首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Human involucrin (hINV) mRNA level and promoter activity increase when keratinocytes are treated with the differentiating agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). This response is mediated via a p38 mitogen-activated protein kinase-dependent pathway that targets activator protein 1 (Efimova, T., LaCelle, P. T. , Welter, J. F., and Eckert, R. L. (1998) J. Biol. Chem. 273, 24387-24395). In the present study we examine the role of various PKC isoforms in this regulation. Transfection of expression plasmids encoding the novel PKC isoforms delta, epsilon, and eta increase hINV promoter activity. In contrast, neither conventional PKC isoforms (alpha, beta, and gamma) nor the atypical isoform (zeta) regulate promoter activity. Consistent with these observations, promoter activity is inhibited by the PKCdelta-selective inhibitor, rottlerin, but not by Go-6976, an inhibitor of conventional PKC isoforms, and novel PKC isoform-dependent promoter activation is inhibited by dominant-negative PKCdelta. This regulation appears to be physiologically important, as transfection of keratinocytes with PKCdelta, -epsilon, or -eta increases expression of the endogenous hINV gene. Synergistic promoter activation (>/=100-fold) is observed when PKCepsilon- or -eta-transfected cells are treated with TPA. In contrast, the PKCdelta-dependent response is more complex as either activation or inhibition is observed, depending upon PKCdelta concentration.  相似文献   

3.
Tumor promoting phorbol esters, such as 12-0-tetradecanoyl-phorbol-13-acetate (TPA), stimulate colony formation in vitro by murine granulocyte-macrophage progenitors (GM-CFC) without added colony stimulating factors (CSF). To determine whether TPA induces CSF production in vitro, marrow cells were cultured for 1 to 7 days in liquid medium with or without TPA. No CSF was detected in any sample by a double antibody radioimmunoassay (sensitivity = 2 units/0.1 ml), however, colony-stimulating activity was detected in supernatant fluid from all TPA containing cultures by bioassay. This activity appeared to result from a direct effect of TPA rather than from production of CSF, as equivalent activity was found in TPA-containing medium incubated in the absence of marrow cells. Rabbit antiserum to purified L-cell CSF inhibited colony formation stimulated by L-cell CSF and WEHI-3 CSF, but had no effect on colony formation induced by TPA. Cells from long-term marrow cultures responded to TPA with colony formation, despite culture conditions and cell fractionation procedures that reduced the frequency of CSF-producing macrophages to less than 1.0%. TPA inhibited binding of radioiodinated L-cell CSF to marrow cells, especially if the cells were first exposed to TPA. These results do not support induction of CSF production as the major mechanism of phorbol ester stimulation of myelopoiesis. Phorbol esters may directly stimulate GM-CFC and/or enhance their response to CSF by a mechanism involving CSF binding sites.  相似文献   

4.
The process of apoptosis is regulated at multiple levels through phosphorylation by several different protein kinases. The protein kinase C (PKC) family of isozymes have been shown to exert both inhibitory and stimulatory influences on apoptosis. During the apoptotic process phosphorylative events are known to occur also at the nuclear level. Evidence suggests that PKC isoforms play a key role in some steps that lead to nuclear disassembly during the execution phase of apoptosis. This review highlights the recent progress made in determining the roles played by individual PKC nuclear isoforms in the control of apoptosis.  相似文献   

5.
Phosphatidylcholine (PtdCho) can provide lipid second messengers involved in signal transduction pathways. As a measure of phospholipid turnover in response to extracellular stimulation, we investigated differential enhancement of [3H]choline incorporation into PtdCho by phorbol esters. In C6 rat glioma and SK-N-SH human neuroblastoma cells, [3H]PtdCho synthesis was 2–4 fold stimulated by -12-O-tetradecanoylphorbol-13-acetate (-TPA) when [3H]choline was incubated simultaneously with, or 15 min prior to, -TPA treatment. By contrast, in N1E-115 mouse and SK-N-MC human neuroblastoma cells, phorbol esters had no appreciable effect on [3H]choline incorporation; however, in all cells, 200 M oleic acid enhanced PtdCho synthesis, indicating a stimulable process. Alterations by thymeleatoxin (TMT), an activator of conventional PKC isoforms (, and ), were similar to -TPA. We investigated whether expression of specific PKC isoforms might correlate with these effects of phorbol esters on PtdCho synthesis. All cell lines bound phorbol esters, had PKC activity that was translocated by phorbol esters and differentially expressed isoforms of PKC. Northern and western blot analyses, using specific cDNA and antibodies for PKC-,-,-,-,-, and-, revealed that expression of -isoform predominated in C6 and SK-N-SH cells. In contrast, TPA-responsive -isoform predominated in SK-N-MC cells. -PKC was not detected in any cells and only in C6 cells was PKC- present and translocated by -TPA treatment. PKC- was not detected in SK-N-MC cell lines but translocated with TPA treatment in the other three cell lines. PKC- was present in all cells but was unaltered by TPA treatment. Accordingly, stimulation of PtdCho turnover by phorbol esters correlated only with expression of PKC-; presence of PKC- alone was insufficient for a TPA response.Abbreviations DAG diacylglycerol - DMEM Dulbecco's modified Eagle's medium - dPPA 12-deoxyphorbol-13-phenylacetate-20-acetate - PKC protein kinase C - cPKC conventional PKC - PtdCho phosphatidylcholine - TPA 12-O-tetradecanoylphorbol-13-acetate - TMT thymeleatoxin  相似文献   

6.
The shape changes and membrane ruffling that accompany neutrophil activation are dependent on the assembly and reorganization of the actin cytoskeleton, the molecular basis of which remains to be clarified. A role of protein kinase C (PKC) has been postulated because neutrophil activation, with the attendant shape and membrane ruffling changes, can be initiated by phorbol esters, known activators of PKC. It has become apparent, however, that multiple isoforms of PKC with differing substrate specificities exist. To reassess the role of PKC in cytoskeletal reorganization, we compared the effects of diacylglycerol analogs and of PKC antagonists on kinase activity and on actin assembly in human neutrophils. Ruffling of the plasma membrane was assessed by scanning EM, and spatial redistribution of filamentous (F)-actin was assessed by scanning confocal microscopy. Staining with NBD-phallacidin and incorporation of actin into the Triton X-100-insoluble ("cytoskeletal") fraction were used to quantify the formation of (F)-actin. [32P]ATP was used to detect protein phosphorylation in electroporated cells. Exposure of neutrophils to 4 beta-PMA (an activator of PKC) induced protein phosphorylation, membrane ruffling, and assembly and reorganization of the actin cytoskeleton, whereas the 4a-isomer, which is inactive towards PKC, failed to produce any of these changes. Moreover, 1,2-dioctanoylglycerol, mezerein, and 3-(N-acetylamino)-5-(N-decyl-N-methylamino)-benzyl alcohol, which are nonphorbol activators of PKC, also promoted actin assembly. Although these effects were consistent with a role of PKC, the following observations suggested that stimulation of conventional isoforms of the kinase were not directly responsible for actin assembly: (a) Okadaic acid, an inhibitor of phosphatases 1 and 2A, potentiated PMA-induced protein phosphorylation, but not actin assembly; and (b) PMA-induced actin assembly and membrane ruffling were not prevented by the conventional PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, staurosporine, calphostin C, or sphingosine at concentrations that precluded PMA-induced protein phosphorylation and superoxide production. On the other hand, PMA-induced actin assembly was inhibited by long-chain fatty acid coenzyme A esters, known inhibitors of nuclear PKC (nPKC). We conclude that PMA-induced actin assembly is unlikely to be mediated by the conventional isoforms of PKC, but may be mediated by novel isoforms of the kinase such as nPKC.  相似文献   

7.
Activation of IkappaB kinase beta by protein kinase C isoforms   总被引:2,自引:0,他引:2       下载免费PDF全文
The atypical protein kinase C (PKC) isotypes (lambda/iotaPKC and zetaPKC) have been shown to be critically involved in important cell functions such as proliferation and survival. Previous studies have demonstrated that the atypical PKCs are stimulated by tumor necrosis factor alpha (TNF-alpha) and are required for the activation of NF-kappaB by this cytokine through a mechanism that most probably involves the phosphorylation of IkappaB. The inability of these PKC isotypes to directly phosphorylate IkappaB led to the hypothesis that zetaPKC may use a putative IkappaB kinase to functionally inactivate IkappaB. Recently several groups have molecularly characterized and cloned two IkappaB kinases (IKKalpha and IKKbeta) which phosphorylate the residues in the IkappaB molecule that serve to target it for ubiquitination and degradation. In this study we have addressed the possibility that different PKCs may control NF-kappaB through the activation of the IKKs. We report here that alphaPKC as well as the atypical PKCs bind to the IKKs in vitro and in vivo. In addition, overexpression of zetaPKC positively modulates IKKbeta activity but not that of IKKalpha, whereas the transfection of a zetaPKC dominant negative mutant severely impairs the activation of IKKbeta but not IKKalpha in TNF-alpha-stimulated cells. We also show that cell stimulation with phorbol 12-myristate 13-acetate activates IKKbeta, which is entirely dependent on the activity of alphaPKC but not that of the atypical isoforms. In contrast, the inhibition of alphaPKC does not affect the activation of IKKbeta by TNF-alpha. Interestingly, recombinant active zetaPKC and alphaPKC are able to stimulate in vitro the activity of IKKbeta but not that of IKKalpha. In addition, evidence is presented here that recombinant zetaPKC directly phosphorylates IKKbeta in vitro, involving Ser177 and Ser181. Collectively, these results demonstrate a critical role for the PKC isoforms in the NF-kappaB pathway at the level of IKKbeta activation and IkappaB degradation.  相似文献   

8.
9.
Zhang Y  Venugopal SK  He S  Liu P  Wu J  Zern MA 《Cellular signalling》2007,19(11):2339-2350
Ethanol abuse is one of the major etiologies of cirrhosis. Ethanol has been shown to induce apoptosis via activation of oxidative stress, mitogen-activated protein kinases (MAPK), and tyrosine kinases. However, there is a paucity of data that examine the interplay among these molecules. In the present study we have systematically elucidated the role of novel protein kinase C isoforms (nPKC; PKCdelta and PKCepsilon) in ethanol-induced apoptosis in hepatocytes. Ethanol enhanced membrane translocation of PKCdelta and PKCepsilon, which was associated with the phosphorylation of p38MAPK, p42/44MAPK and JNK1/2, and the nuclear translocation of NF-kappaB and AP-1. This resulted in increased apoptosis in primary rat hepatocytes. Inhibition of both PKCdelta and PKCepsilon resulted in a decreased MAPK activation, decreased nuclear translocation of NF-kappaB and AP-1, and inhibition of apoptosis. In addition, ethanol activated the tyrosine phosphorylation of PKCdelta via tyrosine kinase in hepatocytes. The tyrosine phosphorylated PKCdelta was cleaved by caspase-3 and these fragments were translocated to the nucleus. Inhibition of ethanol-induced oxidative stress blocked the membrane translocation of PKCdelta and PKCepsilon, and the tyrosine phosphorylation of PKCdelta in hepatocytes. Inhibition of oxidative stress, tyrosine kinase or caspase-3 activity caused a decreased nuclear translocation of PKCdelta in response to ethanol, and was associated with less apoptosis. Conclusion: These results provide a newly-described mechanism by which ethanol induces apoptosis via activation of nPKC isoforms in hepatocytes.  相似文献   

10.
11.
The roles of protein kinase C (PKC) isoforms in cholinergic potentiation of glucose-induced insulin secretion were investigated in rat pancreatic islets. Western-blot analysis showed the presence of PKC-alpha, betaII, delta, epsilon, eta, and zeta, but not PKC-betaI, gamma, or iota, in the islets. Carbachol (CCh) caused translocations of PKC-alpha, betaII, delta, and epsilon from the cytosol to the plasma membrane. CCh facilitated 7-mM glucose-induced insulin secretion from isolated rat islets. The CCh-stimulated insulin secretion was significantly suppressed by the generic PKC inhibitor chelerythrine. In contrast, Go 6976, an inhibitor of conventional PKC isoforms, had no effect on the insulin secretion stimulated by CCh, although it significantly inhibited that induced by phorbol 12-myristate 13-acetate. These results suggest that the novel PKC isoforms activated by CCh, i.e., PKC-delta and/or epsilon, participate in the stimulatory effect of CCh on insulin secretion.  相似文献   

12.
Signalling by protein kinase C isoforms in the heart   总被引:11,自引:0,他引:11  
Understanding transmembrane signalling process is one of the major challenge of the decade. In most tissues, since Fisher and Krebs's discovery in the 1950's, protein phosphorylation has been widely recognized as a key event of this cellular function. Indeed, binding of hormones or neurotransmitters to specific membrane receptors leads to the generation of cytosoluble second messengers which in turn activate a specific protein kinase. Numerous protein kinases have been so far identified and roughly classified into two groups, namely serine/threonine and tyrosine kinases on the basis of the target amino acid although some more recently discovered kinases like MEK (or MAP kinase kinase) phosphorylate both serine and tyrosine residues.Protein kinase C is a serine/threonine kinase that was first described by Takai et al. [1] as a Ca- and phospholipid-dependent protein kinase. Later on, Kuo et al. [2] found that PKC was expressed in most tissues including the heart. The field of investigation became more complicated when it was found that the kinase is not a single molecular entity and that several isoforms exist. At present, 12 PKC isoforms and other PKC-related kinases [3] were identified in mammalian tissues. These are classified into three groups. (1) the Ca-activated -, -,and -PKCs which display a Ca-binding site (C2); (2) the Ca-insensitive -, -, -, -, and -PKCs. The kinases that belong to both of these groups display two cystein-rich domains (C1) which bind phorbol esters (for recent review on PKC structure, see [4]). (3) The third group was named atypical PKCs and include , , and -PKCs that lack both the C2 and one cystein-rich domain. Consequently, these isoforms are Ca-insensitive and cannot be activated by phorbol esters [5]. In the heart. evidence that multiple PKC isoforms exist was first provided by Kosaka et al. [6] who identified by chromatography at least two PKC-related isoenzymes. Numerous studies were thus devoted to the biochemical characterization of these isoenzymes (see [7] for review on cardiac PKCs) as well as to the identification of their substrates.This overview aims at updating the present knowledge on the expression, activation and functions of PKC isoforms in cardiac cells. (Mol Cell Biochem 157: 65–72, 1996)  相似文献   

13.
The protein kinase C (PKC) family of serine/threonine kinases is an attractive drug target for the treatment of cancer and other diseases. Natural product curcumin is known to interact with PKC isoforms through the C1 domain and modulate PKC activity. The reported results demonstrate that the symmetric curcumin molecule might act as two separate units during its recognition of C1 domains. To understand the importance of the two halves of curcumin in PKC binding and to develop effective PKC regulators, we synthesized a series of alkyl cinnamates (1-8), characterized absorption and fluorescence properties and measured binding affinities with the C1b subdomains of PKC isoforms. The binding parameters of the monomeric compounds and liposomes containing compounds confirmed their interaction with the C1b subdomains of PKCδ and PKCθ. The molecular docking analysis with PKCδ and PKCθ C1b subdomains revealed that the alkyl cinnamates form hydrogen bond with the backbone of the protein at the same binding site as that of diacylglycerol and phorbol esters. The results show that the alkyl cinnamates bind to the activator binding site of PKCs and both methoxy and hydroxyl groups play important roles in the binding process.  相似文献   

14.
We have previously seen that protein kinase C (PKC) epsilon induces neurite outgrowth and that PKCdelta and PKCtheta elicit apoptosis in neuroblastoma cells. In this study we investigate the effects of cell-permeable C(2)-ceramide on these events in SK-N-BE(2) neuroblastoma cells. C(2)-ceramide abolishes neurite formation induced by overexpression of PKCepsilon and, in cells overexpressing PKCdelta or PKCtheta, ceramide treatment leads to apoptosis. Exposure to C(2)-ceramide also suppressed neurite outgrowth induced by retinoic acid, but ceramide did not abrogate neurite induction by treatment with the ROCK inhibitor Y-27632, demonstrating that C(2)-ceramide is not a general inhibitor of neurite outgrowth. The neurite-suppressing effect occurs independently of cell-death. Furthermore, C(2)-ceramide relocated PKCepsilon and the isolated regulatory domain of PKCepsilon from the cytosol to the perinuclear region. In contrast, neither the localization of PKCdelta nor of PKCtheta was affected by C(2)-ceramide. Taken together, the data indicate that the neurite-inhibiting effect of C(2)-ceramide treatment may be caused by a re-localization of PKCepsilon and thus identify a functional consequence of ceramide effects on PKCepsilon localization.  相似文献   

15.
16.
17.
The C1 domain mediates the diacylglycerol (DAG)-dependent translocation of conventional and novel protein kinase C (PKC) isoforms. In novel PKC isoforms (nPKCs), this domain binds membranes with sufficiently high affinity to recruit nPKCs to membranes in the absence of any other targeting mechanism. In conventional PKC (cPKC) isoforms, however, the affinity of the C1 domain for DAG is two orders of magnitude lower, necessitating the coordinated binding of the C1 domain and a Ca2+-regulated C2 domain for translocation and activation. Here we identify a single residue that tunes the affinity of the C1b domain for DAG- (but not phorbol ester-) containing membranes. This residue is invariant as Tyr in the C1b domain of cPKCs and invariant as Trp in all other PKC C1 domains. Binding studies using model membranes, as well as live cell imaging studies of yellow fluorescent protein-tagged C1 domains, reveal that Trp versus Tyr toggles the C1 domain between a species with sufficiently high affinity to respond to agonist-produced DAG to one that is unable to respond to physiological levels of DAG. In addition, we show that while Tyr at this switch position causes cytosolic localization of the C1 domain under unstimulated conditions, Trp targets these domains to the Golgi, likely due to basal levels of DAG at this region. Thus, Trp versus Tyr at this key position in the C1 domain controls both the membrane affinity and localization of PKC. The finding that a single residue controls the affinity of the C1 domain for DAG-containing membranes provides a molecular explanation for why 1) DAG alone is sufficient to activate nPKCs but not cPKCs and 2) nPKCs target to the Golgi.  相似文献   

18.
Liu X  Zhang MI  Peterson LB  O'Neil RG 《FEBS letters》2003,550(1-3):101-106
We have investigated the contribution of lipid rafts to activation of the NADPH oxidase enzyme system in neutrophils. Membrane-bound NADPH oxidase subunits are present in the lipid raft compartment of neutrophils. Cytosolic NADPH oxidase components are mainly absent from but are recruited to rafts upon Fcγ receptor activation. In parallel, protein kinase C isotypes are recruited to the rafts. Kinetic analysis of NADPH oxidase activation revealed that rafts determine the onset but not the maximal rate of enzyme activity. Thus lipid rafts serve to physically juxtapose the NADPH oxidase effector, protein kinase C and Fcγ receptor, resulting in efficient coupling.  相似文献   

19.
The effect of phorbol esters on cyclic AMP production in rat cerebral cortical slices was studied using a prelabelling technique to measure cyclic nucleotide accumulation. Cholera toxin-stimulated cyclic AMP accumulation was enhanced approximately 2-fold by phorbol 12-myristate, 13-acetate (PMA) which alone had no effect on cyclic AMP production. The augmentation by PMA was maximal within the first hour of incubation, decreasing progressively thereafter. Protein kinase C activity was decreased 80-90% during a 3 hr exposure to PMA, as was 3H-phorbol 12,13-dibutyrate binding. Both phosphatidyl serine and arachidonic acid were found to enhance protein kinase C activity in a concentration-dependent manner, an effect that was attenuated by prolonged incubation of the brain tissue with PMA. The results indicate that exposure of brain slices to phorbol esters causes a down-regulation of rat brain protein kinase C, and that this modification corresponds with a decrease in the ability of PMA to augment cyclic AMP production, suggesting a functional relationship between the two systems in rat brain.  相似文献   

20.
BACKGROUND AND AIMS: The expression of osteopontin (OPN), a protein postulated to play a role in tumorigenesis, is induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and in the in vitro initiation-promotion skin carcinogenesis model (JB6 cells). Although TPA-induced OPN expression in JB6 cells has been suggested to involve protein kinase C (PKC), the PKC isoforms and the downstream pathway mediating OPN expression have not been extensively studied. METHODS: Using the JB6 cell model, we determined the involvement of PKC isoforms, mitogen-activated protein kinase kinase (MAPK kinase/MEK) and MAPK in TPA-induced OPN expression using inhibitors specific to PKC isoforms and MEK and performing Northern blot analyses. Western blot analyses of cells treated with specific inhibitors were also performed to determine whether PKC isoforms or MEK were involved in activation of MAPK. KEY RESULTS: TPA increased the steady-state level of OPN mRNA as early as 2-4h and this expression persisted for at least 4 days. TPA induction of OPN expression in JB6 cells is mediated through PKC epsilon and PKC delta, which also mediated the phosphorylation of MAPK. Additionally, inhibition of MEK activity, which activates MAPK, attenuated TPA-induced OPN expression. These findings suggest that activation of MAPK is important in mediating OPN expression. CONCLUSION: TPA-induced steady-state OPN mRNA expression in mouse JB6 cells involves the activation of MAPK mediated through PKC epsilon and/or PKC delta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号