首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The wild-type line and 14 nitrate reductase-deficient mutant cell lines of Nicotiana tabacum were tested for the presence of nitrate reductase partial activities, and for nitrite reductase and xanthine dehydrogenase activity. Data characterizing the electron donor specificity of nitrate reductase (EC 1.6.6.1., NADH:nitrate oxidoreductase) and nitrite reductase (EC 1.7.7.1., ferredoxin:nitrite oxidoreductase) of the wild-type line are presented. Three lines (designated cnx) simultaneously lack NADH-, FADH2-, red. benzyl viologen-nitrate reductase, and xanthine dehydrogenase activities, but retain the nitrate reductase-associated NADH-cytochrome c reductase activity. These mutants are, therefore, interpreted to be impaired in gene functions essential for the synthesis of an active molybdenum-containing cofactor. For cnx-68 and cnx-101, the sedimentation coefficient of the defective nitrate reductase molecules does not differ from that of the wild-type enzyme (7.6S). In 11 lines (designated nia) xanthine dehydrogenase activity is unaffected, and the loss of NADH-nitrate reductase is accompanied by a loss of all partial activities, including NADH-cytochrome c reductase. However, one line (nia-95) was found to possess a partially active nitrate reductase molecule, retaining its FADH2- and red. benzyl viologen nitrate reductase activity. It is likely that nia-95 is a mutation in the structural gene for the apoprotein. Both, the nia and cnx mutant lines exhibit nitrite reductase activity, being either nitrate-inducible or constitutive. Evidence is presented that, in Nicotiana tabacum, nitrate, without being reduced to nitrite, is an inducer of the nitrate assimilation pathway.  相似文献   

2.
Summary Six mutant strains (301, 102, 203, 104, 305, and 307) affected in their nitrate assimilation capability and their corresponding parental wild-type strains (6145c and 21gr) from Chlamydomonas reinhardii have been studied on different nitrogen sources with respect to NAD(P)H-nitrate reductase and its associated activities (NAD(P)H-cytochrome c reductase and reduced benzyl viologen-nitrate reductase) and to nitrite reductase activity. The mutant strains lack NAD(P)H-nitrate reductase activity in all the nitrogen sources. Mutants 301, 102, 104, and 307 have only NAD(P)H-cytochrome c reductase activity whereas mutant 305 solely has reduced benzyl viologen-nitrate reductase activity. Both activities are repressible by ammonia but, in contrast to the nitrate reductase complex of wild-type strains, require neither nitrate nor nitrite for their induction. Moreover, the enzyme from mutant 305 is always obtained in active form whereas nitrate reductase from wild-types needs to be reactivated previously with ferricyanide to be fully detected. Wild-type strains and mutants 301, 102, 104, and 307, when properly induced, exhibit an NAD(P)H-cytochrome c reductase distinguishable electrophoretically from contitutive diaphorases as a rapidly migrating band. Nitrite reductase from wild-type and mutant strains is also repressible by ammonia and does not require nitrate or nitrite for its synthesis. These facts are explained in terms of a regulation of nitrate reductase synthesis by the enzyme itself.  相似文献   

3.
NADH:nitrate reductase (EC 1.6.6.1) and NAD(P)H:nitrate reductase (EC 1.6.6.2) were purified from wild-type soybean (Glycine max [L.] Merr., cv Williams) and nr1-mutant soybean plants. Purification included Blue Sepharose- and hydroxylapatite-column chromatography using acetone powders from fully expanded unifoliolate leaves as the enzyme source.

Two forms of constitutive nitrate reductase were sequentially eluted with NADPH and NADH from Blue Sepharose loaded with extract from wild-type plants grown on urea as sole nitrogen source. The form eluted with NADPH was designated c1NR, and the form eluted with NADH was designated c2NR. Nitrate-grown nr1 mutant soybean plants yielded a NADH:nitrate reductase (designated iNR) when Blue Sepharose columns were eluted with NADH; NADPH failed to elute any NR form from Blue Sepharose loaded with this extract. Both c1NR and c2NR had similar pH optima of 6.5, sedimentation behavior (s20,w of 5.5-6.0), and electrophoretic mobility. However, c1NR was more active with NADPH than with NADH, while c2NR preferred NADH as electron donor. Apparent Michaelis constants for nitrate were 5 millimolar (c1NR) and 0.19 millimolar (c2NR). The iNR from the mutant had a pH optimum of 7.5, s20,w of 7.6, and was less mobile on polyacrylamide gels than c1NR and c2NR. The iNR preferred NADH over NADPH and had an apparent Michaelis constant of 0.13 millimolar for nitrate.

Thus, wild-type soybean contains two forms of constitutive nitrate reductase, both differing in their physical properties from nitrate reductases common in higher plants. The inducible nitrate reductase form present in soybeans, however, appears to be similar to most substrateinduced nitrate reductases found in higher plants.

  相似文献   

4.
Summary Induced wildtype cells ofA. nidulans rapidly lost NADPH — linked nitrate reductase activity when subjected to carbon and or nitrogen starvation. A constitutive mutant at the regulatory gene for nitrate reductase,nirA c1, rapidly lost nitrate reductase activity upon carbon starvation. This loss of activity is thought to be due to a decrease in the NADPH concentration in the cells. Cell free extracts from wild-type cells grown in the presence of nitrate, rapidly lost their nitrate reductase activity when incubated at 25° C. NADPH prevented this loss of activity. Wildtype cells grown in the presence of nitrate and urea have a higher initial NADPH: NADP+ ratio and cell free extracts from such cells lost their nitrate reductase activity slower than extracts of cells grown with nitrate alone.The Pentose Phosphate Pathway mutant,pppB-1, had a lower NADPH concentration compared with the wildtype grown under the same conditions and cell free extracts lost their nitrate reductase activity more rapidly than the wildtype. Cell free extracts ofnirA c-1 and a non-inducible mutant for nitrate reductase,nirA --14, upon incubation lost little of their nitrate reductase activity.  相似文献   

5.
Extracts of Aspergillus nidulans wild type (bi-1) and the nitrate reductase mutant niaD-17 were active in the in vitro restoration of NADPH-dependent nitrate reductase when mixed with extracts of Neurospora crassa, nit-1. Among the A. nidulans cnx nitrate reductase mutants tested, only the molybdenum repair mutant, cnxE-14 grown in the presence of 10−3 M Na2MoO4 was active in the restoration assay.Aspergillus extracts contained an inhibitor(s) which was measured by the decrease in NADPH-dependent nitrate reductase formed when extracts of Rhodospirillum rubrum and N. crassa, nit-1 were incubated at room temperature. The inhibition by extracts of A. nidulans, bi-1, cnxG-4 and cnxH-3 was a linear function of time and a logarithmic function of the protein concentration in the extract.The molybdenum content of N. crassa wild type and nit-1 mycelia were found to be similar, containing approx. 10 μg molybdenum/mg dry mycelium. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The enzyme purified from wild-type N. crassa contained more than 1 mol of molybdenum per mol of enzyme, whereas the enzyme purified from nit-1 contained negligible amounts of molybdenum.  相似文献   

6.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

7.
Three Escherichia coli mutants defective in formate-dependent nitrite reduction (Nrf activity) were characterised. Two of the mutants, JCB354 and JCB356, synthesized all five c-type cytochromes previously characterised in anaerobic cultures of E. coli. The third mutant, JCB355, was defective for both cytochrome b and cytochrome c synthesis, but only during anaerobic growth. The insertion sites of the transposon in strains JCB354 and JCB356 mapped to the menFDBCE operon; the hemN gene was disrupted in strain JCB355. The mutation in strain JCB354 was complemented by a plasmid encoding only menD; strain JCB356 was complemented by a plasmid encoding only menBCE. A mutant defective in the methyltransferase activity involved in both ubiquinone synthesis and conversion of demethylmenaquinone to menaquinone expressed the same Nrf activity as the parental strain. The effects of men, ubiA and ubiE mutations on other cytochrome-c-dependent electron transfer pathways were also determined. The combined data establish that menaquinones are essential for cytochrome-c-dependent trimethylamine-N-oxide reductase (Tor) and Nrf activity, but that either menaquinone or ubiquinone, but not demethylmenaquinone, can transfer electrons to a third cytochrome-c-dependent electron transfer chain, the periplasmic nitrate reductase. Received: 9 December 1996 / Accepted: 11 June 1997  相似文献   

8.
This work reports the isolation and preliminary characterization ofNicotiana plumbaginifolia mutants resistant to methylammonium.Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up byNicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.  相似文献   

9.
Nitrate reductase of Neurospora crassa is a dimeric protein composed of two identical subunits, each possessing three separate domains, with flavin, heme, and molybdenum-containing cofactors. A number of mutants of nit-3, the structural gene that encodes Neurospora nitrate reductase, have been characterized at the molecular level. Amber nonsense mutants of nit-3 were found to possess a truncated protein detected by a specific antibody, whereas Ssu-1-suppressed nonsense mutants showed restoration of the wild-type, full-length nitrate reductase monomer. The mutants show constitutive expression of the truncated nitrate reductase protein; however normal control, which requires nitrate induction, was restored in the suppressed mutant strains. Three conventional nit-3 mutants were isolated by the polymerase chain reaction and sequenced; two of these mutants were due to the deletion of a single base in the coding region for the flavin domain, the third mutant was a nonsense mutation within the amino-terminal molybdenum-containing domain. Homologous recombination was shown to occur when a deleted nit-3 gene was introduced by transformation into a host strain with a single point mutation in the resident nit-3 gene. New, severely damaged, null nit-3 mutants were created by repeat-induced point mutation and demonstrated to be useful as host strains for transformation experiments.  相似文献   

10.
A barley (Hordeum vulgare L.) mutant, nar1a (formerly Az12), deficient in NADH nitrate reductase activity is, nevertheless, capable of growth with nitrate as the sole nitrogen source. In an attempt to identify the mechanism(s) of nitrate reduction in the mutant, nitrate reductase from nar1a was characterized to determine whether the residual activity is due to a leaky mutation or to the presence of a second nitrate reductase. The results obtained indicate that the nitrate reductase in nar1a differs from the wild-type enzyme in several important aspects. The pH optima for both the NADH and the NADPH nitrate reductase activities from nar1a were approximately pH 7.7, which is slightly greater than the pH 7.5 optimum for the NADH activity and considerably greater than the pH 6.0 to 6.5 optimum for the NADPH activity of the wild-type enzyme. The nitrate reductase from nar1a exhibits greater NADPH than NADH activity and has apparent Km values for nitrate and NADH that are approximately 10 times greater than those of the wild-type enzyme. The nar1a nitrate reductase has apparent Km values of 170 micromolar for NADPH and 110 micromolar for NADH. NADPH, but not NADH, inhibited the enzyme at concentrations greater than 50 micromolar.  相似文献   

11.
Nitrate reductase of Neurospora crassa is a complex multi-redox protein composed of two identical subunits, each of which contains three distinct domains, an amino-terminal domain that contains a molybdopterin cofactor, a central heme-containing domain, and a carboxy-terminal domain which binds a flavin and a pyridine nucleotide cofactor. The flavin domain of nitrate reductase appears to have structural and functional similarity to ferredoxin NADPH reductase (FNR). Using the crystal structure of FNR and amino acid identities in numerous nitrate reductases as guides, site-directed mutagenesis was used to replace specific amino acids suspected to be involved in the binding of the flavin or pyridine nucleotide cofactors and thus important for the catalytic function of the flavin domain. Each mutant flavin domain protein was expressed in Escherichia coli and analyzed for NADPH: ferricyanide reductase activity. The effect of each amino acid substitution upon the activity of the complete nitrate reductase reaction was also examined by transforming each manipulated gene into a nit-3 null mutant of N. crassa. Our results identify amino acid residues which are critical for function of the flavin domain of nitrate reductase and appear to be important for the binding of the flavin or the pyridine nucleotide cofactors.  相似文献   

12.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

13.
Two nitrate reductase (NR) mutants were selected for low nitrate reductase (LNR) activity by in vivo NR microassays of M2 seedlings derived from nitrosomethylurea-mutagenized soybean (Glycine max [L.] Merr. cv Williams) seeds. The mutants (LNR-5 and LNR-6) appeared to have normal nitrate-inducible NR activity. Both mutants, however, showed decreased NR activity in vivo and in vitro compared with the wild-type. In vitro FMNH2-dependent nitrate reduction and Cyt c reductase activity of nitrate-grown plants, and nitrogenous gas evolution during in vivo NR assays of urea-grown plants, were also decreased in the mutants. The latter observation was due to insufficient generation of nitrite substrate, rather than some inherent difference in enzyme between mutant and wild-type plants. When grown on urea, crude extracts of LNR-5 and LNR-6 lines had similar NADPH:NR activities to that of the wild type, but both mutants had very little NADH:NR activity, relative to the wild type. Blue Sepharose columns loaded with NR extract of urea-grown mutants and sequentially eluted with NADPH and NADH yielded a NADPH:NR peak only, while the wild-type yielded both NADPH: and NADH:NR peaks. Activity profiles confirmed the lack of constitutive NADH:NR in the mutants throughout development. The results provide additional support to our claim that wild-type soybean contains three NR isozymes, namely, constitutive NADPH:NR (c1NR), constitutive NADH:NR (c2NR), and nitrate-inducible NR (iNR).  相似文献   

14.
Summary One allele at each of the five nit loci in Neurospora crassa together with the wild type strain have been compared on various nitrogen sources with regard to (i) their growth characteristics (ii) the level of nitrate reductase and its associated activities (reduced benzyl viologen nitrate reductase and cytochrome c reductase) (iii) the level of nitrite reductase and (iv) their ability to take up nitrite from the surrounding medium. Results are consistent with the hypothesis that nit-3 is the structural gene for nitrate reductase, nit-1 specifies in part a molybdenum containing moiety which is responsible for the nit-3 gene product dimerising to form nitrate reductase, nit-4 and nit-5 are regulator genes whose products are involved in the induction of both nitrate reductase and nitrite reductase and nit-2 codes for a generalised ammonium activated repressor protein. Studies on the induction of nitrate reductase (and its associated activities) and nitrite reductase in wild type, nit-1 and nit-3 in the presence of either nitrate or nitrite suggest that each enzyme may be regulated independently of the other and that nitrite could be true co-inducer of the assimilatory pathway. Nitrite uptake experiments with nit-2, nit-4 and nit-5 strains show that whereas nit-4 and nit-5 are freely permeable to this molecule, it is unable to enter the nit-2 mycelium.  相似文献   

15.
Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene encoding xylose reductase (Texr) was isolated from the thermophilic fungus Talaromyces emersonii, expressed in Escherichia coli and purified to homogeneity. Texr encodes a 320 amino acid protein with a molecular weight of 36 kDa, which exhibited high sequence identity with other xylose reductase sequences and was shown to be a member of the aldoketoreductase (AKR) superfamily with a preference for reduced nicotinamide adenine dinucleotide phosphate (NADPH) as coenzyme. Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed mutagenesis. The TeXRK271R+N273D double mutant displayed an altered coenzyme preference with a 16-fold improvement in NADH utilization relative to the wild type and therefore has the potential to reduce redox imbalance of xylose fermentation in recombinant S. cerevisiae strains. Expression of Texr was shown to be inducible by the same carbon sources responsible for the induction of genes encoding enzymes relevant to lignocellulose hydrolysis, suggesting a coordinated expression of intracellular and extracellular enzymes relevant to hydrolysis and metabolism of pentose sugars in T. emersonii in adaptation to its natural habitat. This indicates a potential advantage in survival and response to a nutrient-poor environment.  相似文献   

16.
A singular mutant strain from Chlamydomohas reinhardii defective in nitrate reductase has been characterized. Mutant 301 possesses an ammonia-repressible NAD(P)H-cytochrome c reductase with the same charge and size properties as the low molecular weight ammonia-repressible diaphorase present in the wild-type strain 6145c and is also able to reconstitute NAD(P)H-nitrate reductase activity by in vitro complementation with reduced benzyl viologen-nitrate reductase from mutant 305. Furthermore, a heat-labile costitutive molybdenum cofactor which is fuctionally active is also present in mutant 301. Mutant 301 has the two requirements exhibited by the active nitrate reductase complex from fungi, namely, NAD(P)H-cytochrome c reductase activity and molybdenum cofactor, but lacks NAD(P)H-nitrate reductase activity. This fact together with biochemical data presented from other C. reinhardii mutants strongly suggest a heteropolymeric model for the nitrate reductase complex of the alga.  相似文献   

17.
Site-directed mutagenesis was employed to investigate the role of Cys566 in the catalytic mechanism of rat liver NADPH-cytochrome P-450 oxidoreductase. Rat NADPH-cytochrome P-450 oxidoreductase and mutants containing either alanine or serine at position 566 were expressed in Escherichia coli and purified to homogeneity. Substitution of alanine at position 566 had no effect on enzymatic activity with the acceptors cytochrome c and ferricyanide but did increase trans-hydrogenase activity with 3-acetylpyridine adenine dinucleotide phosphate by 79%. The Km for NADPH was increased 2.5-fold, and the NADP+ KI was increased 4.8-fold compared with that found for the wild-type enzyme. The conservative substitution, Ser566, produced a 50% decrease in cytochrome c reductase activity whereas activity with ferricyanide was decreased 57%, and 3-acetylpyridine adenine dinucleotide phosphate activity was unaffected. The NADPH Km was increased 4.6-fold, and the NADP+ KI increased 7.6-fold. The dependence of cytochrome c reductase activity on the KCl concentration was markedly altered by the Cys566 substitutions. Maximum activity for the wild-type enzyme was observed at approximately 0.18 M KCl whereas maximum activity for the mutant enzymes was observed between 0.04 and 0.09 M KCl. The pH dependence of cytochrome c reductase activity, cytochrome c Km, and flavin content were unaffected by these substitutions. These results demonstrate that Cys566 is not essential for activity of rat liver NADPH-cytochrome P-450 oxidoreductase although the cysteine side chain does affect the interaction of NADPH with the enzyme.  相似文献   

18.
Summary Eleven green individuals were isolated when 95000 M2 plants of barley (Hordeum vulgare L.), mutagenised with azide in the M1, were screened for nitrite accumulation in their leaves after nitrate treatment in the light. The selected plants were maintained in aerated liquid culture solution containing glutamine as sole nitrogen source. Not all plants survived to flowering and some others that did were not fertile. One of the selected plants, STA3999, from the cultivar Tweed could be crossed to the wild-type cultivar and analysis of the F2 progeny showed that leaf nitrite accumulation was due to a recessive mutation in a single nuclear gene, which has been designated Nir1. The homozygous nir1 mutant could be maintained to flowering in liquid culture with either glutamine or ammonium as sole nitrogen source, but died within 14 days after transfer to compost. The nitrite reductase cross-reacting material seen in nitrate-treated wild-type plants could not be detected in either the leaf or the root of the homozygous nir1 mutant. Nitrite reductase activity, measured with dithionite-reduced methyl viologen as electron donor, of the nitrate-treated homozygous nir1 mutant was much reduced but NADH-nitrate reductase activity was elevated compared to wild-type plants. We conclude that the Nir1 locus determines the formation of nitrite reductase apoprotein in both the leaf and root of barley and speculate that it represents either the nitrite reductase apoprotein gene locus or, less likely, a regulatory locus whose product is required for the synthesis of nitrite reductase, but not nitrate reductase. Elevation of NADH-nitrate reductase activity in the nir1 mutant suggests a regulatory perturbation in the expression of the Narl gene.  相似文献   

19.
Summary Several yeast strains were assayed for occurence of nitrate reductase after growth in a defined medium with nitrate as the sole nitrogen source, Candida boidinii DSM 70026, showing the highest specific activity, was further investigated. The procedures for yeast fermentation and nitrate reductase purfication are described in detail. Nitrate reductase from this yeast was characterized as NAD(P)H: nitrate oxidoreductase (E.C.1.6.6.2). The enzyme activity with NADH (NADPH) was highest at pH 7.0 (7.1) and 30° C (25° C). The values of K m determinations with NADH/NADPH were both 4 × 10–4 mol/l; values for the substrate inhibition constant (K i) were 6 × 10–4 mol/l. The molecular mass of the native enzyme was estimated by gel permeation chromatography to be approximately 350 kDa. Offprint requests to: R. Gromes  相似文献   

20.
Summary The levels of several redox enzymes in a chlorate-resistant mutant of Proteus mirabilis, which is partially affected in the formation of formate hydrogenlyase, thiosulfate reductase and tetrathionate reductase, were compared with those of the wild type. The composition of the electron transport system of both strains was almost the same in cells grown aerobically, but very different in cells grown anaerobically. In the mutant, the cytochrome content increased twofold, whereas the level of the anaerobic enzymes is strongly diminished. The anaerobic formation of electron transport components in the mutant was, in contrast to that of the wild type, not influenced significantly by azide. During anaerobic growth with nitrate low levels of a functional nitrate reductase system were formed in the mutant. Under these conditions the formation of formate dehydrogenase, formate hydrogenlyase, formate oxidase, thiosulfate reductase, tetrathionate reductase, cytochrome b563,5 and partly that of cytochrome a2, was repressed. The repressive effect of nitrate, however, was completely abolished by azide. Therefore, it seems likely that a functional nitrate reductase system, rather than nitrate, controls the formation of the enzymes repressible by nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号