首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dye 10-N-nonyl acridine orange (NAO) is used to label cardiolipin domains in mitochondria and bacteria. The present work represents the first study on the binding of NAO with archaebacterial lipid membranes. By combining absorption and fluorescence spectroscopy with fluorescence microscopy studies, we investigated the interaction of the dye with (a) authentic standards of archaebacterial cardiolipins, phospholipids and sulfoglycolipids; (b) isolated membranes; (c) living cells of a square-shaped extremely halophilic archaeon. Absorption and fluorescence spectroscopy data indicate that the interaction of NAO with archaebacterial cardiolipin analogues is similar to that occurring with diacidic phospholipids and sulfoglycolipids, suggesting as molecular determinants for NAO binding to archaebacterial lipids the presence of two acidic residues or a combination of acidic and carbohydrate residues. In agreement with absorption spectroscopy data, fluorescence data indicate that NAO fluorescence in archaeal membranes cannot be exclusively attributed to bisphosphatidylglycerol and, therefore, different from mitochondria and bacteria, the dye cannot be used as a cardiolipin specific probe in archaeal microorganisms.  相似文献   

2.
1. Mitochondria, inner and outer mitochondrial membranes and microsomes were isolated and purified from pig heart. Their lipid composition and protein components were studied. 2. The fatty acid distribution in the main phospholipids seemed specific rather of a given phospholipid and not of one type of membrane. 3. Inner mitochondrial membranes were characterized by a high content in cardiolipin and a very low level of triglycerides together with a high degree of unsaturation and C18 acids. Gel electrophoresis revealed 13 different polypeptide subunits of which 5 were major ranging in molecular weights from 10000 to 215000. 4. In outer mitochondrial membranes, total lipid, phosphatidylcholine, phosphatidylinositol, plasmologen and triglyceride contents were much higher than in inner membranes. Fatty acids of phospholipids were mostly saturated and the polypeptide pattern showed 12 components, of which 4 were major of mol. wt 75000, 60000, 20000 and below 10000. 5. Compared to outer membrane, microsomes exhibited a much higher cholesterol content and markedly different protein profiles. They contained significant amounts of cardiolipin and phosphatidylserine, this latter phospholipid being exclusively located in microsomes. However odd similarities were observed in some lipid components of microsomes and inner mitochondrial membranes, but fatty acids were more saturated in microsomes and electrophoretic profiles of protein components appeared very different and revealed components of high mol. wt.  相似文献   

3.
Annexin V binds to membranes with very high affinity, but the factors responsible remain to be quantitatively elucidated. Analysis by isothermal microcalorimetry and calcium titration under conditions of low membrane occupancy showed that there was a strongly positive entropy change upon binding. For vesicles containing 25% phosphatidylserine at 0.15 m ionic strength, the free energy of binding was -53 kcal/mol protein, whereas the enthalpy of binding was -38 kcal/mol. Addition of 4 m urea decreased the free energy of binding by about 30% without denaturing the protein, suggesting that hydrophobic forces make a significant contribution to binding affinity. This was confirmed by mutagenesis studies that showed that binding affinity was modulated by the hydrophobicity of surface residues that are likely to enter the interfacial region upon protein-membrane binding. The change in free energy was quantitatively consistent with predictions from the Wimley-White scale of interfacial hydrophobicity. In contrast, binding affinity was not increased by making the protein surface more positively charged, nor decreased by making it more negatively charged, ruling out general ionic interactions as major contributors to binding affinity. The affinity of annexin V was the same regardless of the head group present on the anionic phospholipids tested (phosphatidylserine, phosphatidylglycerol, phosphatidylmethanol, and cardiolipin), ruling out specific interactions between the protein and non-phosphate moieties of the head group as a significant contributor to binding affinity. Analysis by fluorescence resonance energy transfer showed that multimers did not form on phosphatidylserine membranes at low occupancy, indicating that annexin-annexin interactions did not contribute to binding affinity. In summary, binding of annexin V to membranes is driven by both enthalpic and entropic forces. Dehydration of hydrophobic regions of the protein surface as they enter the interfacial region makes an important contribution to overall binding affinity, supplementing the role of protein-calcium-phosphate chelates.  相似文献   

4.
Equilibrium binding studies on the interaction between the anthracycline daunomycin and plasma membrane fractions from daunomycin-sensitive and -resistant murine leukemia P-388 cells are presented. Drug binding constants (KS) are 15,000 and 9800 M-1 for plasma membranes from drug-sensitive and drug-resistant cells, respectively. Drug binding to the membranes is not affected by either (i) thermal denaturation of membrane proteins or (ii) proteolytic treatment with trypsin, thus suggesting that the protein components of the membranes do not have a major role in determining the observed drug binding. Also, fluorescence resonance energy transfer between tryptophan and daunomycin in the membranes indicates that interaction of protein components with the drug should not be responsible for the observed differences in drug binding exhibited by plasma membranes from drug-sensitive and -resistant cells. Plasma membranes from drug-sensitive cells contain more phosphatidylserine and slightly less cholesterol than membranes from drug-resistant cells. Differences in the content of the acidic phospholipid between the two plasma membranes seem to produce a different ionic environment at membrane surface domains, as indicated by titration of a membrane-incorporated, pH-sensitive fluorescence probe. The possible role of membrane lipids in modulating drug binding to the membranes was tested in equilibrium binding studies using model lipid vesicles made from phosphatidylcholine, phosphatidylserine, and cholesterol in different proportions. The presence of phosphatidylserine greatly increases both the affinity and the stoichiometry of daunomycin binding to model lipid vesicles. The similarity between the effects of phosphatidylserine and other negatively charged compounds such as dicetyl phosphate, cardiolipin, or phosphatidic acid suggests that electrostatic interactions are important in the observed binding of the drug.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
10-N-Nonyl acridine orange (NAO) has been used at low concentrations as a fluorescent indicator for cardiolipin (CL) in membranes and bilayers. The mechanism of its selective fluorescence in the presence of CL, and not any other phospholipids, is not understood. The dye might recognize CL by its high pK (pK(2)>8.5). To investigate that, we established that NAO does not exhibit a pK in a pH range between 2.3 and 10.0. A second explanation is that the dye aggregates at hydrophobic domains on bilayers exposed by the CL. We found that a similar spectral shift occurs in the absence of CL in a concentrated solution of the dye in methanol and in the solid state. A model is proposed in which the nonyl group inserts in the bilayer at the hydrophobic surface generated by the presence of four chains on the phospholipid.  相似文献   

6.
A phospholipid transfer protein from yeast (Daum, G. and Paltauf, F. (1984) Biochim. Biophys. Acta 794, 385-391) was 2800-fold enriched by an improved procedure. The specificity of this transfer protein and the influence of membrane properties of acceptor vesicles (lipid composition, charge, fluidity) on the transfer activity were determined in vitro using pyrene-labeled phospholipids. The yeast transfer protein forms a complex with phosphatidylinositol or phosphatidylcholine, respectively, and transfers these two phospholipids between biological and/or artificial membranes. The transfer rate for phosphatidylinositol is 19-fold higher than for phosphatidylcholine as determined with 1:8 mixtures of phosphatidylinositol and phosphatidylcholine in donor and acceptor membrane vesicles. If acceptor membranes consist only of non-transferable phospholipids, e.g., phosphatidylethanolamine, a moderate but significant net transfer of phosphatidylcholine occurs. Phosphatidylcholine transfer is inhibited to a variable extent by negatively charged phospholipids and by fatty acids. Differences in the accessibility of the charged groups of lipids to the transfer protein might account for the different inhibitory effects, which occur in the order phosphatidylserine which is greater than phosphatidylglycerol which is greater than phosphatidylinositol which is greater than cardiolipin which is greater than phosphatidic acid which is greater than fatty acids. Although mitochondrial membranes contain high amounts of negatively charged phospholipids, they serve effectively as acceptor membranes, whereas transfer to vesicles prepared from total mitochondrial lipids is essentially zero. Ergosterol reduces the transfer rate, probably by decreasing membrane fluidity. This notion is supported by data obtained with dipalmitoyl phosphatidylcholine as acceptor vesicle component; in this case the transfer rate is significantly reduced below the phase transition temperature of the phospholipid.  相似文献   

7.
The aim of the present study was to examine the effect of triiodothyronine (T3) on the content of phospholipids and on the incorporation of blood-borne palmitic acid into the phospholipid moieties in the nuclei of the rat liver. T3 was administered daily for 7 days, 10 microg x 100 g(-1). The control rats were treated with saline. Each rat received 14C-palmitic acid, intravenously suspended in serum. 30 min after administration of the label, samples of the liver were taken. The nuclei were isolated in sucrose gradient. Phospholipids were extracted from the nuclei fraction and from the liver homogenate. They were separated into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine and cardiolipin. The content and radioactivity of each fraction was measured. It was found that treatment with T3 reduced the content of phosphatidylinositol and increased the content of cardiolipin in the nuclear fraction. In the liver homogenate, the content of phosphatidylinositol decreased and the content of phosphatidylethanolamine and cardiolipin increased after treatment with T3. The total content of phospholipids after treatment with T3 remained unchanged, both in the nuclear fraction and in the liver homogenate. T3 reduced the specific activity of phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and cardiolipin and had no effect on the specific activity of sphingomyelin and phosphatidylinositol both in the fraction of the nuclei and the liver homogenate. It is concluded that excess of triiodothyronine affects the content of phospholipids in the nuclei. The changes in the content of phospholipids in the nuclei largely reflect changes in their content in the liver.  相似文献   

8.
The selectivity of lipid-protein interaction for spin-labeled phospholipids and gangliosides in nicotinic acetylcholine receptor-rich membranes from Torpedo marmorata has been studied by ESR spectroscopy. The association constants of the spin-labeled lipids (relative to phosphatidylcholine) at pH 8.0 are in the order cardiolipin (5.1) approximately equal to stearic acid (4.9) approximately equal to phosphatidylinositol (4.7) > phosphatidylserine (2.7) > phosphatidylglycerol (1.7) > G(D1b) approximately equal to G(M1) approximately equal to G(M2) approximately equal to G(M3) approximately equal to phosphatidylcholine (1.0) > phosphatidylethanolamine (0.5). No selectivity for mono- or disialogangliosides is found over that for phosphatidylcholine. Aminated local anesthetics were found to compete with spin-labeled phosphatidylinositol, but to a much lesser extent with spin-labeled stearic acid, for sites on the intramembranous surface of the protein. The relative association constant of phosphatidylinositol was reduced in the presence of the different local anesthetics to the following extents: tetracaine (55%) > procaine (35%) approximately benzocaine (30%). For stearic acid, only tetracaine gave an appreciable reduction (30%) in association constant. These displacements represent an intrinsic difference in affinity of the local anesthetics for the lipid-protein interface because the membrane partition coefficients are in the order benzocaine > tetracaine approximately procaine.  相似文献   

9.
The fluorescent dye 10-N-nonyl acridine orange (NAO) is extensively used for location and quantitative assays of cardiolipin in living cells on the assumption of its high specificity for cardiolipin; however, the limits and the mechanism of this specificity are not clear. Moreover, whether factors such as the membrane potential in mitochondria may limit the consistency of the results obtained by this method is open to discussion. The aim of this research was to investigate the effects of some experimental factors on the selective fluorescence of NAO in the presence of cardiolipin in artificial and natural membranes (mitochondria). The results show that the fluorescence of NAO, due to interaction with cardiolipin, is significantly modified by factors that control the spatial arrangement of cardiolipin molecules within the space of the membrane under investigation. Moreover, the present observations suggest that the specific effect of cardiolipin is to facilitate the dimerization of this fluorescent dye, thus confirming that reliable measurements of cardiolipin concentration can be obtained only when the NAO/cardiolipin molar ratio is equal to 2. The finding is also reported that in isolated respiring mitochondria the interaction of NAO with cardiolipin is somewhat related to the respiratory state of mitochondria.  相似文献   

10.
The insulin receptor was solubilized from turkey erythrocyte membranes by extraction with 1% beta-octylglucopyranoside. Insulin binding was enhanced when the solubilized material was reconstituted in phospholipid vesicles. The affinity of the reconstituted vesicles for various insulins was similar to that of the intact membranes: porcine insulin greater than proinsulin greater than desoctapeptide insulin. A curvilinear Scatchard plot was obtained for insulin binding to the reconstituted system at 15 degrees C. A high affinity association constant of 1.4 x 10(9) M-1 was obtained from the Scatchard plot. This is a four-fold increase over the value for the turkey erythrocyte membrane, which contains more highly saturated phospholipids. This suggests that the insulin receptor may be sensitive to the lipid composition of the membranes in which it is embedded.  相似文献   

11.
M Myers  O L Mayorga  J Emtage  E Freire 《Biochemistry》1987,26(14):4309-4315
The interactions of the targeting sequence of the mitochondrial enzyme ornithine transcarbamylase with phospholipid bilayers of different molecular compositions have been studied by high-sensitivity heating and cooling differential scanning calorimetry, high-sensitivity isothermal titration calorimetry, fluorescence spectroscopy, and electron microscopy. These studies indicate that the leader peptide interacts strongly with dipalmitoylphosphatidylcholine (DPPC) bilayer membranes containing small mole percents of the anionic phospholipids dipalmitoylphosphatidylglycerol (DPPG) or brain phosphatidylserine (brain PS) but not with pure phosphatidylcholines. For the first time, the energetics of the leader peptide-membrane interaction have been measured directly by using calorimetric techniques. At 20 degrees C, the association of the peptide with the membrane is exothermic and characterized by an association constant of 2.3 X 10(6) M-1 in the case of phosphatidylglycerol-containing and 0.35 X 10(6) M-1 in the case of phosphatidylserine-containing phospholipid bilayers. In both cases, the enthalpy of association is -60 kcal/mol of peptide. Additional experiments using fluorescence techniques suggest that the peptide does not penetrate deeply into the hydrophobic core of the membrane. The addition of the leader peptide to DPPC/DPPG (5:1) or DPPC/brain PS (5:1) small sonicated vesicles results in vesicle fusion. The fusion process is dependent on peptide concentration and is maximal at the phase transition temperature of the vesicles and minimal at temperatures below the phase transition.  相似文献   

12.
The regulation of purified yeast membrane-associated phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) and phosphatidylinositol synthase (CDP-diacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) activities by phospholipids was examined using Triton X-100/phospholipid mixed micelles. Phosphatidate, phosphatidylcholine, and phosphatidylinositol stimulated phosphatidylserine synthase activity, whereas cardiolipin and the neutral lipid diacylglycerol inhibited enzyme activity. Phosphatidate was a potent activator of phosphatidylserine synthase activity with an apparent activation constant (0.033 mol %) 88-fold lower than the apparent Km (2.9 mol %) for the surface concentration of CDP-diacylglycerol. Phosphatidate caused an increase in the apparent Vmax and a decrease in the apparent Km for the enzyme with respect to the surface concentration of CDP-diacylglycerol. Phosphatidylcholine and phosphatidylinositol caused an increase in the apparent Vmax for phosphatidylserine synthase with respect to CDP-diacylglycerol with apparent activation constants of 3.4 and 3.2 mol %, respectively. Cardiolipin and diacylglycerol were competitive inhibitors of phosphatidylserine synthase activity with respect to CDP-diacylglycerol. The apparent Ki value for cardiolipin (0.7 mol %) was 4-fold lower than the apparent Km for CDP-diacylglycerol, whereas the apparent Ki for diacylglycerol (7 mol %) was 2.4-fold higher than the apparent Km for CDP-diacylglycerol. Phosphatidylethanolamine and phosphatidylglycerol did not affect phosphatidylserine synthase activity. Phosphatidylinositol synthase activity was not significantly effected by lipids. The role of lipid activators and inhibitors on phosphatidylserine synthase activity is discussed in relation to overall lipid metabolism.  相似文献   

13.
Cardiolipin, a polyunsaturated acidic phospholipid, is found exclusively in bacterial and mitochondrial membranes where it is intimately associated with the enzyme complexes of the respiratory chain. Cardiolipin structure and concentration are central to the function of these enzyme complexes and damage to the phospholipid may have consequences for mitochondrial function. The fluorescent dye, 10 nonyl acridine orange (NAO), has been shown to bind cardiolipin in vitro and is frequently used as a stain in living cells to assay cardiolipin content. Additionally, NAO staining has been used to measure the mitochondrial content of cells as dye binding to mitochondria is reportedly independent of the membrane potential. We used confocal microscopy to examine the properties of NAO in cortical astrocytes, neonatal cardiomyocytes and in isolated brain mitochondria. We show that NAO, a lipophilic cation, stained mitochondria selectively. However, the accumulation of the dye was clearly dependent upon the mitochondrial membrane potential and depolarisation of mitochondria induced a redistribution of dye. Moreover, depolarisation of mitochondria prior to NAO staining also resulted in a reduced NAO signal. These observations demonstrate that loading and retention of NAO is dependant upon membrane potential, and that the dye cannot be used as an assay of either cardiolipin or mitochondrial mass in living cells.  相似文献   

14.
Subcellular membranes isolated from rat liver in a form impermeable to macromolecules were treated with phospholipase A2 from Naga naja venom. The phosphatidylserine, phosphatidylethanolamine and about half of the phosphatidylcholine of microsomes, Golgi membranes, inner mitochondrial membranes, lysosomes and nuclear membranes were hydrolyzed. It is proposed that these phospholipids are localized in the outer surface of the membrane bilayer, which represents the cytoplasmic side in the living cell, while the remaining phosphatidylcholine and most of the phosphatidylinositol, sphingomyelin and cardiolipin may be assigned to the inner side of the bilayer.  相似文献   

15.
A selective interaction of rat liver carbamoyl phosphate synthetase I with cardiolipin, and other anionic phospholipids, has been demonstrated. The enzymatic activity of the synthetase is inhibited by cardiolipin and, to a lesser extent, by phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine. This group of anionic phospholipids also induced a conformational change in the synthetase, yielding a species with increased exposure of the linkages between independently folded domains of the enzyme, as determined by limited proteolysis under nondenaturing conditions. The interaction of cardiolipin with carbamoyl phosphate synthetase I was a fairly slow process, with complex kinetics, and was apparently irreversible. The inclusion of Mg2+ or of MgATP in the incubation mixture prevented the cardiolipin effects. The zwitterionic phospholipids phosphatidylcholine and phosphatidylethanolamine had negligible effects on the structure and activity of the synthetase. This interaction between cardiolipin and carbamoyl phosphate synthetase I potentially constitutes one of the mechanisms by which the synthetase forms its loose association with the inner mitochondrial membrane. Multiple mechanisms, including synthetase conformational changes, cardiolipin phase changes, and ATP/ADP binding site involvement, are possibly involved in the phospholipid/synthetase interaction and the resulting potential regulatory mechanism(s) for urea cycle activity.  相似文献   

16.
A recently developed fluorimetric transfer assay (Somerharju, P., Brockerhoff, H. and Wirtz, K.W.A. (1981) Biochim. Biophys. Acta 649, 521–528) has been applied to study the substrate specificity and membrane binding of the phosphatidylinositol-transfer protein from bovine brain. The substrate specificity was investigated by measuring the rate of transfer, either directly or indirectly, for a series of phosphatidylinositol analogues which included phosphatidic acid, phosphatidylglycerol as well as three lipids obtained from yeast phosphatidylinositol by partial periodate oxidation and subsequent borohydride reduction. Phosphatidylglycerol and the oxidation products of phosphatidylinositol were transferred at about one tenth of the rate observed for phosphatidylinositol while phosphatidic acid was not transferred. It is concluded that an intact inositol moiety favours the formation of the putative transfer protein-phosphatidylinositol complex. In addition to phosphatidylinositol, the transfer protein also transfers phosphatidylcholine. In order to obtain information on the possible occurrence of two sites of interaction, vesicles consisting of either pure 1-acyl-2-parinaroylphosphatidylinositol or 1-acyl-2-parinaroylphosphatidylcholine were titrated with the protein. Binding of labeled phospholipid to the protein was represented by an increase of lipid fluorescence and found to be much more efficient for phosphatidylinositol than for phosphatidylcholine. This is interpreted to indicate that the protein contains an endogenous phosphatidylinositol molecule which can be easily replaced by exogenous phosphatidylinositol but not by phosphatidylcholine, a lipid with a lower affinity for this protein. Thus the binding sites for the two phospholipids are mutually exclusive, i.e. phosphatidylinositol and phosphatidylcholine cannot be bound to the protein simultaneously. Finally, the effect of acidic phospholipids on the transfer protein activity was studied either by varying the content of phosphatidic acid in the acceptor vesicles or by adding vesicles of pure acidic phospholipids to the normal assay system. The latter vesicles consisted of either phosphatidic acid, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol or cardiolipin. In both instances the transfer protein activity was inhibited, obviously through the enhanced association of the protein with the negatively charged vesicles. These findings strongly suggest that relatively nonspecific ionic forces rather than specific protein-phospholipid headgroup interactions contribute to the association of the phosphatidylinositol-transfer protein with membranes.  相似文献   

17.
A recently developed fluorimetric transfer assay (Somerharju, P., Brockerhoff, H. and Wirtz, K.W.A. (1981) Biochim. Biophys. Acta 649, 521-528) has been applied to study the substrate specificity and membrane binding of the phosphatidylinositol-transfer protein from bovine brain. The substrate specificity was investigated by measuring the rate of transfer, either directly or indirectly, for a series of phosphatidylinositol analogues which included phosphatidic acid, phosphatidylglycerol as well as three lipids obtained from yeast phosphatidylinositol by partial periodate oxidation and subsequent borohydride reduction. Phosphatidylglycerol and the oxidation products of phosphatidylinositol were transferred at about one tenth of the rate observed for phosphatidylinositol while phosphatidic acid was not transferred. It is concluded that an intact inositol moiety favours the formation of the putative transfer protein-phosphatidylinositol complex. In addition to phosphatidylinositol, the transfer protein also transfers phosphatidylcholine. In order to obtain information on the possible occurrence of two sites of interaction, vesicles consisting of either pure 1-acyl-2-parinaroylphosphatidylinositol or 1-acyl-2-parinaroylphosphatidylcholine were titrated with the protein. Binding of labeled phospholipid to the protein was represented by an increase of lipid fluorescence and found to be much more efficient for phosphatidylinositol than for phosphatidylcholine. This is interpreted to indicate that the protein contains an endogenous phosphatidylinositol molecule which can be easily replaced by exogenous phosphatidylinositol but not by phosphatidylcholine, a lipid with a lower affinity for this protein. Thus the binding sites for the two phospholipids are mutually exclusive, i.e. phosphatidylinositol and phosphatidylcholine cannot be bound to the protein simultaneously. Finally, the effect of acidic phospholipids on the transfer protein activity was studied either by varying the content of phosphatidic acid in the acceptor vesicles or by adding vesicles of pure acidic phospholipids to the normal assay system. The latter vesicles consisted of either phosphatidic acid, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol or cardiolipin. In both instances the transfer protein activity was inhibited, obviously through the enhanced association of the protein with the negatively charged vesicles. These findings strongly suggest that relatively nonspecific ionic forces rather than specific protein-phospholipid headgroup interactions contribute to the association of the phosphatidylinositol-transfer protein with membranes.  相似文献   

18.
Release of cytochrome c from the mitochondrial intermembrane space is critical to apoptosis induced by a variety of death stimuli. Bid is a BH3-only prodeath Bcl-2 family protein that can potently activate this efflux. In the current study, we investigated the mitochondrial localization of Bid and its interactions with mitochondrial phospholipids, focusing on their relationships with Bid-induced cytochrome c release. We found that Bid binding to the mitochondria required only three of its eight helical structures (alpha4-alpha6), but not the BH3 domain, and the binding could not be inhibited by the antideath molecule Bcl-x(L). Membrane fractionations indicated that tBid bound to mitochondrial outer membranes at both contact and noncontact sites. Bid could interact with specific cardiolipin species on intact mitochondria as identified by mass spectrometry. Like the binding to the mitochondria, this interaction could not be blocked by the mutation in the BH3 domain or by Bcl-x(L.) However, a cardiolipin-specific dye, 10-N-nonyl acridine orange, could preferentially suppress Bid binding to the mitochondrial contact site and inhibit Bid-induced mitochondrial cristae reorganization and cytochrome c release. These findings thus suggest that interactions of Bid with mitochondrial cardiolipin at the contact site can contribute significantly to its functions.  相似文献   

19.
Living yeast cells can be selectively stained with the lipophilic cationic cyanine dye DiOC6(3) in a mitochondrial membrane potential-dependent manner. Our study extends the use of flow cytometric analysis and sorting to DiOC6(3)-stained yeast cells. Experimental conditions were developed that prevented the toxic side effect of the probe and gave a quantitative correlation between fluorescence and mitochondrial membrane potential, without any staining of other membranes. The localization of the fluorochrome was checked by confocal microscopy and image cytometry. The mitochondrial membrane alterations were also tested through cardiolipin staining with nonyl acridine orange. Differences in light scattering and in fluorescence were detected in mutants (rho-, rho degrees, mit-, or pet-) and wild-type (rho+mit+) populations of yeast. The dye uptake of respiratory-deficient yeast strains was significantly reduced as compared to that of the wild-type. Application of an uncoupler (mCICCP), which collapsed the mitochondrial membrane potential (alphapsi(m)), led to a drastic reduction of the dye uptake. It was observed that a decrease in deltapsi(m), was usually correlated with a decrease in cardiolipin stainability by nonyl acridine orange (NAO). Quantitative flow cytometry is a fast and reproducible technique for rapid screening of yeast strains that might be suspected of respiratory dysfunction and/or mitochondrial structural changes. We give evidence that it is an adequate method to characterize and isolate respiratory mutants through sorting procedure, with selective enrichment of the population studied in respiring or non-respiring yeast cells. Confocal microscopy and image cytometry corroborate the flow cytometry results.  相似文献   

20.
A trimer made up of three acridine chromophores linked by a positively charged poly(aminoalkyl) chain was synthesized as a potential tris-intercalating agent. The length of the linking chain was selected to allow intercalation of each chromophore according to the excluded site model. 1H NMR studies have shown that, at 5 mM sodium, pH 5, the acridine trimer occurred under a folded conformation stabilized by stacking interactions between the three aromatic rings. DNA tris-intercalation of the dye at a low dye/base pair ratio was shown by measurements of both the unwinding of PM2 DNA and the lengthening of sonicated rodlike DNA. The trimer exhibits a high DNA affinity for poly[d(A-T)] (Kapp = 8 X 10(8) M-1, 1 M sodium) as shown by competition experiments with ethidium dimer. Kinetic studies of both the association with poly[d(A-T)] and the exchange between poly[d(A-T)] and sonicated calf thymus DNA have been performed as a function of the ionic strength. In 0.3 M sodium the on-rate constant (k1 = 2.6 X 10(7) M-1 s-1) is similar to that reported for other monoacridines or bis(acridines), whereas the off-rate constant is much smaller (k-1 = 1.2 X 10(-4) s-1), leading to an equilibrium binding constant as large as Kapp = 2.2 X 10(11) M-1. A plot of log (k1/k-1) as a function of log [Na+] yielded a straight line whose slope shows that 5.7 ion pairs (out of 7 potential) are formed upon the interaction with DNA. From this linear relationship a Kapp value of 10(14) M-1 in 0.1 M sodium can be estimated. Such a value reaches and even goes beyond that of some DNA regulatory proteins. This acridine trimer appears to be the first synthetic ligand with such a high DNA affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号