首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Very high gravity wheat mashes containing 300 g or more sugares per liter were prepared by enzymatic hydrolysis of starch and fermented with a commercial preparation of active dry yeast. The active dry yeast used in this study was a blend of several strains ofSaccharomyces cerevisiae. The fermentation was carried out at 20°C at different pitching rates (inoculation levels) with and without the addition of yeast extract as nutrient supplement. At a pitching rate of 76 million cells per g of mash an ethanol yield of 20.4% (v/v) was obtained. To achieve this yeast extract must be added to the wheat mash as nutrient supplement. When the pitching rate was raised to 750 million cells per g of mash, the ethanol yield increased to 21.5% (v/v) and no nutrient supplement was required. The efficiency of conversion of sugar to ethanol was 97.6% at the highest pitching rate. This declined slightly with decreasing pitching rate. A high proportion of yeast cells lost viability at high pitching rates. It is suggested that nutrients released from yeast cells that lost viability and lysed, contributed to the high yield of ethanol in the absence of any added nutrients.  相似文献   

2.
The effect of extracted phenolics or spent bran added to decorticated red sorghum kernels during fuel ethanol production was studied and compared to maize and whole red and white sorghums. After liquefaction, free amino nitrogen ranged from 65 to 101 mg/l and at the end of saccharification all mashes had approx. 80 g glucose and 2–5 g maltose/100 g meal (dry basis). Saccharified worts were fermented giving 50–90 ml ethanol/l. The lowest fermentation efficiency (76%) was obtained in the white sorghum. Ethanol yields indicate that sorghum bran or its associated phenolics did not significantly affect the efficiency of the sequential steps involved in ethanol production. Red sorghum is a good alternative to maize to produce ethanol and the difference regarding white sorghum and maize was mainly due to endosperm protein structure and composition.  相似文献   

3.
Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16?% at pretreatment and 8?% at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2?g/100?g SB; 210?°C; 10?min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and β-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6?g/l or 84.7?% of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3?% and 89.6?%, respectively.  相似文献   

4.
《Biomass》1987,12(1):57-70
The high polyphenol content of birdproff grain sorghum has been associated with impaired nutritional quality of the grain and with reduced brewing value of birdproof grain sorghum malt due to enzyme inhibition. In this investigation, high polyphenol grain sorghum was evaluated as a feedstock for fermentation ethanol production using NaOH pretreatment to inactivate the polyphenolic compounds prior to hydrolysis with commercial amylases. The polyphenolic inhibition of starch hydrolysis was minimal at a grain sorghum slurry concentration of 20% dry solids, but became pronounced at slurry concentrations of 28% and higher. At these high slurry concentrations the liquefaction and subsequent saccharification and fermentation were markedly improved by alkaline pretreatment. The highest ethanol concentration (12·3%, vol/vol), coupled with the best starch conversion efficiency to ethanol (83·5%), was obtained with a 28% grain sorghum slurry using a partial simultaneous saccharification and fermentation procedure. The residual fermented solids had a crude protein content of 45·4%. Tannic acid decreased yeast cell viability in synthetic media, but had no effect on the hydrolysis or fermentation of grain sorghum starch.  相似文献   

5.
The batch production of fuel grade ethanol and distillers' wet grain (wet solids) in a farm-scale process (1240-15,580 L/batch) is described. The employs yeast fermentation of amylase-treated corn mash and a two-stage distillation. Primary emphasis in this study was on the cooking, fermentation, and centrifugation steps. Without recycling, fermentation of the mash yield beers with 10.0-10.5% ethanol. Recycling of stillage supernatant at full, 75, or 50% strengths produced enriched mashes that after 48-h fermentation yielded beers with 5-;14% more ethanol. Recycling twice with full-strength supernatant at pH 7.0 increased the ethanol yield in the final beer 16.5%; however, the time to complete the final fermentation was extended form 48 to 72 h and salt buildup occurred. By recycling at pH 5.4, it was possible to avoid rapids salt buildup and obtain beers with 10.3-10.5% ethanol. Recycling resulted in increased levels of glucose, starch, crude protein, and fat in the beer and a reduced moisture content while the wet solids showed an increased starch content. Centrifugation after cooking or fermentation yield in the subsequently produced beer. Fermentation of a volume-resorted mash supernatant gave a beer with only 9.25% ethanol. Mash wet solids varied somewhat chemically from beer and stillage solids. An economic and energy balance analysis of various modes of plant operation are provided and plant considerations are suggested.  相似文献   

6.
The simultaneous saccharification and fermentation was used to produce ethanol from raw starch of damaged quality wheat and sorghum grains by utilising crude amylase preparation from B. subtilis VB2 and an amylolytic yeast strain S. cerevisiae VSJ4. Various concentrations of damaged wheat and sorghum starch from 10% to 30%W/V were used and 25% was found to be optimum for damaged wheat and sorghum starch yielding 4.40%V/V and 3.50%V/V ethanol respectively. Whereas 25% raw starch of fine quality wheat and sorghum grains gave an yield of 5.60%V/V and 5.00%V/V respectively. The process was carried out at 35v°C, 5.8 pH and 200 rpm for 4 days.  相似文献   

7.
Hydrolysis and fermentation conditions for production of ethanol from very high-gravity cassava mash by Saccharomyces cerevisiae during simultaneous saccharification and fermentation (SSF) processing were optimized using a statistical methodology. During the first part of the study, Placket–Burman design (PBD) was used to study 19 factors that could potentially influence ethanol production. Gravity, particle size, initial pH, and fermentation temperature were identified as key factors that significantly increased final ethanol concentration. The main and interaction effects of these factors were subsequently evaluated based on a quadratic equation generated by central composite design (CCD) using response-surface methodology (RSM). Under the optimized very high-gravity conditions, the final ethanol concentration obtained from experiment increased from 8.21% (wt.%) to 15.03% (wt.%) and was in good agreement with model prediction. By employing two other commercial Saccharomyces strains, similar results were obtained under the same optimized condition. Therefore, we conclude that final ethanol concentration, ethanol productivity (V P/max), glucose utilization (Y G/s, Y P/s), and fermentation efficiency (η f) were enhanced or maintained under the optimized condition of 40% gravity, 390 μm particle size, initial pH 5.5, and 27°C fermentation temperature.  相似文献   

8.
The integration of enzyme saccharification with fermentation reduces the total time required to produce acceptable levels of ethanol. The use of a more concentrated mash (84.8 L total mash/bu corn) results in a 26.6% increase in ethanol productivity and a 21.4% increase in beer ethanol concentration compared to standard corn mash (96.6 L total mash/bu corn). Thus, the energy requirement and cost of distillation can be reduced. The addition of waste cola syrup at 30 g invert sugar/L total mash gave a 19% increase in ethanol concentration in the final beer and required only a small increase in the period of fermentation. Surplus laundry starch can replace 30-50% of the weight of corn normally used in fermentation without influencing ethanol production or the time required for fermentation. Both of these waste materials reduce the unit cost of ethanol and demonstrate the value of such substances in ethanol systems.  相似文献   

9.
A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0–5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R 2 = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41–47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (μ max) were 0.42 and 0.32 h−1 for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production. Names are necessary to report factually on available data; however, the U.S. Department of Agriculture neither guarantees nor warrants the standard of the product, and use of the name by the U.S. Department of Agriculture implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

10.
In this study, the saccharification and fermentation of the by-product of starch manufacture, potato pulp, were investigated. Analytic results of the components show that the potato pulp contains large amounts of starch, cellulose, and pectin. A commercial enzyme from Acremonium cellulolyticus was found to be highly efficient in the saccharification of potato pulp, since it exhibited high pectinase, α-amylase, and cellulase activities. Hydrothermal treatment of the potato pulp increased the saccharification rate, with a corresponding glucose concentration of 114 g/L and yield of 68% compared to the glucose concentration of 47 g/L and yield of 28% in the untreated case. The hydrolyzate could be used as both nitrogen and carbon sources for ethanol fermentation, showing that bioconversion of potato pulp to ethanol is feasible.  相似文献   

11.
Corn cob hydrolysates, with xylose as the dominant sugar, were fermented to ethanol by recombinant Escherichia coli KO11. When inoculum was grown on LB medium containing glucose, fermentation of the hydrolysate was completed in 163 h and ethanol yield was 0.50 g ethanol/g sugar. When inoculum was grown on xylose, ethanol yield dropped, but fermentation was faster (113 h). Hydrolysate containing 72.0 g/l xylose and supplemented with 20.0 g/l rice bran was readily fermented, producing 36.0 g/l ethanol within 70 h. Maximum ethanol concentrations were not higher for fermentations using higher cellular concentration inocula. A simulation of an industrial process integrating pentose fermentation by E. coli and hexose fermentation by yeast was carried out. At the first step, E. coli fermented the hydrolysate containing 85.0 g/l xylose, producing 40.0 g/l ethanol in 94 h. Baker's yeast and sucrose (150.0 g/l) were then added to the spent fermentation broth. After 8 h of yeast fermentation, the ethanol concentration reached 104.0 g/l. This two-stage fermentation can render the bioconversion of lignocellulose to ethanol more attractive due to increased final alcohol concentration. Journal of Industrial Microbiology & Biotechnology (2002) 29, 124–128 doi:10.1038/sj.jim.7000287 Received 20 February 2002/ Accepted in revised form 04 June 2002  相似文献   

12.
One of the challenges with using sweet sorghum as an energy crop is that although fermentation of the juice to ethanol does not require enzymes, the juice can easily spoil. One strategy to avoid spoilage is to harvest the juice in the field, place it into a tanker for transport, and add the yeast immediately to initiate the fermentation process to begin during transport. Hence, it is also important to understand how the fermentation process is influenced by pH, temperature, and dissolved oxygen, since these parameters would not be “controlled” during transport. A full factorial design was applied to examine and optimize yield efficiency of ethanol production for the fermentation of sweet sorghum juice. Bioethanol yield efficiency was modeled using a linear equation. Under optimal pH (5.5), temperature (28 °C), and dissolved oxygen (0%) conditions, a maximum theoretical yield efficiency of 0.75 was achieved for bioethanol produced from M81E variety of sweet sorghum.  相似文献   

13.
Solid Substrate Fermentation system (SSF) was used to produce ethanol from various starchy substrates like sweet sorghum, sweet potato, wheat flour, rice starch, soluble starch and potato starch using thermotolerant yeast isolate (VS3) by simultaneous saccharification and fermentation process. Alcohol produced was estimated by gas chromatography after an incubation time of 96 hrs at 37v°C and 42v°C. More ethanol was produced from rice starch and sweet sorghum. The maximum amount of ethanol produced from these substrates using VS3 was 10 g/100 g and 3.5 g/100 g substrate (rice starch) and 8.2 g and 7.5 g/100 g substrate (sweet sorghum) at 37v°C and 42v°C respectively.  相似文献   

14.
The effects of lactic and acetic acids on ethanol production by Saccharomyces cerevisiae in corn mash, as influenced by pH and dissolved solids concentration, were examined. The lactic and acetic acid concentrations utilized were 0, 0.5, 1.0, 2.0, 3.0 and 4.0% w/v, and 0, 0.1, 0.2, 0.4, 0.8 and 1.6% w/v, respectively. Corn mashes (20, 25 and 30% dry solids) were adjusted to the following pH levels after lactic or acetic acid addition: 4.0, 4.5, 5.0 or 5.5 prior to yeast inoculation. Lactic acid did not completely inhibit ethanol production by the yeast. However, lactic acid at 4% w/v decreased (P<0.05) final ethanol concentration in all mashes at all pH levels. In 30% solids mash set at pH ≤5, lactic acid at 3% w/v reduced (P<0.05) ethanol production. In contrast, inhibition by acetic acid increased as the concentration of solids in the mash increased and the pH of the medium declined. Ethanol production was completely inhibited in all mashes set at pH 4 in the presence of acetic acid at concentrations ≥0.8% w/v. In 30% solids mash set at pH 4, final ethanol levels decreased (P<0.01) with only 0.1% w/v acetic acid. These results suggest that the inhibitory effects of lactic acid and acetic acid on ethanol production in corn mash fermentation when set at a pH of 5.0–5.5 are not as great as that reported thus far using laboratory media.  相似文献   

15.
The fungal species ofRhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30°C was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%–85.5% associated with 1.5–2.0 g/L fungal biomass produced in 36 h of fermentation.  相似文献   

16.
Summary The growing demand for high quality products and the immense export potential that cacha?a represents, demonstrated especially during the past few years, have clearly indicated the necessity of establishing well-defined standards of quality, as well as effective means of controlling the process of production of this beverage. The objective of this study was the selection of S. cerevisiae yeast strains and the investigation of their influence on the kinetic parameters of fermentation. Ninety strains of S. cerevisiae isolated from distilleries of the state of Minas Gerais were evaluated with respect to the following parameters: flocculation capacity, production of H2S and kinetic parameters of fermentation. The UFMGA 905 strain was used as a reference because it presented desirable characteristics for the production of cacha?a. Five strains presented high specific sedimentation velocities (SSV), indicating a high flocculation capacity, and two did not produce H2S. The strains presented significant statistical differences for fermentation parameters: yield of ethanol; efficiency of substrate conversion to ethanol; ratio of substrate conversion to ethanol (Y p/s), to cells (Y x/s), to organic acids (Y ac/s), and to glycerol (Y g/s); and productivity. In general, the strains presented a good fermentative potential, with ethanol yields varying from 74.7 to 82.1% and an efficiency of 76.1–84.4%. All strains presented high productivities (4.6–6.6 g l−1 h−1), indicating that this parameter can be used in the selection of strains for the production of cacha?a.  相似文献   

17.
《Biomass》1989,18(1):43-57
In an attempt to reduce the costs associated with fuel ethanol production from grain, the authors used sweet sorghum juice as a partial or complete replacement for tap-water in mash preparation and fermentation. This juice, which was an unutilized by-product of sweet sorghum silage preservation by the Ag-Bag method, contained 6·5–7·6% (wt/wt) reducing sugar and produced up to 3·51% (v/v) ethanol beers after fermentation. Varying amounts of this juice were mixed with water and corn or wheat, either before or after liquefaction (front-end or back-end loading, respectively). When over 60% juice replacement was used in front-end loading trials, salt buildup, due to required pH adjustments during cooking, inhibited yeast metabolism and thereby reduced yields. This inhibition was not observed during back-end loading trials since acid and base usage during cooking were reduced. However, in all trials we noted yeast inhibition by some factor(s) present in juice from sweet sorghum variety NK 8368. This inhibition was not observed with variety NK 405. If sweet sorghum juice is used to replace 40% of the water and either 12·5% of the corn or 12% of the wheat in mash preparation, production costs can be reduced by $0.032/liter ($0.12/US gallon) for corn and $0.040/liter ($0.15/US gallon) for wheat.  相似文献   

18.
温度对超高浓度酒精生料发酵体系的影响   总被引:4,自引:0,他引:4  
通过对超高底物浓度生料发酵中温度的影响研究发现,采用温度梯度的方法可大幅提高酵母的生产效率。以高粱为例,采用35%绝对干物浓度,在新型生料水解酶的配合下,通过合适的逐级降温培养方式,使用普通酒精干酵母,在90h内发酵醪液酒精浓度可达20%(V/V)以上。  相似文献   

19.
A study of the kinetics and performance of solvent-yielding batch fermentation of individual sugars and their mixture derived from enzymic hydrolysis of sago starch byClostridium acetobutylicum showed that the use of 30 g/L gelatinized sago starch as the sole carbon source produced 11.2 g/L total solvent,i.e. 1.5–2 times more than with pure maltose or glucose used as carbon sources. Enzymic pretreatment of gelatinized sago starch yielding maltose and glucose hydrolyzates prior to the fermentation did not improve solvent production as compared to direct fermentation of gelatinized sago starch. The solvent yield of direct gelatinized sago starch fermentation depended on the activity and stability of amylolytic enzymes produced during the fermentation. The pH optima for α-amylase and glucoamylase were found to be at 5.3 and 4.0–4.4, respectively. α-Amylase showed a broad pH stability profile, retaining more than 80% of its maximum activity at pH 3.0–8.0 after a 1-d incubation at 37°C. SinceC. acetobutylicum α-amylase has a high activity and stability at low pH, this strain can potentially be employed in a one-step direct solvent-yielding fermentation of sago starch. However, theC. acetobutylicum glucoamylase was only stable at pH 4–5, maintaining more than 90% of its maximum activity after a 1-d incubation at 37°C.  相似文献   

20.
The application of the radiopasteurization method to fermentation media consisting mainly of molasses was investigated. γ-Irradiation was found to have an excellent pasteurization effect on the fermentation media and at the same time to bring about an increase in the fermentation rate and yield of ethanol. Percent survivals in molasses decreased to ca. 70% by heating at 80°C for 30 min, to ca. 10% by irradiation with 3.0 × 105 rad and to ca. 1% by 6.0 × 105 rad. Irradiated mash was suitable for the medium of the “starter”, since the rate and the degree of the growth of Saccharomyces cerevisiae in irradiated mash did not differ from those of the growth in heat-pasteurized mash.

In the case of the molasses mash supplemented with nitrogen sources, the fermentation rate and yield of ethanol in irradiated mash were larger than those in heated mash. Besides, in the absence of nitrogen sources a 14% difference in fermentation yield was seen between the mash irradiated with 3.0 × 105 rad and the mash heated at 80°C. With the doses ranging from 1.0 × 105 to 9.5 × 105 rad, concentrations of total sugar and direct reducing sugar, pH, and optical density of molasses were little affected by irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号