首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunoglobulin heavy chain variable region is encoded as three separate libraries of elements in germ-line DNA: VH, D and JH. To examine the order and regulation of their joining, we have developed assays that distinguish their various combinations and have used the assays to study tumor cell analogs of B-lymphoid cells as well as normal B-lymphoid cells. Abelson murine leukemia virus (A-MuLV) transformed fetal liver cells - the most primitive B-lymphoid cell analog available for analysis - generally had DJH rearrangements at both JH loci. These lines continued DNA rearrangement in culture, in most cases by joining a VH gene segment to an existing DJH complex with the concomitant deletion of intervening DNA sequences. None of these lines or their progeny showed evidence of VHD or DD rearrangements. Heavy chain-producing tumor lines, representing more mature stages of the B-cell pathway, and normal B-lymphocytes had either two VHDJH rearrangements or a VHDJH plus a DJH rearrangement at their two heavy chain loci; they also showed no evidence of VHD or DD rearrangements. These results support an ordered mechanism of variable gene assembly during B-cell differentiation in which D-to-JH rearrangements generally occur first and on both chromosomes followed by VH-to-DJH rearrangements, with both types of joining processes occurring by intrachromosomal deletion. The high percentage of JH alleles remaining in the DJH configuration in heavy chain-producing lines and, especially, in normal B-lymphocytes supports a regulated mechanism of heavy chain allelic exclusion in which a VHDJH rearrangement, if productive, prevents an additional VH-to-DJH rearrangement.  相似文献   

2.
P Early  H Huang  M Davis  K Calame  L Hood 《Cell》1980,19(4):981-992
We have determined the sequences of separate germline genetic elements which encode two parts of a mouse immunglobulin heavy chain variable region. These elements, termed gene segments, are heavy chain counterparts of the variable (V) and joining (J) gene segments of immunoglobulin light chains. The VH gene segment encodes amino acids 1-101 and the JH gene segment encodes amino acids 107-123 of the S107 phosphorylcholine-binding VH region. This JH gene segment and two other JH gene segments are located 5' to the mu constant region gene (Cmu) in germline DNA. We have also determined the sequence of a rearranged VH gene encoding a complete VH region, M603, which is closely related to S107. In addition, we have partially determined the VH coding sequences of the S107 and M167 heavy chain mRNAs. By comparing these sequences to the germline gene segments, we conclude that the germline VH and JH gene segments do not contain at least 13 nucleotides which are present in the rearranged VH genes. In S107, these nucleotides encode amino acids 102-106, which form part of the third hypervariable region and consequently influence the antigen-binding specificity of the immunoglobulin molecule. This portion of the variable region may be encoded by a separate germline gene segment which can be joined to the VH and JH gene segments. We term this postulated genetic element the D gene segment, referring to its role in the generation of heavy chain diversity. Essentially the same noncoding sequences are found 3' to the VH gene segment and as inverse complements 5' to two JH gene segments. These are the same conserved nucleotides previously found adjacent to light chain V and J gene segments. Each conserved sequence consists of blocks of seven and ten conserved nucleotides which are separated by a spacer of either 11 or 22 nonconserved nucleotides. The highly conserved spacing, corresponding to one or two turns of the DNA helix, maintains precise spatial orientations between blocks of conserved nucleotides. Gene segments which can join to one another (VK and JK, for example) always have spacers of different lengths. Based on these observations, we propose a model for variable region gene rearrangement mediated by proteins which recognize the same conserved sequences adjacent to both light and heavy chain immunoglobulin gene segments.  相似文献   

3.
4.
5.
Allelic forms of the immunoglobulin heavy chain variable region   总被引:7,自引:0,他引:7  
The complete variable region sequence of the heavy chain from a phosphorylcholine-binding myeloma protein of C57/BL allotype has been determined. When this sequence was compared with the germ line-coded heavy chain variable region sequence of BALB/c phosphorylcholine-binding proteins, five differences were observed. Four of the substitutions were located in the framework portion of the variable region and the fifth in the "J" or joining segment. Two of the framework substitutions were found at positions 14 and 16. Previous studies have shown that heavy chains from all anti-phosphorylcholine antibodies induced in C57/BL mice have the same amino acids at positions 14 and 16 as the C57/BL myeloma protein described in this communication. It has therefore been concluded that these residues are encoded in the C57/BL germ line in contrast to two alternatives in the BALB/c genome. This finding, in addition to the 96% homology found between the C57/BL and BALB/c sequences, suggests that these structures represent allelic forms of an entire variable region.  相似文献   

6.
We have studied the organization of variable region (V) genes of the human immunoglobulin heavy chain (H) by cosmid cloning. We isolated two independent immunoglobulin D5 clusters (D5-a and D5-b) from cosmid libraries of the human genome. Restriction maps of these two regions showed that downstream 15 kb portions of the 55 kb overlap were different although upstream 40 kb portions were almost identical. Four more D segments, (DM, DXP, DA and DK) were found around the D5 segment in the conserved region of each cluster. Nucleotide sequences of the corresponding D segments from each cluster were almost identical and they encoded potentially functional D regions. Analysis using human-rodent somatic cell hybrids demonstrated that both clusters were located in the immunoglobulin heavy chain (H) locus on chromosome 14, suggesting that the D5-a and D5-b regions evolved by internal duplication within this locus. We also isolated a 60 kb DNA region carrying four VH segments, designated as VH-F region, which was located on chromosome 16. Nucleotide sequences of the four VH segments were determined. Two of them encoded potentially functional VH segments, and the other two were pseudogenes. Some more VH segments were found to be located outside chromosome 14, by Southern blot hybridization of human-rodent hybrid cell DNAs. These results provide further evidence that the human VH locus has undergone recent reorganization.  相似文献   

7.
8.
Das S  Nozawa M  Klein J  Nei M 《Immunogenetics》2008,60(1):47-55
Immunoglobulin heavy chains are polypeptides encoded by four genes: variable (IGHV), joining (IGHJ), diversity (IGHD), and constant (IGHC) region genes. The number of IGHV genes varies from species to species. To understand the evolution of the IGHV multigene family, we identified and analyzed the IGHV sequences from 16 vertebrate species. The results show that the numbers of functional and nonfunctional IGHV genes among different species are positively correlated. The number of IGHV genes is relatively stable in teleosts, but the intragenomic sequence variation is generally higher in teleosts than in tetrapods. The IGHV genes in tetrapods can be classified into three phylogenetic clans (I, II, and III). The clan III and/or II genes are relatively abundant, whereas clan I genes exist in small numbers or are absent in most species. The genomic organization of clan I, II, and III IGHV genes varies considerably among species, but the entire IGHV locus seems to be conserved in the subtelomeric or near-centromeric region of chromosome. The presence or absence of specific IGHV clan members and the lineage-specific expansion and contraction of IGHV genes indicate that the IGHV locus continues to evolve in a species-specific manner. Our results suggest that the evolution of IGHV multigene family is more complex than previously thought and that several factors may act synergistically for the development of antibody repertoire. Electronic supplementary materials The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
We have isolated 23 different cosmid clones of the heavy-chain variable region genes (VH) of human immunoglobulin. These clones encompass about 1000 X 10(3) base-pairs of DNA containing 61 VH genes. Characterization of the 23 clones by Southern blot hybridization showed that VH genes belonging to different families were physically linked in many regions. Cluster 71, which was analyzed in detail, comprised seven VH segments arranged in the same orientation with different intervals. This clone contained internal homology regions, each carrying two VH segments of different families. Comparison of the nucleotide sequences of VH segments within each family showed that profiles of accumulation of mutations in framework (FR) and complementarity-determining (CDR) regions were different. CDR had more mutations at amino-acid-substituting positions than at silent positions, whereas FR had the reverse distribution of mutations. Five out of seven VH segments of this cluster were pseudogenes containing various mutations. VH pseudogenes were classified into two distinct groups; one with a few replacement mutations (conserved pseudogenes), and the other with rather extensive mutations (diverged pseudogenes). The possibility that conserved pseudogenes serve as a reservoir of VH segments is discussed.  相似文献   

10.
The mouse genome contains four functional J H genes, which encode immunoglobulin heavy chain joining segments. The J H gene cluster is located a few kilobases 5 from the constant region genes (C genes) on chromosome 12. The polymerase chain reaction (PCR)-technique was used to amplify DNA stretches from mouse genome of approximately 1 340 nucleotides in length containing all four J H genes (Igh-J locus). PCR products were directly used as templates in Sanger's dideoxy-sequencing, and sequences were determined. Twelve inbred mouse strains belonging to ten different Igh-C haplotypes were studied. The strains were: BALB/c, C58/J, RIII, DBA/2, CE, RF, CBA, NZB/J, AKR, C57BL/10, SJL, and A/J. Five allelic forms of the Igh-J locus were found among these strains. The A/J mouse has an allele (e) which differs from the BALB/c allele (a) by 15 nucleotides. C57BL and SJL have the allele (b) with eight differences from BALB/c. The CBA allele (j) has two differences, and the CE allele (f) has a single nucleotide difference compared with the BALB/c sequence. Based on the J H , variable (V) and constant (C) region sequences we conclude that independent reshuffling of V H ,J H , and C H gene clusters occurred during the evolution of Mus musculus.The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been assigned the accession numbers X63146-X63175.  相似文献   

11.
We isolated and sequenced six variable-region (V) gene segments of the human immunoglobulin heavy-chain (H) using the V71-2 segment as probe. These VH segments were more than 90% homologous to each other and less than 65% homologous to members of the three known VH families. The VH fragments hybridized to an identical set of restriction fragments on Southern blots of human placenta DNA. The new family was designated as the VH-IV family. The complexity of the VH-IV family was estimated to be at least nine genes, of which the sequenced seven were functional genes. The VH-IV family is homologous (76%) to the mouse Vh36-60 family.  相似文献   

12.
 A comparison between related species would allow us to study the evolutionary changes in complex gene families. To investigate the evolution of immunoglobulin VH gene families in lower vertebrates, we compared cDNA VH clones from two related teleost fish species, Arctic charr (Salvelinus alpinus) and rainbow trout (Oncorhynchus mykiss), which are separated from their common ancestor by 12–20 million years (MY). The results showed that randomly isolated charr VH genes could be closely grouped to known VH genes of rainbow trout, suggesting that the VH family structure is stable during 12–20 MY and that the total number of VH families changes only gradually over a longer period. This finding also led us to define eight VH gene families of Arctic charr, designated Salalp VH I, VH II, and so on. The presence of species-specific amino acids suggests that non-reciprocal genetic exchanges (e.g., gene duplication) play an important role in shaping the evolution of the V gene family. Received: 23 July 1997 / Revised: 6 October 1997  相似文献   

13.
14.
A previous study [Mole et al. (1971) Biochem. J. 124, 301-318] showed several differences in sequence between the variable (V) regions of rabbit immunoglobulin Aa1 and Aa3 heavy chains. The inheritance of one such difference has been followed in a family of 38 rabbits by a radioautographic peptide-'map' technique and is shown to segregate in a Mendelian fashion. This clearly demonstrates the presence of a genetic marker in the rabbit heavy-chain V region, although the finding that Aa2 and Aa3 heavy chains have identity of sequence in the region studied obscures the relationship of this genetic marker to the a locus.  相似文献   

15.
16.
17.
To investigate the diversity of the immunoglobulin heavy chain variable domain of the cold adapted teleost Trematomus bernacchii, 45 cDNA clones, containing complete or partial sequences of rearranged VH/D/JH segments, were analysed. Clones were isolated from a spleen library constructed by 5' RACE or from an expression library previously constructed and immunoscreened with rabbit anti- T. bernacchii Ig heavy chain antibodies. VH sequences shared, on average, 79.9% nucleotide identity and defined only two gene families referred to as Trbe VH I and Trbe VH II, the latter comprising 89% of the VH sequences analysed in this study. A Southern blot analysis, performed with family specific probes, revealed that there are at least 25 genomic VH genes. A phylogenetic tree showed that Trbe VH I clustered with VH genes belonging to group D and Trbe VH II with those of group C. Four putative distinct D segments were found to contribute to the diversity of CDR3, which showed a high glycine content. The Shannon analysis revealed that FRs are very highly conserved. Of CDRs, CDR2 exhibits a mean entropy value higher than CDR1, contributing to variability in a significant manner. Moreover, eight distinct JH segments were identified. These findings provide several clues suggesting a limited diversity of the VH genes in the Antarctic teleost T. bernacchii.  相似文献   

18.
19.
R Zakut  J Cohen    D Givol 《Nucleic acids research》1980,8(16):3591-3601
Poly(A)-containing mRNA from mouse myeloma MPC11 was transcribed into cDNA which was cloned in the PstI site of the plasmid pBR322. The transformants were screened by hybridization with a cDNA fragment, derived from plasmid p gamma(11)7, corresponding to the 5' portion of the constant region of MPC11 heavy chain. Several positive transformants were found to contain various lengths of the variable region of the heavy chain. We describe the structure and sequence of one of these clones, pV(11)2, which contains cDNA corresponding to the entire variable region of MPC11 heavy chain and extends to codon 248 in the constant region. The protein sequence deduced from the DNA sequence indicates that the variable region of MPC11 heavy chain contains 121 amino acids and belongs to subgroup II of mouse heavy chains. Comparison of this sequence with other heavy chain sequences suggests a J (joining) segment of 16 residues which overlaps five residues of the third hypervariable region. The cDNA sequence shows that there is no discontinuity between the end of the variable region and the beginning of the constant region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号