyme's responses to GTP, which increased basal and glucagon-stimulated activities but inhibited F--stimulated activity. The effects of NaN3 were greater when cyclase was assayed with Mn2+ than with Mg2+. The facilitatory effect of NaN3 or NaCl on fluoride-stimulated adenylate cyclase activity was partially reversible as was the stimulatory effect of fluoride in the presence of NaN3. Enhancement of hormonal stimulation by NaN3 was also demonstrable with cardiac and adipose tissue adenylate cyclase. However, NaN3 did not stimulate detergent-dispersed adenylate cyclases from either liver plasma membranes or brain. The data suggest that stimulation of adenylate cyclase by salts may require the added presence of other stimulatory agents and an intact membrane structure.  相似文献   

8.
The effects on isometric tension of three divalent ions that block calcium channels, magnesium, cobalt, and cadmium, were tested in small bundles of rat soleus fibers. Cobalt, at a concentration of 2 or 6 mM, reversibly depressed twitch and tetanic tension and the depression was much greater in solutions containing no added calcium ions. Magnesium caused much less depression of tension than cobalt. The depression of tension was not accompanied by membrane depolarization or a reduction in the amplitude of action potentials. A reduction caused by 6 mM cobalt in the amplitude of 40 or 80 mM potassium contractures was not accompanied by a comparable reduction in tension during 200 mM potassium contractures, and could be explained by a shift in the potassium contracture tension-voltage curve to more positive potentials (by +7 mV on average). Similar effects were not seen with 2 or 6 mM magnesium. At a concentration of 20 mM, both cobalt and magnesium depressed twitch and tetanic tension, cobalt having greater effect than magnesium. Both ions shifted the potassium contracture tension-voltage curve to the right by +5 to +10 mV, caused a small depression of maximum tension, and slowed the time course of potassium contractures. Cadmium (3 mM) depressed twitch, tetanic, and potassium contracture tension by more than 6 mM cobalt, but experiments were complicated by the gradual appearance of large contractures that became even larger, and sometimes oscillatory, when the solution containing cadmium was washed out. It was concluded that divalent cations affect both activation and inactivation of tension in a manner that cannot be completely explained by a change in surface charge.  相似文献   

9.
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.  相似文献   

10.
It was hypothesized that the caffeine derivative paraxanthine results in subcontracture increases in intracellular calcium concentration ([Ca(2+)](i)) in resting skeletal muscle. Single fibers obtained from mouse flexor digitorum brevis were loaded with a fluorescent Ca(2+) indicator, indo 1-acetoxymethyl ester. After a stable baseline was recorded, the fiber was superfused with physiological salt solution (Tyrode) containing 0.5, 1.0, 2.5, or 5 mM paraxanthine, resulting in [Ca(2+)](i) increases of 6.4 +/- 2.5, 9.7 +/- 3.6, 26.8 +/- 11.7, and 39.6 +/- 9.6 nM, respectively. The increases in [Ca(2+)](i) were transient and were also observed with exposure to 5 mM theophylline and theobromine. Six fibers were exposed to 5 mM paraxanthine followed by 5 mM paraxanthine in the presence of 10 mM procaine (sarcoplasmic reticulum Ca(2+) release channel blocker). There was no increase from baseline [Ca(2+)](i) when fibers were superfused with paraxanthine and procaine, suggesting that the sarcoplasmic reticulum is the primary Ca(2+) source in the paraxanthine-induced response. In separate experiments, intact flexor digitorum brevis (n = 13) loaded with indo 1-acetoxymethyl ester had a significant increase in [Ca(2+)](i) with exposure to 0.01 mM paraxanthine. It is concluded that physiological and low pharmacological concentrations of paraxanthine result in transient, subcontracture increases in [Ca(2+)](i) in resting skeletal muscle, the magnitude of which is related to paraxanthine concentration.  相似文献   

11.
EDTA at a concentration of 1 muM produced a threshold effect in the activation of purified rabbit liver fructose-1, 6-diphosphatase [EC 3.1.3.11] in the presence of 5 mM Mg2+ at pH 7.2. Without EDTA, biphasic activation curves were produced by Mg2+. A double-reciprocal plot of the data gave the Km values corresponding to the two linear regions. They were 0.19 and 0.83 mM at pH 7.5, and 0.055 and 0.83 mM at pH 9.1. In the presence of 5muM EDTA a sigmoidal curve was obtained for Mg2+ activation in the range of noninhibitory Mg2+ concentrations at pH 7.2. The apparent Km value for Mg2+ was 0.15 mM, and the Hill coefficient was 2.0. At pH 9.1 cooperativity among the Mg2+ sites disappeared, and the apparent Km value for Mg2+ was 0.055 mM. These Km values at pH 7.2 or 9.1 corresponded to the smaller of the biphasic Km values obtained without EDTA. In the absence of EDTA, no inhibition by Mg2+ was observed in the Mg2+ concentration range below 10 mM. In the presence of EDTA, the enzyme was inhibited markedly by Mg2+ at concentrations above 0.5 mM at pH 7.2, and was more sensitive to inhibition at pH 9.1. The effects of pH on the Km value for Mg2+ activation and on the Mg2+ inhibition contributed to an apparent shift of the pH optimum for activity induced by EDTA. Cooperative interaction among fructose-1, 6-diphosphate sites was observed for the enzyme in the presence of EDTA. The Hill coefficient was approximatley 1.8, and the apparent Km value for the substrate was 0.74 muM. EDTA appears to make liver fructose-1, 6-diphosphatase very sensitive to various effectors. It is suggested that Mg2+ serves as a regulator for the enzyme activity.  相似文献   

12.
Some physical, catalytic, and regulatory properties of ketopantoate hydroxymethyltransferase (5,10-methylenetetrahydrofolate: alpha-ketoisovalerate hydroxymethyltranferase) from Escherichia coli are described. This enzyme catalyzes the reversible synthesis of ketopantoate (Reaction 1), an essential precursor of pantothenic acid. (1) HC(CH3)2COCOO- + 5,10-methylene tetrahydrofolate f in equilibrium r HOCH2C(CH3)2COCOO- + tetrahydrofolate It has a molecular weight by sedimentation equilibrium of 255,000, a sedimentation coefficient (S20,w) of 11 S, a partial specific volume of 0.74 ml/g, an isoelectric point of 4.4, and an absorbance, (see article), of 0.85. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate and amino acid analyses give a subunit molecular weight of 27,000 and 25,700, respectively; both procedures indicate the presence of 10 identical subunits. The NH2-terminal sequence is Met-Tyr---. The enzyme is stable and active over a broad pH range, with an optimum from 7.0 to 7.6. It requires Mg2+ for activity; Mn2+, Co2+, Zn2+ are progressively less active. The enzyme is not inactivated by borohydride reduction in the presence of excess substrates, i.e. it is a Class II aldolase. Reaction 1f is partially inhibited by concentrations of formaldehyde (0.8 mM) and tetrahydrofolate (0.38 mM) below or near the Km values, apparent Km values are 0.18, 1.1 and 5.9 mM for tetrahydrofolate, alpha-ketoisovalerate, and formaldehyde, respectively. For Reaction 1r, apparent Km values are 0.16 and 0.18 mM, respectively, for ketopantoate and tetrahydrofolate, and the saturation curves for both substrates show positive cooperativity. Forward and reverse reactions occur at similar maximum velocities (Vmax approximately equal to 8 mumol of ketopantoate formed or decomposed per min per mg of enzyme at 37 degrees). Only 1-tetrahydrofolate is active in Reaction 1; d-tetrahydrofolate, folate, and methotrexate were neither active nor inhibitory. However, 1-tetrahydrofolate was effectively replaced with conjugates containing 1 to 6 additional glutamate residues; of these, tetrahydropterolpenta-, tetra-, and triglutamate were effective at lower concentrations than tetrahydrofolate itself; they were also the predominant conjugates of tetrahydrofolate present in E. coli. Alpha-Ketobutyrate, alpha-ketovalerate, and alpha-keto-beta-methylvalerate replaced alpha-ketoisovalerate as substrates; pyruvate was inactive as a substrate, but like isovalerate, 3-methyl-2-butanone and D- or L-valine, inhibited Reaction 1. the transferase has regulatory properties expected of an enzyme catalyzing the first committed step in a biosynthetic pathway. Pantoate (greater than or equal to 500 muM) and coenzyme A (above 1 mM) all inhibit; the Vmax is decreased, Km is increased, and the cooperativity for substrate (ketopantoate) is enhanced. Catalytic activity of the transferase is thus regulated by the products of the reaction path of which it is one component; transferase synthesis is not repressed by growth in the presence of pantothenate.  相似文献   

13.
1. Guanylate cyclase of washed particles and plasma membranes showed S-shaped progress curves when titrated with either GTP or Mn2+ ions; similar results were obtained with Triton X-100-solubilized enzyme preparation from washed particles. Hill plots of these data revealed multiple metal-nucleotide and free-metal binding sites. 2. Guanylate cyclase of supernatant fractions displayed typical Michaelis-Menten properties when enzyme required excess of (free) Mn2+ (over GTP) for maximal activities; Ka (free Mn2+) was about 0.15-0.25 mM at subsaturating concentrations of GTP. 4 MnATP, MnADP, and MnGDP were found to increase the activities of both particulate and superantant enzyme, when MnGTP concentration was below saturation and free Mn2+ ion concentration was low (less than 100 muM); MnATP (50muM-1 mM) inhibited both these activities at high free Mn2+ concentration (1.5 mM) and inhibition of the particulate enzyme was greater than that of supernatant enzyme. 5. Ca2+ ions stimulated supernatant-enzyme activity; the stimulatory concentration of Ca2+ ions depended on the concentration of Mn2+ and GTP. 6. A modest stimulation of particulate guanylate cyclase by pyrophosphate (0.02-1 mM) was observed; the pyrophosphate effect appeared to be competitive with respect to GTP. At a higher concentration (2 mM), pyrophosphate produced a marked inhibition of particulate enzyme; the nature of inhibitory effect appeared complex. 7. Inorganic salts (e.g. NaCl, KCl, LiBr, NaF) produced inhibition of particulate enzyme; the degree of inhibition of Triton X-100-stimulated activity was less than that of unstimulated activity. 9. Treatment of sarcolemmal or microsomal membranes with either phospholipase C or trypsin decreased, whereas phospholipase A increased, the activity of guanylate cyclase.  相似文献   

14.
In isolated perfused rat liver, urea synthesis from ammonium ions was dependent on extracellular HCO3- and CO2 concentrations when the HCO3-/CO2 ratio in the influent perfusate was constant (pH 7.4). Urea synthesis was half-maximal at HCO3- = 4 mM, CO2 = 0.19 mM and was maximal at HCO3- and CO2 concentrations above 20 mM and 0.96 mM, respectively. At physiological HCO3- (25 mM) and CO2 (1.2 mM) concentrations in the influent perfusate, acetazolamide, the inhibitor of carbonic anhydrase, inhibited urea synthesis from ammonium ions (1 mM) by 50-60% and led to a 70% decrease in citrulline tissue levels. Acetazolamide concentrations required for maximal inhibition of urea synthesis were 0.01-0.1 mM. At subphysiological HCO3- and CO2 concentrations, inhibition of urea synthesis by acetazolamide was increased up to 90%. Inhibition of urea synthesis by acetazolamide was fully overcome in the presence of unphysiologically high HCO3- and CO2 concentrations, indicating that the inhibitory effect of acetazolamide is due to an inhibition of carbonic-anhydrase-catalyzed HCO3- supply for carbamoyl-phosphate synthetase, which can be bypassed when the uncatalyzed intramitochondrial HCO3- formation from portal CO2 is stimulated in the presence of high portal CO2 concentrations. With respect to HCO3- supply of mitochondrial carbamoyl-phosphate synthetase, urea synthesis can be separated into a carbonic-anhydrase-dependent (sensitive to acetazolamide at 0.5 mM) and a carbonic-anhydrase-independent (insensitive to acetazolamide) portion. Carbonic-anhydrase-independent urea synthesis linearly increased with the portal 'total CO2 addition' (which was experimentally determined to be CO2 addition plus 0.036 HCO3- addition) and was independent of the perfusate pH. At a constant 'total CO2 addition', carbonic-anhydrase-dependent urea synthesis was strongly affected by perfusate pH and increased about threefold when the perfusate pH was raised from 6.9 to 7.8. It is concluded that the pH dependent regulation of urea synthesis is predominantly due to mitochondrial carbonic anhydrase-catalyzed HCO3- supply for carbamoyl phosphate synthesis, whereas there is no control of urea synthesis by pH at the level of the five enzymes of the urea cycle. Because HCO3- provision for carbamoyl phosphate synthetase increases with increasing portal CO2 concentrations even in the absence of carbonic anhydrase activity, susceptibility of ureogenesis to pH decreases with increasing portal CO2 concentrations. This may explain the different response of urea synthesis to chronic metabolic and chronic respiratory acidosis in vivo.  相似文献   

15.
A new enzyme, DL-2-haloacid dehalogenase, was isolated and purified to homogeneity from the cells of Pseudomonas sp. strain 113. This enzyme catalyzed non-stereospecific dehalogenation of both of the optical isomers of 2-chloropropionate through an SN2 type of reaction; L- and D-lactates were formed from D- and L-2-chloropropionates, respectively. The enzyme acted on 2-halogenated aliphatic carboxylic acids whose carbon chain lengths were less than five. It also dehalogenated trichloroacetate to form oxalate and showed maximum activity at pH 9.5. The Michaelis constants for substrates were as follows: 5.0 mM for monochloroacetate, 1.1 mM for L-2-chloropropionate, and 4.8 mM for D-2-chloropropionate. DL-2-Haloacid dehalogenase was inhibited by HgCl2, ZnSO4, and MnSO4, but was not affected by thiol reagents, such as p-chloromercuribenzoate and iodoacetamide. This enzyme had a molecular weight of about 68,000 and appeared to be composed of two subunits identical in molecular weight.  相似文献   

16.
Mucoid exopolysaccharide (MEP) obtained from Pseudomonas aeruginosa 579 was suspended in 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) pH 7.2 containing 0.1-10.0 mM of CaCl2.2H2O or MgCl2.4H2O. MEP treated with HEPES or < 5.0 mM of the Ca2+ or Mg2+ salts remained soluble and bound tobramycin in an equilibrium dialysis bioassay. MEP treated with 5.0 or 10.0 mM of the Ca2+ or Mg2+ salts did not bind tobramycin. Five and 10 mM Ca(2+)-treated MEP precipitated but Mg(2+)-treated MEP did not. Pseudomonas aeruginosa 579 biofilms formed using a defined growth medium having < 1 mM Ca2+ or Mg2+ were treated for 1 h with 10 mM HEPES +/- 5.0 mM CaCl2.2H2O or MgCl2.4H2O, prior to an 8-h exposure to HEPES, or the defined growth medium, +/- 125 micrograms/mL of tobramycin. The tobramycin kill kinetics for the HEPES-, Mg(2+)-, and Ca(2+)-treated biofilms were similar and gradual from T = 0-6 h. The viability of the HEPES- and Mg(2+)-treated populations declined sharply (from 6 to 8 h). Bacteria dispersed from the MEP in control biofilms at 0 and 8 h did not grow in the presence of 7.81 micrograms/mL of tobramycin. Thus, binding of tobramycin of P. aeruginosa 579 MEP may not be as influential to the impediment of tobramycin diffusion as is the steric hindrance imposed by the Ca2+ condensation of the polymer.  相似文献   

17.
1. Histidine-pyruvate aminotransferase (isoenzyme 1) was purified to homogeneity from the mitochondrial and supernatant fractions of rat liver, as judged by polyacrylamide-gel electrophoresis and isolectric focusing. Both enzyme preparations were remarkably similar in physical and enzymic properties. Isoenzyme 1 had pI8.0 and a pH optimum of 9.0. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors in the following order of activity: phenylalanine greater than tyrosine greater than histidine. Very little activity was found with tryptophan and 5-hydroxytryptophan. The apparent Km values were about 2.6mM for histidine and 2.7 mM for phenylalanine. Km values for pyruvate were about 5.2mM with phenylalanine as amino donor and 1.1mM with histidine. The aminotransferase activity of the enzyme towards phenylalanine was inhibited by the addition of histidine. The mol.wt. determined by gel filtration and sucrose-density-gradient centrifugation was approx. 70000. The mitochondrial and supernatant isoenzyme 1 activities increased approximately 25-fold and 3.2-fold respectively in rats repeatedly injected with glucagon for 2 days. 2. An additional histidine-pyruvate aminotransferase (isoenzyme 2) was partially purified from both the mitochondrial and supernatant fractions of rat liver. Nearly identical properties were observed with both preparations. Isoenzyme 2 had pI5.2 and a pH optimum of 9.3. The enzyme was specific for pyruvate and did not function with 2-oxoglutarate. The order of effectiveness of amino donors was tyrosine = phenylalanine greater than histidine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values for histidine and phenylalanine were about 0.51 and 1.8 mM respectively. Km values for pyruvate were about 3.5mM with phenylalanine and 4.7mM with histidine as amino donors. Histidine inhibited phenylalanine aminotransferase activity of the enzyme. Gel filtration and sucrose-density-gradient centrifugation yielded a mol.wt. of approx. 90000. Neither the mitochondrial nor the supernatant isoenzyme 2 activity was elevated by glucagon injection.  相似文献   

18.
Indolyl-3-alkane alpha-hydroxylase, a novel tryptophan-metabolizing enzyme, was prepared in crystalline form from soil isolate organism Pseudomonas XA. Emission spectroscopy and atomic absorption analyses of purified enzyme revealed the presence of iron (0.8 mol/mol of protein), and a number of observations supported the presence of heme prosthetic group (1.1 mol/mol of protein). The S20,w value of indolyl-3-alkane alpha-hydroxylase is 10.2 S, and the molecular weight by sedimentation equilibrium ultracentrifugation is 250,000. The E1%280 of the enzyme is 21, and the isoelectric point by isoelectric focusing on ampholine polyacrylamide gel plates is 4.8. The enzyme catalyzes hydroxylation on the side chain of a variety of 3-substituted indole compounds, including certain tryptophan-containing oligopeptides. The reaction product from tryptamine was identified by proton nuclear magnetic resonance and gas chromatography/mass spectroscopy analyses. While the indole ring remained intact, hydroxylation occurred at the side chain carbon adjacent to the ring. Nuclear magnetic resonance studies indicated that hydroxylation always took place at the same position when the substrate was tryptophan methyl ester, tryptophol, indole-3-propionate, or indole-3-butyrate. No other chemical change occurred when these substrates were incubated with the enzyme. The Km value of indolyl-3-alkane alpha-hydroxylase for L-tryptophan is 2.4 X 10(-6) M, at pH 7.2. The enzyme is inhibited by potassium cyanide (0.1 mM) or hydroxylamine (1mM), but not by NaBH4 (25 mM), aminooxyacetic acid (7mM), quinacrine (1 mM), chlortetracycline (1 mM), p-mercuribenzoate (0.1 mM), or ethylenediaminetetraacetate (1 mM). The plasma half-life (t1/2) of indolyl-3-alkane alpha-hydroxylase in tumor-bearing mice is approximately 25 h.  相似文献   

19.
The uneven distribution of Mg2+, K+, and phosphate in Saccharomyces carlsbergensis was demonstrated by the differential extraction of ions. Their concentrations were 5, 60, and 1 mM in the cytoplasm and 73, 470, and 110 mM in vacuoles, respectively. The intracellular gradients of these ions were 1:15, 1:8, and 1:110, respectively, across the tonoplast. The determination of free Mg2+ (1.35 mM in the cytosol and 20 mM in vacuoles) showed that the ion accumulation in vacuoles could not be explained by the higher degree of ion complexing in these organelles.  相似文献   

20.
T Baltz  D Baltz  C Giroud    J Crockett 《The EMBO journal》1985,4(5):1273-1277
A semi-defined medium for the cultivation of bloodstream forms of the African trypanosome brucei subgroup was developed. Out of 14 different strains tested, 10 could be cultured including Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. The presence of a reducing agent (2-mercaptoethanol or thioglycerol) was found to be essential for growth. The standard medium consisted of Hepes buffered minimum essential medium with Earle's salts supplemented with 0.2 mM 2-mercaptoethanol, 2 mM pyruvate and 10% inactivated serum either from rabbit (T. brucei, T. equiperdum, T. evansi and T. rhodesiense) or human (T. gambiense). Although a general medium could be defined for the long-term maintenance of trypanosome cultures, the initiation to culture nevertheless required particular conditions for the different strains. The cultured trypanosomes had all the characteristics of the in vivo bloodstream forms including: morphology, infectivity, antigenic variation and glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号