首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two major endoproteinases were purified from senescing primary barley leaves. The major enzyme (EP1) appeared to be a thiol proteinase and accounted for about 85% of the total proteolytic activity measured in vitro. This proteinase was purified 5,800-fold and had a molecular weight of 28,300. It was highly unstable in the absence of dithiothreitol or at a pH greater than 7.5. Leupeptin, at a concentration of 10 micromolar, inhibited this enzyme 100%. A second proteinase (EP2) was purified approximately 50-fold and had a molecular weight of 67,000. It was inhibited 20% by 1 millimolar dithiothreitol and 50% by 1 millimolar phenylmethyl sulfonylfluoride. EP2 contributed about 15% of the total proteolytic activity measured in vitro. Both proteinases hydrolyzed a variety of artificial and protein substrates, and both had pH optima of 5.5 to 5.7 when either azocasein or [14C]ribulose-1,5-bisphosphate carboxylase ([14C]RuBPCase) was the substrate. The thiol endoproteinase hydrolyzed azocasein linearly but hydrolyzed [14C]RuBPCase biphasically. A third endoproteinase (EP3), not detected by standard proteolytic assays, was observed when [14C]RuBPCase was the substrate.  相似文献   

2.
Glycerate kinase (EC 2.7.1.31) from maize (Zea mays) leaves was shown to be regulated by light/dark transition. The enzyme more than doubled in activity after either the leaves or isolated mesophyll chloroplasts were illuminated with white light for 10 minutes. Rate of inactivation in the dark was faster in leaves than in the isolated chloroplast fraction. The stimulating effect of light could be mimicked in crude preparations by addition of 10 or 50 millimolar dithiothreitol or 100 millimolar 2-mercaptoethanol. The thiol treatment resulted in 8- to 10-fold activation of glycerate kinase, with the highest rates in the range of 27 to 30 micromoles per mg chlorophyll per hour. Activation was not accompanied by any changes in the apparent Mr value of glycerate kinase as determined by gel filtration (Mr = 47,000). In contrast to maize glycerate kinase, the enzyme from spinach was not affected by either light or thiol exposure.

Partially purified maize glycerate kinase was activated up to 3-fold upon incubation with a mixture of spinach thioredoxins m and f and 5 millimolar dithiothreitol. The thioredoxin and dithiothreitol-treated glycerate kinase could be further stimulated by addition of 2.5 millimolar ATP. The results suggest that glycerate kinase from maize leaves is capable of photoactivation by the ferredoxin/thioredoxin system. The synergistic effect of ATP and thioredoxins in activation of the enzyme supports the earlier expressed view that the ferredoxin/thioredoxin system functions jointly with effector metabolites in light-mediated regulation during photosynthesis.

  相似文献   

3.
The primary leaves from corn seedlings grown for 6 days were harvested, frozen with liquid N2 and extracted in a Tris buffer (pH 8.5, 250 millimolar) containing 1 millimolar dithiothreitol, 10 millimolar cysteine, 1 millimolar EDTA, 20 micromolar flavin adenine dinucleotide and 10% (v/v) glycerol. Nitrate reductase (NR) in the crude extract was stable for several days at 0°C and for several months at −80°C. The enzyme was purified using (NH4)2SO4 fractionation, brushite-hydroxyl-apatite chromatography and blue-sepharose affinity chromatography. The enzyme was eluted from the blue-sepharose column with a linear gradient of NADH (0-100 micromolar) or with 0.3 molar KNO3. About 10% of the original activity was recovered with NADH (NADH-NR). It had a specific activity of about 60 to 70 units (micromoles NO2 per minute per milligram protein). A sequential elution with NADH followed by KNO3 (0.3 molar) or KCl (0.3 molar) yielded 2 peaks. Rechromatography of each peak gave two peaks again. These results indicate that we are dealing with two forms of the same enzyme rather than two different NR proteins. The two NRs had different molecular weights as judged by chromatography on Toyopearl. The NADH-NR was more sensitive than the NO3-NR to antibody prepared against barley leaf NR. In Ouchterlony assays a single precipitin line, with completely fused boundaries, was observed.  相似文献   

4.
Glycine decarboxylase has been successfully solubilized from pea (Pisum sativum) leaf mitochondria as an acetone powder. The enzyme was dependent on added dithiothreitol and pyridoxal phosphate for maximal activity. The enzyme preparation could catalyze the exchange of CO2 into the carboxyl carbon of glycine, the reverse of the glycine decarboxylase reaction by converting serine, NH4+, and CO2 into glycine, and 14CO2 release from [1-14C]glycine. The half-maximal concentrations for the glycine-bicarbonate exchange reaction were 1.7 millimolar glycine, 16 millimolar NaH14CO2, and 0.006 millimolar pyridoxal phosphate. The enzyme (glycine-bicarbonate exchange reaction) was active in the assay conditions for 1 hour and could be stored for over 1 month. The enzymic mechanism appeared similar to that reported for the enzyme from animals and bacteria but some quantitative differences were noted. These included the tenacity of binding to the mitochondrial membrane, the concentration of pyridoxal phosphate needed for maximum activity, the requirement for dithiothreitol for maximum activity, and the total amount of activity present. Now that this enzyme has been solubilized, a more detailed understanding of this important step in photorespiration should be possible.  相似文献   

5.
Conditions for extraction and assay of ribulose-1,5-bisphophate carboxylase present in an in vivo active form (initial activity) and an inactive form able to be activated by Mg2+ and CO2 (total activity) were examined in leaves of soybean, Glycine max (L.) Merr. cv Will. Total activity was highest after extracts had preincubated in NaHCO3 (5 millimolar saturating) and Mg2+ (5 millimolar optimal) for 5 minutes at 25°C or 30 minutes at 0°C before assay. Initial activity was about 70% of total activity. Kact (Mg2+) and Kact (CO2) were approximately 0.3 millimolar and 36 micromolar, respectively. The carry-over of endogenous Mg2+ in the leaf extract was sufficient to support considerable catalytic activity. While Mg2+ was essential for both activation and catalysis, Mg2+ levels greater than 5 millimolar were increasingly inhibitory of catalysis. Similar inhibition by high Mg2+ was also observed in filtered, centrifuged, or desalted extracts and partially purified enzyme. Activities did not change upon storage of leaves for up to 4 hours in ice water or liquid nitrogen before homogenization, but were about 20% higher in the latter. Activities were also stable for up to 2 hours in leaf extracts stored at 0°C. Initial activity quickly deactivated at 25°C in the absence of high CO2. Total activity slowly declined irreversibly upon storage of leaf homogenate at 25°C.  相似文献   

6.
Most C4 species are chilling sensitive and certain enzymes like pyruvate,Pi dikinase of the C4 pathway are also cold labile. The ability of cations and compatible solutes to protect maize (Zea mays) dikinase against cold lability was examined. The enzyme in desalted extracts at pH 8 from preilluminated leaves could be protected against cold lability (at 0°C) by the divalent cations Mn2+, Mg2+, and Ca2+. There was substantial protection by sulfate based salts but little protection by chloride based salts of potassium or ammonium (concentration 250 millimolar). The degree of protection against cold lability under limiting MgCl2 (5 millimolar) was pH sensitive (maximum protection at pH 8), but independent of ionic strength (up to 250 millimolar by addition of KCl). In catalysis Mg2+ is required and Mn2+ could not substitute as a cofactor. Several compatible solutes reduced or prevented the cold inactivation of dikinase (in desalted extracts and the partially purified enzyme), including glycerol, proline, glycinebetaine and trimethylamine-N-oxide (TMAO). TMAO and Mg2+ had an additive effect in protecting dikinase against cold inactivation. TMAO could largely substitute for the divalent cation and addition of TMAO during cold treatment prevented further inactivation. Cold inactivation was partially reversed by incubation at room temperature; with addition of TMAO reversal was complete. The temperature dependence of inactivation at pH 8 and 3 millimolar MgCl2 was evaluated by incubation at 2 to 17°C for 45 minutes, followed by assay at room temperature. At preincubation temperatures below 11°C there was a progressive inactivation which could be prevented by TMAO (450 millimolar). The results are discussed relative to possible effects of the solutes on the quaternary structure of this enzyme, which is known to dissociate at low temperatures.  相似文献   

7.
A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60°C, in the presence of 1.2 millimolar MnCl2, 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The Km, of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of Vappmax of these enzymes was 1613 and 68 nanomoles of CO2 produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed.  相似文献   

8.
The N-acetylglucosamine (GlcNAc) transferase that catalyzes the formation of dolichyl-pyrophosphoryl-GlcNAc-GlcNAc from UDP-GlcNAc and dolichyl-pyrophosphoryl-GlcNAc was solubilized from the microsomal enzyme fraction of mung beans with 1.5% Triton X-100, and was purified 140-fold on columns of DE-52 and hydroxylapatite. The partially purified enzyme preparation was quite stable when stored in 20% glycerol and 0.5 millimolar dithiothreitol, and was free of GlcNAc-1-P transferase and mannosyl transferases. The GlcNAc transferase had a sharp pH optimum of 7.4 to 7.6 and the Km for dolichyl-pyrophosphoryl-GlcNAc was 2.2 micromolar and that for UDP-GlcNAc, 0.25 micromolar. The enzyme showed a strong requirement for the detergent Triton X-100 and was stimulated somewhat by the divalent cation Mg2+. Uridine nucleotides, especially UDP and UDP-glucose inhibited the enzyme as did the antibiotic, diumycin. However, a variety of other antibiotics including tunicamycin were without effect. The product of the reaction was characterized as dolichyl-pyrophosphoryl-GlcNAc-GlcNAc.  相似文献   

9.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

10.
A dihydroxyacetone phosphate (DHAP) reductase has been isolated in 50% yield from Dunaliella tertiolecta by rapid chromatography on diethylaminoethyl cellulose. The activity was located in the chloroplasts. The enzyme was cold labile, but if stored with 2 molar glycerol, most of the activity was restored at 30°C after 20 minutes. The spinach (Spinacia oleracea L.) reductase isoforms were not activated by heat treatment. Whereas the spinach chloroplast DHAP reductase isoform was stimulated by leaf thioredoxin, the enzyme from Dunaliella was stimulated by reduced Escherichia coli thioredoxin. The reductase from Dunaliella was insensitive to surfactants, whereas the higher plant reductases were completely inhibited by traces of detergents. The partially purified, cold-inactivated reductase from Dunaliella was reactivated and stimulated by 25 millimolar Mg2+ or by 250 millimolar salts, such as NaCl or KCl, which inhibited the spinach chloroplast enzyme. Phosphate at 3 to 10 millimolar severely inhibited the algal enzyme, whereas phosphate stimulated the isoform in spinach chloroplasts. Phosphate inhibition of the algal reductase was partially reversed by the addition of NaCl or MgCl2 and totally by both. In the presence of 10 millimolar phosphate, 25 millimolar MgCl2, and 100 millimolar NaCl, reduced thioredoxin causes a further twofold stimulation of the algal enzyme. The Dunaliella reductase utilized either NADH or NADPH with the same pH maximum at about 7.0. The apparent Km (NADH) was 74 micromolar and Km (NADPH) was 81 micromolar. Apparent Vmax was 1100 μmoles DHAP reduced per hour per milligram chlorophyll for NADH, but due to NADH inhibition highest measured values were 350 to 400. The DHAP reductase from spinach chloroplasts exhibited little activity with NADPH above pH 7.0. Thus, the spinach chloroplast enzyme appears to use NADH in vivo, whereas the chloroplast enzyme from Dunaliella or the cytosolic isozyme from spinach may utilize either nucleotide.  相似文献   

11.
A deoxycytidine deaminase that was extremely thermostable in the presence of dithiothreitol was found in a mesophilic bacterium isolated from soil. The bacterium was classified as a Nocardioides sp. The enzyme was purified to a homogeneous protein by treatment at 100°C, ammonium sulfate precipitation, and chromatography on DEAE-Toyopearl, hydroxyapatite, and then Sephacryl S-100. Twenty micrograms of the pure enzyme was obtained from 811 mg of the starting crude protein. After treatment at 50°C for 15 min in the absence of dithiothreitol, enzyme activity was 44% of the starting activity; after treatment at 100°C for 2 h in the presence of 50 mM dithiothreitol, activity was 56% of the starting activity. Dithiothreitol greatly stabilized the enzyme. Activity was maximum at 99°C. The Km values for deoxycytidine, cytidine, and methyl-deoxycytidine were 55.2, 140, and 130 μM, respectively. The molecular mass was estimated to be 52 kDa by gel permeation chromatography. The enzyme molecule was dissociated into two subunits each of 18 kDa subunit when reduced with mercaptoethanol.  相似文献   

12.
A rapid method is described for the preparation of up to 500 milligrams of pure ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase) from 250 grams of field-grown soybean leaves. Leaves were extracted in 20 millimolar phosphate (pH 6.9) at 4°C, containing 4% (w/v) polyvinylpolypyrrolidone, 10 micromolar leupeptin, 1 millimolar phenylmethyl sulfonylfluoride, 1 millimolar diethyldithiocarbamate, 5 millimolar MgCl2, 1 millimolar dithiothreitol, 0.2 millimolar ethylene-diaminetetraacetic acid, 50 millimolar 2-mercaptoethanol. The extract was incubated in the presence of 5 millimolar ATP at 58°C for 9 minutes, then centrifuged and concentrated. Sucrose gradient centrifugation into 8 to 28% (w/v) sucrose on a vertical rotor for 2.5 hours yielded pure enzyme with a specific activity of 1.1 to 1.3 micromoles per minute per milligram protein at pH 8.0, 25°C. Soybean plants of the same line grown (at 400 microeinsteins per square meter per second) in growth chambers yielded enzyme with a specific activity of 0.6 to 0.7 micromoles per minute per milligram protein. During prolonged purification procedures a proteolytic degradation of RuBP carboxylase caused complete loss of catalytic activity. Without destroying the quaternary structure of the enzyme, a 3 kilodalton peptide was removed from all large subunits before further breakdown (removal of a 5 kilodalton peptide) occurred. Catalytic competence of the enzyme was abolished with the loss of the first (3 kilodalton) peptide.  相似文献   

13.
Esen A 《Plant physiology》1992,98(1):174-182
Maize (Zea mays L.) β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) was extracted from the coleoptiles of 5- to 6-day-old maize seedlings with 50 millimolar sodium acetate, pH 5.0. The pH of the extract was adjusted to 4.6, and most of the contaminating proteins were cryoprecipitated at 0°C for 24 hours. The pH 4.6 supernatant from cryoprecipitation was further fractionated by chromatography on an Accell CM column using a 4.8 to 6.8 pH gradient of 50 millimolar sodium acetate, which yielded the enzyme in two homogeneous, chromatographically different fractions. Purified enzyme was characterized with respect to subunit molecular weight, isoelectric point, amino acid composition, NH2-terminal amino acid sequence, pH and temperature optima, thermostability, and activity and stability in the presence of selected reducing agents, metal ions, and alkylating agents. The purified enzyme has an estimated subunit molecular mass of 60 kilodaltons, isoelectric point at pH 5.2, and pH and temperature optima at 5.8 and 50°C, respectively. The amino acid composition data indicate that the enzyme is rich in Glx and Asx, the sum of which approaches 25%. The sequence of the first 20 amino acids in the N-terminal region was H2N-Ser-Ala-Arg-Val-Gly-Ser-Gln-Asn-Gly-Val-Gln-Met-Leu-Ser-Pro-(Ser?) -Glu-Ile-Pro-Gln, and it shows no significant similarity to other proteins with known sequence. The enzyme is extremely stable at 0 to 4°C up to 1 year but loses activity completely at and above 55°C in 10 minutes. Likewise, the enzyme is stable in the presence of or after treatment with 500 millimolar 2-mercaptoethanol, and it is totally inactivated at 2000 millimolar 2-mercaptoethanol. Such metal ions as Hg2+ and Ag+ reversibly inhibit the enzyme at micromolar concentrations, and inhibition could be completely overcome by adding 2-mercaptoethanol at molar excess of the inhibitory metal ion. The alkylating agents iodoacetic acid and iodoacetamide irreversibly inactivate the enzyme and such inactivation is accelerated in the presence of urea.  相似文献   

14.
Gustine DL 《Plant physiology》1981,68(6):1323-1326
White clover (Trifolium repens L.) callus tissue cultures accumulated the phytoalexin medicarpin after treatment with sulfhydryl reagents. After 24-hour exposures to sulfhydryl reagents, maximum obtainable levels of medicarpin, determined by high performance liquid chromatography analysis, were found with 50 millimolar N-ethyl maleimide, 25 millimolar HgCl2, 2 millimolar p-chloromercuribenzoic acid, and 0.5 millimolar iodoacetamide. Increased medicarpin levels were also observed in callus treated with p-chloromercuribenzene sulfonic acid, but the highest concentration tested (11.8 millimolar) did not produce the maximum response. After sulfhydryl treatment, medicarpin levels were unchanged for 4 to 6 hours, but steadily increased thereafter with maximum accumulation occurring by 48 to 50 hours for p-chloromercuribenzoic acid, p-chloromercuribenzene sulfonic acid, and HgCl2 treated callus. Medicarpin levels did not increase in iodoacetamide-treated callus until 8 hours after sulfhydryl exposure, and medicarpin levels were still increasing linearly after 50 hours. Three other metabolic inhibitors, KCN, NaF, and Na3AsO4, did not exhibit elicitor activity, indicating cell death was not a factor in the response. Pretreatment of callus with 20 millimolar dithiothreitol followed by 40 millimolar N-ethyl maleimide did not produce the phytoalexin response. Preincubation with dithiothreitol also prevented elicitor activity of HgCl2 and p-chloromercuribenzene sulfonic acid. These results suggested that dithiothreitol pretreatment somehow prevented sulfhydryl groups within the cell from reacting with the test compounds. These experiments established that the integrity of sulfhydryl groups is important in regulating phytoalexin accumulation in callus cells.  相似文献   

15.
Regulation of 2-carboxyarabinitol 1-phosphatase   总被引:4,自引:3,他引:1       下载免费PDF全文
The regulation of 2-carboxyarabinitol 1-phosphatase (CA 1-Pase) by phosphorylated effectors was studied with enzyme purified from tobacco (Nicotiana tabacum) leaves. CA 1-Pase activity was most stimulated by fructose 1,6-bisphosphate, exhibiting an A0.5 value of 1.9 millimolar and a 10-fold enhancement of catalysis. With ribulose-1,5-bisphosphate, the A0.5 was 0.6 millimolar, and maximal stimulation of activity was 5.3-fold. Among the monophosphates, 3-phosphoglycerate and phosphoglycolate were more potent positive effectors than glyceraldehyde 3-phosphate, glucose 1-phosphate, glucose 6-phosphate, and dihydroxyacetone phosphate. Stimulation of CA 1-Pase by ribulose-1,5-bisphosphate and fructose 1,6-bisphosphate increased Vmax but did not appreciably alter Km (2-carboxyarabinitol 1-phosphate) values. Inorganic phosphate appeared to inhibit CA 1-Pase noncompetitively with respect to 2-carboxyarabinitol 1-phosphate, exhibiting a Ki of 0.3 millimolar. The results suggest that these positive and negative effectors bind to a regulatory site on CA 1-Pase and may have a physiologial role in the light regulation of this enzyme. Related experiments with CA 1-Pase inactivated by dialysis in the absence of dithiothreitol show that partial reactivation can be achieved in the presence of a range of reducing reagents, including dithiothreitol, cysteine, and reduced glutathione. This could imply an ancillary involvement of sulfhydryl reduction during light activation of CA 1-Pase in vivo. The enzyme was thermally stable up to 35°C, in contrast to ribulose-1,5-bisphosphate carboxylase/oxygenase activase which lost activity above 30°C. The activation energy for CA 1-Pase was calculated to be 56.14 kilojoules per mole.  相似文献   

16.
Dihydroxyacetone phosphate reductase in plants   总被引:5,自引:4,他引:1       下载免费PDF全文
Two forms of dihydroxyacetone phosphate reductase are present in spinach, soybean, pea, and mesophyll cells of corn leaves. An improved homogenizing medium was developed to measure this activity. The enzyme was detectable only after dialysis of the 35 to 70% saturated (NH4)2SO4 fraction and the two forms were separated by chromatography on either DEAE cellulose or Sephacryl S-200. About 80% of the reductase was one form in the chloroplast and the rest was a second form in the cytosol as determined by chromatography and by fractionation of subcellular organelles. The amount of activity detectable in the chloroplast fraction was 10.7 micromoles of dihydroxyacetone phosphate reductase per hour per milligram chlorophyll from spinach leaves and 4.9 from pea leaves. The chloroplast form eluted first from DEAE cellulose and, being smaller, it eluted second from Sephacryl S-200. Activity of the chloroplast form was stimulated 3- to 5-fold by the addition of 1 millimolar dithiothreitol or 50 microgram reduced Escherichia coli thioredoxin or 4 micrograms spinach thioredoxin to the assay mixture. This stimulation was not observed with monothiols. Activity of the cytosolic form was not affected by either reduced thioredoxin or dithiothreitol.  相似文献   

17.
Soll J 《Plant physiology》1988,87(4):898-903
An ATP-dependent protein kinase was partially purified from isolated outer envelope membranes of pea (Pisum sativum L., Progress No. 9) chloroplasts. The purified kinase had a molecular weight of 70 kilodaltons, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was of the cyclic nucleotide and Ca2+, calmodulin-independent type. The purification involved the detergent solubilization of purified outer envelopes by 0.5% cholate and 1% octylglycoside, followed by centrifugation on a linear 6 to 25% sucrose gradient. Active enzyme fractions were further purified by affinity chromatography on histone III-S Sepharose 4B and ion exchange chromatography on diethylaminoethyl cellulose. The protein kinase eluted at 100 millimolar and 50 millimolar NaCl, respectively. The protein kinase was essentially pure as judged by Western blot analysis. The enzyme has a KM of 450 micromolar for ATP and a Vmax of 25 picomoles of 32P incorporated into histone III-S per minute per microgram. Inhibition by ADP is competitive (Ki 150 micromolar).  相似文献   

18.
Invertase plays an important role in the hydrolysis of sucrose in higher plants, especially in the storage organs. In potato (Solanum tuberosum) tubers, and in some other plant tissues, the enzyme seems to be controlled by interaction with an endogenous proteinaceous inhibitor. An acid invertase from potato tubers (variety russet) was purified 1560-fold to electrophoretic homogeneity by consecutive use of concanvalin A-Sepharose 4B affinity chromatography, DEAE-Sephadex A-50-120 chromatography, Sephadex G-150 chromatography, and DEAE-Sephadex A-50-120 chromatography. The enzyme contained 10.9% carbohydrate, had an apparent molecular weight of 60,000 by gel filtration, and was composed of two identical molecular weight subunits (Mr 30,000). The enzyme had a Km for sucrose of 16 millimolar at pH 4.70 and was most stable and had maximum activity around pH 5. The endogenous inhibitor was purified 610-fold to homogeneity by consecutive treatment at pH 1 to 1.5 at 37°C for 1 hour, (NH4)2SO4 fractionation, Sephadex G-100 chromatography, DEAE-Sephadex G-50-120 chromatography, and hydroxylapatite chromatography. The inhibitor appears to be a single polypeptide (Mr 17,000) without glyco groups. The purified inhibitor was stable over the pH range of 2 to 7 when incubated at 37°C for 1 hour.  相似文献   

19.
The enzyme uridine diphosphate N-acetylglucosamine pyrophosphorylase was purified about 330-fold from an extract of baker’s yeast by the treatment with protamine sulfate and column chromatographies on DEAE-cellulose, hydroxylapatite and Sephadex G–150. The purified enzyme was proved to be homogeneous by disc gel electrophoresis. The molecular weight was determined to be approximately 37,000 by gel filtration. The enzyme had an optimum reactivity in the pH range of 7.5-8.5 and was stable at 4°C in potassium phosphate buffer, pH 7.5, containing 0.1 mm dithiothreitol, but was unstable when stored at ?20°C. The addition of dithiothreitol also increased the thermal stability of enzyme. The enzyme was specific for UDP-N-acetylglucosamine as substrate, and none of the other sugar nucleotides could serve as nucleotide substrate. The estimated values of Km were 6.1 × 10?3 m for UDP-N-acetylglucosamine and 5.0 × 10?3 m for inorganic pyrophosphate. The enzyme required some divalent cations for activity. Magnesium ion was the most effective among the cations tested. The enzyme activity was highly stimulated by the addition of dithiothreitol or dithioerythritol.  相似文献   

20.
Two enzymes capable of hydrolyzing fructose-1,6-bisphosphate (FBP) have been isolated from the foliose lichen Peltigera rufescens (Weis) Mudd. These enzymes can be separated using Sephadex G-100 and DEAE Sephacel chromatography. One enzyme has a pH optimum of 6.5, and a substrate affinity of 228 micromolar FBP. This enzyme does not require MgCl2 for activity, and is inhibited by AMP. The second enzyme has a pH optimum of 9.0, with no activity below pH 7.5. This enzyme responds sigmoidally to Mg2+, with half-saturation concentration of 2.0 millimolar MgCl2, and demonstrates hyperbolic kinetics for FBP (Km = 39 micromolar). This enzyme is activated by 20 millimolar dithiothreitol, is inhibited by AMP, but is not affected by fructose-2-6-bisphosphate. It is hypothesized that the latter enzyme is involved in the photosynthetic process, while the former enzyme is a nonspecific acid phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号