首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of one, two and four amino-acid residues from the C-terminus of beta-endorphin ('lipotropin C-Fragment', lipotropin residues 61--91) led to the formation of peptides with progressively decreased analgesic potency; there was no change in the persistence of the analgesic effects. The four C-terminal residues are thus important for the activity of beta-endorphin, but not for the duration of action. Removal of eight amino-acid residues from the N-terminus provided a peptide that had no specific affinity for brain opiate receptors in vitro and was devoid of analgesic properties. The N-terminal sequence of beta-endorphin is therefore necessary for the production of analgesia, whereas the C-terminal residues confer potency. The N alpha-acetyl form of beta-endorphin had no specific affinity for brain opiate receptors in vitro and possessed no significant analgesic properties. Since lipotropin C'-Fragment (lipotropin residues 61--87) and the N alpha-acetyl derivative of beta-endorphin occur naturally in brain and pituitary and are only weakly active or inactive as opiates, it is suggested that proteolysis at the C-terminus and acetylation of the N-terminus of beta-endorphin may constitute physiological mechanisms for inactivation of this potent analgesic peptide.  相似文献   

2.
Rats chronically implanted with intrathecal catheters displayed a dose-dependent increase in the hot-plate and tail-flick response latencies following the injection of human beta-endorphin into the lumbar spinal subarachnoid space through the indwelling catheter. beta-Endorphin was approximately 25 times more potent than morphine on a molar basis. Matching morphine and beta-endorphin doses such that approximately equal submaximal submaximal effects occurred, it was observed that the antinociception produced by beta-endorphin lasted approximately three times longer than that produced by morphine. Experiments with intrathecal injection of beta-endorphin into the spinal subarachnoid space of cats fitted with intrathecal catheters also revealed a potent antinociceptive effect which was completely antagonized by naloxone. In the rats, naloxone administered systemically in doses of 10--100 microgram/kg produced a parallel shift in the dose-response curves of both nociceptive measures suggesting a competitive antagonism. Using a dose ratio analysis, an in vivo pA2 of 7.1 for naloxone was obtained. These data and those derived from previous work based on the pA2 suggest that the interaction of morphine, certain pentapeptides, and beta-endorphin is the same with regard to the spinal opiate receptor population mediating behaviorally defined analgesia.  相似文献   

3.
Chronic administration of l-prolyl-l-leucyl-glycinamide (MIF-I) to mice slightly reduced morphine's antinociceptive activity in the hot-plate test and modified the biphasic motor activity response to morphine. MIF-I antagonized the initial depression of activity and potentiated the increased motor activity phase. Chronic treatment of rats with MIF-I prevented morphine's antinociceptive activity in the tail flick test. MIF-I partly antagonized the inhibition by morphine of the coaxially stimulated guinea-pig ileum preparation. The inhibition of the ileum produced by ethylketocyclazocine was weakly antagonized by MIF-I. In contrast, MIF-I had no effect on the inhibition of the stimulated mouse vas deferens produced by Leu-enkephalin. The findings show that MIF-I weakly and selectively inhibits μ-type opiate receptors which suggests that MIF-I could be an endogenous inhibitor of opiate receptors.  相似文献   

4.
Chronic administration of l-prolyl-l-leucyl-glycinamide (MIF-I) to mice slightly reduced morphine's antinociceptive activity in the hot-plate test and modified the biphasic motor activity response to morphine. MIF-I antagonized the initial depression of activity and potentiated the increased motor activity phase. Chronic treatment of rats with MIF-I prevented morphine's antinociceptive activity in the tail flick test. MIF-I partly antagonized the inhibition by morphine of the coaxially stimulated guinea-pig ileum preparation. The inhibition of the ileum produced by ethylketocyclazocine was weakly antagonized by MIF-I. In contrast, MIF-I had no effect on the inhibition of the stimulated mouse vas deferens produced by Leu-enkephalin. The findings show that MIF-I weakly and selectively inhibits μ-type opiate receptors which suggests that MIF-I could be an endogenous inhibitor of opiate receptors.  相似文献   

5.
In our approach to beta-endorphin modeling, we have proposed that the biological properties of the natural peptide are determined by the combination of three basic structural units: a highly specific opiate recognition sequence at the NH2 terminus (residues 1-5) connected via a hydrophilic peptide link (residues 6-12) to a potential amphiphilic helix in the COOH-terminal residues 13-31. In the alpha-helical conformation the hydrophobic domain twists around the length of the helix and covers almost one-half of its surface. The other distinctive features of the helix include its basicity and the two aromatic residues Phe18 and Tyr27. In contrast to previous models we have studied, peptide 4 is a "negative" model in the sense that it was designed and examined in order to determine how the lack of a well defined amphiphilic structure affects the biological properties of beta-endorphin. For this purpose, peptide 4 retains the three structural units previously postulated for beta-endorphin, but the amino acids of the 13-31 region are arranged in such a way that no definite continuous hydrophobic zone could be formed in an alpha- or pi-helical conformation of this region. In aqueous buffered solutions, peptide 4 showed almost the same amount of alpha-helical structure as beta-endorphin, with a slight tendency toward less helicity in 50% aqueous 2,2,2-trifluoroethanol. In rat brain homogenate, peptide 4 was degraded slightly slower than beta-endorphin, in contrast to the apparently much higher stability of previous models under the same conditions. With regard to opiate receptor binding, peptide 4 was twice as potent as beta-endorphin in mu-receptor assays but half as potent in delta-receptor assays. The opiate potency of peptide 4 on the guinea pig ileum was higher than that of beta-endorphin. In contrast, in the rat vas deferens assay, which is very specific for beta-endorphin, the potency of peptide 4 was very low and could be shown not to be mediated by the same opiate mechanism or by the same opiate receptor. A comparison of these results with those of previous model peptides provides further evidence for the importance of an amphiphilic helical structure in beta-endorphin residues 13-31, which determines the resistance to proteolysis of the natural molecule and contributes to the delta- and mu-opiate receptor interaction. The amphiphilicity of this helical structure must also be essential for high opiate activity on the rat vas deferens (epsilon-receptors), whereas no such structural requirement appears to be necessary for interaction with the opiate receptors on the guinea pig ileum.  相似文献   

6.
L F Tseng 《Life sciences》1981,29(14):1417-1424
The inhibition of tail flick response to radiant heat and body temperature changes after intrathecal administration of β-endorphin (β-EP) and D-Ala2-D-Leu5-enkephalin (DADL) were studied in rats. Both opioid peptides caused inhibition of tail flick response. On a molar basis, β-EP was 73% as potent as DADL, but the duration of tail flick inhibition of β-EP was much longer than that of DADL. β-EP induced hyperthermia while DADL did not cause any significant change in body temperature. The tail flick inhibition induced by β-EP (1 nmole) was reversed by 2 mg/kg of naloxone, ip; however, the tail flick inhibition induced by DADL (7 nmole) was not reversed by 2 mg/kg and was incompletely reversed by a higher dose of naloxone one (6 mg/kg, ip). These studies demonstrate the existence of naloxone-resistant opioid receptors in the spinal cord which are sensitive to enkephalin. These results indicate that the opioid receptors involved in the production of opioid responses in the spinal cord are different from those in supraspinal brain areas.  相似文献   

7.
The antinociceptive activity of a 3(2H)-pyridazinone derivative (18a) was investigated in mice. 18a administered at doses which did not change either motor coordination or locomotor activity was able to induce antinociceptive effects in four nociceptive tests, the hot plate test, the tail flick test, the writhing test, and the formalin test. In the hot plate and tail flick test, 18a-induced antinociception was observed both after intraperitoneal administration and after intracerebroventricular injection thus indicating 18a has a central site of action. The pretreatment with the opioid antagonist naloxone, the alpha2-antagonist yohimbine or the GABA(B) antagonist CGP 35348 did not change 18a-induced antinociception in the hot plate test and in the tail flick test. Pretreatment with nicotinic antagonist mecamylamine did not change 18a effects either. A reversion of the 18a effects was observed after pretreatment with the muscarinic antagonists atropine and pirenzepine. Binding experiments revealed that 18a binds to muscarinic receptors, suggesting that 18a antinociception is mediated by central muscarinic receptors. The above findings together with the lack of parasympathomimetic cholinergic side effects indicate useful clinical application for this compound.  相似文献   

8.
Opioid receptor selectivity of peptide models of beta-endorphin   总被引:1,自引:0,他引:1  
Two peptides, designed to contain structural models of the proposed hydrophilic linker domain (residues 6-12) and amphiphilic alpha-helical domain (residues 13-29) in beta-endorphin, have been tested for their abilities to mimic the opioid receptor selectivity profile of the natural hormone. In competitive binding assays employing guinea-pig brain membranes, both peptides displayed a much higher affinity for mu- and delta-opioid receptors than for kappa opioid receptors. Relative to beta-endorphin, the peptide models were 2-3 times more potent in the mu and kappa receptor binding assays, and about equipotent in the delta receptor binding assay. In guinea-pig ileum assays, one peptide was equipotent to beta-endorphin and the other was twice as potent. Like beta-endorphin, their actions on this tissue were highly sensitive to naloxone antagonism, indicating that they were mediated by mu receptors and not kappa receptors. In view of the design of the two peptide models, and their minimal homology to the natural hormone, these results provide additional evidence in support to our proposal for the functional conformation of beta-endorphin.  相似文献   

9.
TRK-820, a new type of 4,5-epoxymorphinan derivative, was investigated in vivo for antinociceptive activities and its selectivity on various opioid receptors in mice. TRK-820 given s.c. or p.o. was found to be 351- and 796-fold more potent than U50,488H with acetic acid-induced abdominal constriction test. The duration of the antinociceptive effect produced by TRK-820 was longer than that produced by mu-opioid receptor agonist morphine or other kappa-opioid receptor agonists. In addition, with four other antinociceptive assays, low temperature hot plate (51 degrees C), thermal tail flick, mechanical tail pressure and tail pinch tests, TRK-820 was also found to be 68- to 328-fold more potent than U-50488H, and 41- to 349-fold more potent than morphine in producing antinociception, as comparing the weight of the different compound. However, TRK-820 was less active in inhibiting the high temperature (55 degrees C) hot plate response. The antinociceptive effects produced by TRK-820 were inhibited by nor-BNI, but not by naloxone or naltrindole (NTI) with the abdominal constriction test, indicating that the antinociception is selectively mediated by the stimulation of kappa-, but not mu- or delta-opioid receptors. Co-administration of TRK-820 with morphine slightly enhanced the antinociception induced by morphine in the mouse hot plate test. On the other hand, pentazocine significantly reduced the morphine-induced antinociception. TRK-820 produced sedation at doses, which are much higher than the doses for producing antinociception. These results indicate that the potent antinociception induced by TRK-820 is mediated via the stimulation of kappa-, but not mu- or delta-opiod receptors.  相似文献   

10.
The interaction of beta-endorphin with opiate receptors was studied by using the radioiodinated, metabolically stable D-Ala2 derivative of human beta-endorphin. This analog binds specifically to rat brain membrane preparations with an apparent Kd of about 2.5 x 10-9 M. The ability of various enkephalin analogs, as well as opiate agonists and antagonists, to inhibit the binding of beta-endorphin clearly demonstrates that this peptide can bind to opiate receptors. However, the effects of various cations on the binding of 125I-[D-Ala2]beta-endorphin are markedly different from those found for enkephalin binding. Sodium ion at physiological concentrations decreases substantially the binding of enkephalins but only slightly decreases endorphin binding, whereas manganese enhances enkephalin binding but has no effect on endorphin binding. Moreover, potassium (100 mM) decreases the binding of beta-endorphin but does not affect enkephalin binding. These results suggest that beta-endorphin and enkephalin bind differently to the same receptor or bind to different receptors with overlapping specificity.  相似文献   

11.
Analgesic potencies of turkey, ostrich and des-acetyl salmon beta-endorphins have been measured in the tail-flick test and binding affinities determined by radio-receptor assay. The duration of analgesia and the slope of the dose-response curves generated by these peptides are similar to those elicited by mammalian beta-endorphins. This suggests that they act in vivo and in vitro on the same population of opiate receptors. The ratio of binding to analgesic potencies observed for these peptides varies nearly sixfold. Structure-activity analysis suggests that a basic side-chain at position 9 is required in order to produce a high opiate activity both in vivo and in vitro. A reexamination of the biological activities of camel beta-endorphin shows that the analgesic potency and binding affinity of this peptide are respectively 171 and 2.7 times higher than human beta-endorphin. His-27 and/or Gln-31 may contribute to this increased potency. The dissociation of radioreceptor binding affinity from analgesic potency in these naturally occurring beta-endorphin homologs suggests that either the conditions under which the binding assay is performed mask the true binding potency in the brain or that, once bound to the appropriate receptor, these homologs do not possess equal ability to produce biological effects.  相似文献   

12.
Our approach to the modeling of beta-endorphin has been based on the proposal that three basic structural units can be distinguished in the natural peptide hormone: a highly specific opiate recognition sequence at the N terminus (residues 1-5) connected via a hydrophilic link (residues 6-12) to a potential amphiphilic helix in the C-terminal residues 13-31. Our previous studies showed the validity of this approach and have demonstrated the importance of the amphiphilic helical structure in the C terminus of beta-endorphin. The present model, peptide 5, has been designed in order to evaluate further the requirements of the amphiphilic secondary structure as well as to determine the importance of this basic structural element as compared to more specific structural features which might occur in the C-terminal segment. For these reasons, peptide 5 retains the three structural units previously postulated for beta-endorphin; the major difference with regard to previous models is that the whole C-terminal segment, residues 13-31, has been built using only D-amino acids. In aqueous buffered solutions as well as in 2,2,2-trifluoroethanol-containing solutions, the CD spectra of peptide 5 show the presence of a considerable amount of left-handed helical structure. Enzymatic degradation studies employing rat brain homogenate indicate that peptide 5 is stable in this milieu. In delta- and mu-opiate receptor-binding assays, peptide 5 shows a slightly higher affinity than beta-endorphin for both receptors while retaining the same delta/mu selectivity. In opiate assays on the guinea pig ileum, the potency of peptide 5 is twice that of beta-endorphin. In the rat vas deferens assay, which is very specific for beta-endorphin, peptide 5 displays mixed agonist-antagonist activity. Most remarkably, peptide 5 displays a potent opiate analgesic effect when injected intracerebroventricularly into mice. At equal doses, the analgesic effect of peptide 5 is less than that of beta-endorphin (10-15%) but longer lasting. In conjunction with our previous model studies, these results clearly demonstrate that the amphiphilic helical structure in the C terminus of beta-endorphin is of predominant importance with regard to activity in rat vas deferens and analgesic assays. The similarity between the in vitro and in vivo opiate activities of beta-endorphin and peptide 5, when compared to the drastic change in chirality in the latter model, demonstrates that even a left-handed amphiphilic helix formed by D-amino acids can function satisfactorily as a structural unit in a beta-endorphin-like peptide.  相似文献   

13.
The effects of putative mu and kappa agonists, with and without naloxone, were compared in the formalin and tail flick tests in rats. The mu agonist sufentanil was more potent in the tail flick test than the formalin test while the opposite was true for the kappa agonist ethylketocyclazocine (EKC). MR2034 was equipotent in the two tests and in the tail flick test, analgesia decreased at high doses. The naloxone (0.1 mg/kg) dose-ratios (DR) for sufentanil and EKC were 3 to 7 times larger for the tail flick test than the formalin test. From this and other DR studies it is argued that in thermal pain tests, opioid analgesia is mediated primarily by mu receptors while in non thermal tests kappa effects predominate.  相似文献   

14.
D P Giedroc  N Ling  D Puett 《Biochemistry》1983,22(24):5584-5591
The inhibition of the calmodulin-mediated stimulation of bovine brain cyclic nucleotide phosphodiesterase activity (3':5'-cyclic adenosine monophosphate 5'-nucleotidohydrolase, EC 3.1.4.17) by the 31-residue opiate peptide beta-endorphin has been investigated. Using conditions in which porcine brain calmodulin (6 nM) is limiting (i.e., to give a 3-fold, Ca2+-dependent stimulation of enzymic activity toward cyclic guanosine monophosphate), the domain of beta-endorphin responsible for the inhibition was mapped by using a series of deletion peptides. beta-Endorphin exhibited an ED50 of several micromolar under the conditions employed, and several amino-terminal deletion peptides were essentially as inhibitory as the parent peptide. Methionine enkephalin and various carboxy-terminal deletion peptides had no demonstrable effect at concentrations of 100-200 microM. Peptides 1-25 and 1-27 (C' fragment) inhibited the calmodulin-dependent activity of phosphodiesterase, but higher concentrations were required than of beta-endorphin. Studies using combined amino- and carboxy-terminal deletion peptides demonstrate that peptide 14-25 was the shortest peptide examined that was capable of inhibiting calmodulin stimulation of phosphodiesterase activity under the conditions used. There was no evidence to indicate that the amino-terminal region comprising residues 1-13 of beta-endorphin contributes to the measured inhibition of calmodulin-stimulated enzymic activity. The circular dichroic spectra of calmodulin, beta-endorphin, and mixtures of the two were obtained, and the ellipticity of the peptide-protein mixtures at 221 nm exceeded that expected by assuming simple additivity. This finding is consistent with a direct interaction of beta-endorphin with calmodulin which seems to lead to enhanced helicity of one or both components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The brain neuromodulator histamine induces antinociception when administered directly into the rodent CNS. However, several compounds derived from H2 and H3 antagonists also produce antinociception after central administration. Pharmacological studies have shown that a prototype of these agents, improgan, induces analgesia that is not mediated by actions on known histamine receptors. Presently, the antinociceptive properties of a compound that chemically resembles both improgan and histamine were investigated in rats. Intraventricular (i.v.t.) administration of impentamine (4-imidazolylpentylamine) induced reversible, near-maximal antinociception on the hot plate and tail flick tests (15 microg, 98 nmol). The dose-response function was extremely steep, however, since other doses showed either no effect or behavioral toxicity. On the tail flick test, impentamine antinociception was resistant to antagonism by blockers of H1, H2, or H3 receptors, similar to characteristics previously found for improgan. In contrast, histamine antinociception was highly attenuated by H1 and H2 antagonists. These findings suggest that: 1) the histamine congener impentamine may induce antinociception by a mechanism similar to that produced by improgan, and 2) additional histamine receptors may be discovered that are linked to pain-attenuating processes.  相似文献   

16.
Substance P was found to be a potent, long-lasting analgesic in the tail flick test in rats following intracerebral administration, via chronically indwelling cannulae, into the midbrain periaqueductal gray. Substance P was approximately five times as potent as morphine sulfate on a weight basis; however, it was 25 times more potent than morphine on a molar basis. The analgesic activity produced by Substance P was significantly antagonized by pretreatment with naloxone, a narcotic antagonist. The analgesic activity of Substance P exhibited a rapid onset (1 min.), peaked by 3 minutes post infusion and its duration of activity was between 30 and 60 minutes. Thus, Substance P may be yet another endogenous analgesic peptide.  相似文献   

17.
The complete amino acid sequence of human beta-endorphin was obtained by automatic sequencing of a sulfonyl isothiocyanate derivative of this peptide, in combination with peptide mapping of a tryptic digest of the native molecule. It was found to be identical with the carboxy-terminal portion 61-91 of human beta-lipotropin (beta-LPH). The morphine-like activity of beta-endorphin is comparable both in the mouse vas deferens bioassay and in the opiate receptor binding assay. However, beta-LPH is not active up to concentrations of 10(-6) M.  相似文献   

18.
Des-acetylated salmon endorphin and turkey beta-endorphin have been synthesized by the solid-phase method. Relative opiate activities in a radioreceptor binding assay are: human beta-endorphin, 100; des-acetylated salmon endorphin, 169; turkey beta-endorphin, 94. Thus, non-mammalian endorphins can show high activity in a mammalian assay system.  相似文献   

19.
Methionine- and leucine-enkephalin were found to be potent, short-acting analgesics in the tail flick test in rats following intracerebral administration, via chronically indwelling cannulae, into the midbrain periaqueductal gray. Morphine sulfate was approximately 4 times as potent as the enkephalins when infused into this same brain site. The analgesia produced by the enkephalins and by morphine was inhibited by pretreatment with naloxone.  相似文献   

20.
Biological activity of synthetic beta-endorphin (beta-EP) analogs containing dermorphin or dynorphin-A-(1-13) structure has been investigated using the guinea pig ileum and the vas deferens of the mouse, rat and rabbit. Replacement of NH2-terminal 1-7 segment of camel beta-EP [beta c-EP-(1-7)] with dermorphin caused a great increase in opiate potency of the analog. [Dermorphin (1-7)]-beta c-EP was 120 times more potent than beta c-EP in the guinea pig ileum assay, 49 times more potent in the mouse vas deferens assay; and only 4 times more potent in the rat vas deferens assay. Replacement of NH2-terminal 1-13 segment of human beta-EP [beta h-EP-(1-13)] with dynorphin-A-(1-13) caused an increase in opiate potency in both the guinea pig ileum and rabbit vas deferens assays, a complete loss of potency in the rat vas deferens assay, and no change in the mouse vas deferens assay. In comparison with dynorphin-A-(1-13), the hybrid peptide was less potent in the guinea pig ileum assay as well as in mouse and rabbit vas deferens assay. It is suggested that beta c-EP-(8-31) facilitates the dermorphin moiety to act on opiate mu and delta receptors but not on the epsilon receptor, while beta h-(14-31) reduces the action of dynorphin on mu, delta and kappa receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号