首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Although it is relatively straightforward to cryopreserve living isolated chondrocytes, at the present time there is no satisfactory method to preserve surgical grafts between the time of procurement or manufacture and actual use. In earlier papers we have established that the cryoprotectants dimethyl sulphoxide or propylene glycol do penetrate into this tissue very rapidly. Chondrocytes are not unusually susceptible to osmotic stress; in fact they appear to be particularly resistant. It appears that damage is associated with the formation of ice per se, even at cooling rates that are optimal for the cryopreservation of isolated chondrocytes. We then showed that current methods of cartilage cryopreservation involve the nucleation and growth of ice crystals within the chondrons rather than ice being restricted to the surrounding acellular matrix. This finding established the need to avoid the crystallization of ice—in other words, vitrification. Song and his colleagues have published a vitrification method that is based on the use of one of Fahy’s vitrification formulations. We confirmed the effectiveness of this method but found it to be very dependent on ultra rapid warming. However, we were able to develop a ‘liquidus-tracking’ method that completely avoids the crystallization of ice and does not require rapid warming. The ability of cartilage preserved in this way to incorporate sulphate into newly synthesized glycosaminoglycans (GAGs) approached 70% of that of fresh control cartilage. In this method the rates of cooling and warming can be very low, which is essential for any method that is to be used in Tissue Banks to process the bulky grafts that are required by orthopaedic surgeons. Work is continuing to refine this method for Tissue Bank use.  相似文献   

2.
Pegg DE  Wang L  Vaughan D  Hunt CJ 《Cryobiology》2006,52(3):347-359
Although isolated chondrocytes can be cryopreserved by standard methods, at the present time there is no satisfactory method that will preserve living chondrocytes in situ in surgical grafts, between the time of procurement or manufacture and actual use; survival of living chondrocytes in situ is inadequate at best and is also very variable. The first step in identifying the cause of this discrepancy was to establish that the cryoprotectants we had chosen to use, dimethyl sulphoxide and propylene glycol, do actually penetrate into the tissue rapidly. They do. Moreover, chondrocytes were shown to tolerate 10 or 20% Me2SO and were not unusually susceptible to osmotic stress. An experiment in which the effects of freezing with 10% Me2SO to -50 degrees C were separated from the effects of the concomitant rise in solute concentration showed that injury was associated with the formation of ice as such. Freeze substitution microscopy showed that large ice crystals were formed within the chondron, some at least within chondrocytes, even when the cooling rate was optimal for isolated chondrocytes. It is proposed that the nucleation and preferential growth of ice within the chondron (rather than the surrounding acellular matrix) is responsible for the very poor survival of chondrocytes in situ when current methods of cartilage cryopreservation are used.  相似文献   

3.
Pegg DE  Wusteman MC  Wang L 《Cryobiology》2006,52(3):335-346
There is increasing interest in the possibility of treating diseased or damaged areas of synovial joint surfaces by grafts of healthy allogeneic cartilage. Such grafts could be obtained from cadaver tissue donors or in the future they might be manufactured by 'tissue engineering' methods. Cartilage is an avascular tissue and hence is immunologically privileged but to take advantage of this is the graft must contain living cells. Preservation methods that achieve this are required to build up operational stocks of grafts, to provide a buffer between procurement and use, and to enable living grafts of a practical size to be provided at the right time for patient and surgeon. Review of the literature shows that it has been relatively straightforward to cryopreserve living isolated chondrocytes, but at the present time there is no satisfactory method to preserve cartilage between the time of procurement or manufacture and surgical use. In this paper, we review the relevant literature and we confirm that isolated ovine chondrocytes in suspension can be effectively cryopreserved by standard methods yet the survival of chondrocytes in situ in cartilage tissue is inadequate and extremely variable.  相似文献   

4.
Long-term storage of articular cartilage (AC) has excited great interest due to the practical surgical significance of this tissue. The liquidus-tracking (LT) method developed by Pegg et al. (2006) [29] for vitreous preservation of AC achieved reasonable survival of post-warming chondrocytes in situ, but the design of the entire procedure was more dependent on trial and error. Mathematical modeling would help to better understand the LT process, and thereby make possible improvements to attain higher cell survival. Mass transfer plays a dominant role in the LT process. In the present study, a diffusion model based on the free-volume theory and the Flory–Huggins thermodynamics theory was developed to predict the permeation of dimethyl sulfoxide (Me2SO) into AC. A comparison between the predicted mean concentration of Me2SO in the AC disc and the experimental data over wide temperature and concentration ranges [−30 to 37 °C, 10 to 64.5% (w/w)] shows that the developed model can accurately describe the permeation of Me2SO into AC [coefficient of determination (R2): 0.951–1.000, mean relative error (MRE): 0.8–12.8%]. With this model, the spatial and temporal distribution of Me2SO in the AC disc during a loading/unloading process can be obtained. Application of the model to Pegg et al.’s LT procedure revealed that the liquidus line is virtually not followed for the center part of the AC disc. The presently developed model will be a useful tool in the analysis and design of the LT method for vitreous preservation of AC.  相似文献   

5.
The limited availability of fresh osteochondral allograft tissues necessitates the use of banking for long-term storage. A vitrification solution containing a 55% cryoprotectant formulation, VS55, previously studied using rabbit articular cartilage, was evaluated using porcine articular cartilage. Specimens ranging from 2 to 6 mm in thickness were obtained from 6 mm distal femoral cartilage cores and cryopreserved by vitrification or freezing. The results of post-rewarming viability assessments employing alamarBlue demonstrated a large decrease (p < 0.001) in viability in all three sizes of cartilage specimen vitrified with VS55. This is in marked contrast with prior experience with full thickness, 0.6 mm rabbit cartilage. Microscopic examination following cryosubstitution confirmed ice formation in the chondrocytes of porcine cartilage vitrified using VS55. Experiments using a more concentrated vitrification formulation (83%), VS83, showed a significant treatment benefit for larger segments of articular cartilage. Differences between the VS55 and the VS83 treatment groups were significant at p < 0.001 for 2 mm and 4 mm plugs, and at p < 0.01 for full thickness, 6 mm plugs. The percentage viability in fresh controls, compared to VS55 and VS83, was 24.7% and 80.7% in the 2 mm size group, 18.2% and 55.5% in the 4 mm size group, and 5.2% and 43.6% in the 6 mm group, respectively. The results of this study continue to indicate that vitrification is superior to conventional cryopreservation with low concentrations of dimethyl sulfoxide by freezing for cartilage. The vitrification technology presented here may, with further process development, enable the long-term storage and transportation of living cartilage for repair of human articular surfaces.  相似文献   

6.
The cryopreservation of articular cartilage with survival of living cells has been a difficult problem. We have provided evidence that this is due to the formation of ice crystals in the chondrons. We have developed a method in which the concentration of the cryoprotectant dimethyl sulphoxide (Me(2)SO) is increased progressively, in steps, as cooling proceeds so that ice is never allowed to form, but the very high concentrations of Me(2)SO required at low temperatures are reached only at those low temperatures. In this paper, we describe some new experiments with discs of ovine articular cartilage similar to those used in our previous studies and we show that continuous stirring throughout the process resulted in a significant increase in the rate of (35)S sulphate incorporation into glycosoaminoglycans (GAGs), now reaching 87% of the corresponding fresh control values. We confirmed that the method is also effective for human knee joint cartilage, which gave 70% of fresh control ability to synthesise GAGs; continuous stirring was also used in this experiment. We then extended the method to ovine knee joint osteochondral dowels and showed that, again with continuous stirring, the method produced tissue concentrations of Me(2)SO that were sufficient to prevent freezing in dowels too, and to permit cell function at 60% of control. The most important mechanical property (instantaneous compressive modulus) was unaffected by the process. Finally, we experimented with some technical variations to facilitate clinical use-a more rapid process for warming and removal of Me(2)SO was developed and a method of short-term storage before or after cryopreservation was developed. Finally, pilot experiments were carried out to provide proof of principle for a closed, continuous flow method in which both temperature and Me(2)SO concentration were computer-controlled.  相似文献   

7.
Cetinkaya G  Arat S 《Cryobiology》2011,63(3):292-297
Preservation of cell and tissue samples from endangered species is a part of biodiversity conservation strategy. Therefore, setting up proper cell and tissue cryopreservation methods is very important as these tissue samples and cells could be used to reintroduce the lost genes into the breeding pool by nuclear transfer. In this study, we investigated the effect of vitrification and slow freezing on cartilage cell and tissue viability for biobanking. Firstly, primary adult cartilage cells (ACCs) and fetal cartilage cells (FCC) were cryopreserved by vitrification and slow freezing. Cells were vitrified after a two-step equilibration in a solution composed of ethylene glycol (EG), Ficoll and sucrose. For slow freezing three different cooling rates (0.5, 1 and 2 °C/min) were tested in straws. Secondly, the tissues taken from articular cartilage were cryopreserved by vitrification and slow freezing (1 °C/min). The results revealed no significant difference between the viability ratios, proliferative activity and GAG synthesis of cartilage cells which were cryopreserved by using vitrification or slow freezing methods. Despite the significant decrease in the viability ratio of freeze–thawed cartilage tissues, cryopreservation did not prevent the establishment of primary cell cultures from cartilage tissues. The results revealed that the vitrification method could be recommended to cryopreserve cartilage tissue and cells from bovine to be used as alternative cell donor sources in nuclear transfer studies for biobanking as a part of biodiversity conservation strategy. Moreover, cartilage cell suspensions were successfully cryopreserved in straws by using a controlled-rate freezing machine in the present study.  相似文献   

8.
The objective of this study was to investigate the effects of cryopreservation on the components of articular cartilage (AC) matrix by utilizing magnetic resonance imaging (MRI) and biochemical assessments. Porcine AC (10mm osteochondral dowels) was collected into four groups - (1) phosphate buffered saline (PBS) control, (2) PBS snap frozen in liquid nitrogen, (3) slow-cooled in dimethyl sulfoxide (DMSO), and (4) slow cooled in PBS (in absence of DMSO). MRI results demonstrated three distinct zones in the cartilage. After exposure to ice formation during cryopreservation procedures, alterations in MRI determined matrix fixed charged density and magnetization transfer rate were noted. In addition, biochemical assays demonstrated significant alterations in chondroitin sulfate and hydroxyproline content over time without differences in hydration or DNA content. In conclusion, MRI was able to detect some changes in the intact cartilage matrix structure consistent with biochemical assessments after ice formation during cryopreservation of intact porcine AC. Furthermore, biochemical assessments supported some of these findings and changed significantly after incubating the cartilage matrix for 36-72 h in PBS in terms of chondroitin sulfate and hydroxyproline content.  相似文献   

9.
Cryopreservation of wheat (Triticum aestivum L.) egg cells by vitrification   总被引:1,自引:0,他引:1  
A procedure has been developed for the cryopreservation of wheat female gametes. The procedure involves loading the cells with 25% concentrated vitrification solution consisting of 30% glycerol, 10% sucrose, 120 mM ascorbic acid (AA) and 5% propylene glycol (PG), dehydration in 80% concentrated vitrification solution, droplet vitrification and storage in liquid nitrogen, unloading and rehydration of the cells by gradual addition of isolation solution. Supplementation with AA significantly increased the proportion of viable egg cells after de- and rehydration. During the early phase of rehydration AA reduced the probability of membrane damage caused by rapid water uptake. Maintaining the temperature of the cells at 0°C during the de- and rehydration processes increased cell survival. Microscopic examination of the semi-thin sections of untreated and viable cryopreserved cells revealed that the vitrification process might cause changes in cell structure.  相似文献   

10.
Shaozhi Z  Pegg DE 《Cryobiology》2007,54(2):146-153
Some tissues, such as cartilage and cornea, carry an internal fixed negative charge, leading to a swelling pressure that is balanced by tensile stress in the tissue matrix. During the addition and removal of cryoprotectants the changes in osmotic pressure will cause the tissue to deform. Because of the fixed charge and osmotic deformation, the permeation process in such tissues differs from ordinary diffusion processes. In this paper a biomechanical multi-solute theory is introduced to describe this process in cartilage tissue. Typical values for the physiological and biomechanical properties are used in the simulation. Several parameters - the aggregate modulus, the fixed charge density and the frictional parameter - are analyzed to show their impact on the process. It is shown that friction between water and cryoprotectant has the greatest influence but the fixed charge density is also important. The aggregate modulus and the frictional parameter between the cryoprotectant and the solid matrix have the least influence. Both the new biomechanical model and the conventional diffusion model were fitted to published experimental data concerning the time course of mean tissue cryoprotectant concentration when cartilage is immersed in solutions of dimethyl sulphoxide or propylene glycol: in all cases and with both models a good fit was obtained only when a substantial amount of non-solvent water was assumed.  相似文献   

11.
Successful cryopreservation of articular cartilage (AC) could improve clinical results of osteochondral allografting and provide a useful treatment alternative for large cartilage defects. However, successful cartilage cryopreservation is limited by the time required for cryoprotective agent (CPA) permeation into the matrix and high CPA toxicity. This study describes a novel, practical method to examine the time-dependent permeation of CPAs [dimethyl sulfoxide (DMSO) and propylene glycol (PG)] into intact porcine AC. Dowels of porcine AC (10 mm diameter) were immersed in solutions containing high concentrations of each CPA for different times (0, 15, 30, 60 min, 3, 6, and 24 h) at three temperatures (4, 22, and 37 degrees C), with and without cartilage attachment to bone. The cartilage was isolated and the amount of cryoprotective agent within the matrix was determined. The results demonstrated a sharp rise in the CPA concentration within 15-30 min exposure to DMSO and PG. The concentration plateaued between 3 and 6 h of exposure at a concentration approximately 88-99% of the external concentration (6.8 M). This observation was temperature-dependent with slower permeation at lower temperatures. This study demonstrated the effectiveness of a novel technique to measure CPA permeation into intact AC, and describes permeation kinetics of two common CPAs into intact porcine AC.  相似文献   

12.
Birtsas V  Armitage WJ 《Cryobiology》2005,50(2):139-143

Aim

To investigate the need for stepwise addition of dimethyl sulphoxide to heart valves and amelioration of putative amphotericin B toxicity.

Methods

There were four groups: an untreated control (Group 1) and three experimental groups. For the latter, porcine heart valves were exposed to the antibiotic/antimycotic mixture used for disinfecting heart valves in the Bristol Heart Valve Bank, for 24 h at 22 °C. Dimethyl sulphoxide (Me2SO, 10% v/v) was added either in two steps (5% then 10%) (Group 2) or in a single step. For single-step addition, valves were either first placed in Hanks’ balanced salt solution for 10 min before transfer to the cryoprotectant solution (Group 3) or immersed directly in the 10% cryoprotectant solution (Group 4). The valve leaflets were dissected from the valves and frozen in 10% Me2SO in multi-well tissue culture plates at 1 °C/min to −80 °C. After storage overnight, the valve leaflets were warmed at approximately 11 °C/min and the cryoprotectant was removed by single-step dilution in excess Hartmann’s solution. Each leaflet was then divided into four pieces, which were placed in separate wells of a culture plate. Outgrowth of cells from the explants was monitored daily and graded according to the extent of cell growth.

Results

After freezing and thawing, only 77% of the explants from valves placed directly into 10% Me2SO (Group 4) showed outgrowth of cells after freezing compared with 89% with two-step addition of Me2SO (Group 2) and 95% with one-step addition after the extra rinse in Hanks’ solution (Group 3) (χ2, p = 0.001). 92% of unfrozen control explants showed outgrowth of cells (Group 1). Only 37% of Group 4 explants reached confluence compared with 63 and 56%, respectively, of Groups 2 and 3 explants (χ2, p = 0.007). The rates of cell growth in Group 2 (two-step addition of Me2SO) and Group 3 (one-step addition of Me2SO with additional Hanks’ solution rinse) were similar and faster than the Group 4 (one-step addition of Me2SO without the additional Hanks’ rinse).

Conclusion

Single-step addition of Me2SO before freezing gave similar results to two-step addition provided an additional rinse in Hanks’ solution was introduced after exposure to the antibiotic/antimycotic mixture. This suggests that antibiotic/antimycotic carryover may have been harmful during freezing and that the additional rinse in Hanks before one-step addition of Me2SO, and the 5% Me2SO step in the two-step protocol, merely served to reduce this carryover.  相似文献   

13.

Objective

Osteochondral allografting is an effective method to treat large osteochondral defects but difficulties in tissue preservation have significantly limited the application of this technique. Successful cryopreservation of articular cartilage (AC) could improve the clinical availability of osteochondral tissue and enhance clinical outcomes but cryopreservation of large tissues is hampered by a lack of knowledge of permeation kinetics within these tissues. This study describes the refinement and extension of a recently published technique to measure the permeation kinetics of cryoprotectant agents (CPAs) within porcine AC.

Design

Dowels of porcine AC (10 mm diameter) were immersed in solutions containing 6.5 M concentrations of four commonly used CPAs [dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG) and glycerol] for different times (1 s, 1, 2, 5, 10, 15, 30, 60, 120, 180 min , 24 h) at three different temperatures (4, 22, and 37 °C). The cartilage was isolated and the amount of CPA within the matrix was determined.

Results

Diffusion coefficients (DMSO = 2.4-6.2 × 10−6 cm2/s; PG = 0.8-2.7 × 10−6 cm2/s; EG = 1.7-4.2 × 10−6 cm2/s; and glycerol = 0.8-2.4 × 10−6 cm2/s) and activation energies (DMSO = 4.33 kcal/mol, PG = 6.29 kcal/mol, EG = 3.77 kcal/mol, and glycerol = 5.56 kcal/mol) were determined for each CPA.

Conclusion

The results of this experiment provide accurate permeation kinetics of four commonly used CPAs in porcine articular cartilage. This information will be useful for developing effective vitrification protocols for cryopreservation of AC.  相似文献   

14.
Cartilage damage was studied using non-invasive multiphoton-excited autofluorescence and quantitative second harmonic generation (SHG) microscopy. Two cryopreservation techniques based upon freezing and vitrification methods, respectively, were employed to determine whether or not the collagen fiber structure of full thickness porcine articular cartilage was affected by cryopreservation and whether the level of collagen damage could be determined quantitatively in non-processed (non-fixed, non-sliced, non-stained) tissues. Multiphoton-induced autofluorescence imaging revealed the presence of chondrocytes, as well as collagenous structures in all fresh, vitrified and frozen cryopreserved cartilage samples. SHG imaging of the frozen cryopreserved specimens showed a dramatic loss of mean gray value intensities when compared to both fresh and vitrified tissues (< 0.05), indicating structural changes of the extracellular matrix, in particular the deformation and destruction of the collagen fibers in the analyzed articular cartilage. A 0.9974 correlation coefficient was observed between the metabolic cell activity assessed by the alamarBlue technique, and retention of collagen structure between the three experimental groups. These studies suggest that multiphoton-induced autofluorescence imaging combined with quantitative SHG signal profiling may prove to be useful tools for the investigation of extracellular matrix changes in preserved cartilage, giving insights on the structural quality prior to implantation.  相似文献   

15.
A meta-analysis of cryopreservation studies vitrifying mouse embryos was undertaken to determine the treatment effect of vitrification. Treatment by vitrification decreased embryo viability compared with controls: the odds ratio was 9.02 (CI: 3.73-21.78; P < 0.001), a 24.90% (CI: 14.88-34.91; P < 0.001) reduction in risk was associated with embryos in the control group, and for every 4.00 (CI: 3.91-4.09) embryos treated by vitrification, one does not survive. A multiple regression analysis evaluated covariates of embryo survival. For each hour increase post-hCG treatment when embryos were cryopreserved, there was a decrease of 0.36% (SEM ± 0.01) in survival (P < 0.001). The number of embryos surviving vitrification decreased 0.25% (SEM ± 0.02) per day increase in age of the female mouse (P < 0.001), whereas there was no significant difference for control group embryos. For each 1 h increase post-hCG treatment after cryopreservation when blastocysts were assessed for viability, there was a decrease of 0.13% (SEM ± 0.01) in survival. The later interval post-hCG treatment when blastocysts were assessed, the less viable they were compared with earlier blastocysts, independent of the vitrification protocol. This effect was not observed for control embryos. A high percentage of variability in the treatment effect for vitrification was likely due to underlying heterogeneity among studies. A portion of the risk associated with vitrification could be attributed to the general effects of cryopreservation. Future research should identify effects in a cryopreservation protocol specific to vitrification that affect viability of mouse embryos.  相似文献   

16.
17.

Objective

To compare the effect of novel direct cover vitrification (DCV) and conventional vitrification (CV) for human ovarian tissue.

Study design

Ovarian biopsy specimens obtained from 12 patients were randomly allocated into five groups: Fresh, DCV1, DCV2, DCV3 and CV. Three concentrations of cryoprotectants were used in DCV group. The equilibration solution of DCV1, DCV2, DCV3 was 5% EG + 5% DMSO + DPBS, 7.5% EG + 7.5%DMSO + DPBS, 10% EG + 10% DMSO + DPBS, respectively. And the vitrification solution of DCV1, DCV2, DCV3 was 10% EG + 10% DMSO + DPBS, 15%EG+15% DMSO + DPBS, 20% EG + 20% DMSO + DPBS, respectively. The equilibration solution and the vitrification solution of CV group was same as DCV3 group. The effects of cryopreserved procedure on human ovarian tissue were studied by histology, TUNEL assay, transmission electron microscopy (TEM) and heterotopic allograft.

Results

The percentages of morphologically normal and viable follicles of DCV2 were significantly higher than DCV1, DCV3 and CV groups (P < 0.05). TUNEL assay demonstrated that the incidence of apoptotic cell in vitrification ovarian tissue was significantly higher than fresh tissue (P < 0.05), but there were no difference in various groups with cryopreservation. TEM showed that less damage was detected in DCV2 group. After grafting, the follicle density of DCV2 was greater than DCV1, DCV3 and CV groups (P < 0.05).

Conclusions

The novel cover vitrification with optimal concentration of cryoprotectants is superior to conventional vitrification. It is suitable for human ovarian tissue fragments with high efficiency and facility.  相似文献   

18.
Cui X  Gao DY  Fink BF  Vasconez HC  Rinker B 《Cryobiology》2007,55(3):295-304
Despite advances in cryobiology, the reliable cryopreservation of complex tissues has not yet been achieved. This study evaluates the viability of cryopreserved composite flaps and demonstrates the feasibility of their transplantation. Epigastric flaps were harvested from male Lewis rats. 1.5 M dimethyl sulfoxide (Me2SO) was used as the initial cryoprotectant agent (CPA). Samples were frozen at controlled rate to −140 °C and transferred to liquid nitrogen for at least two weeks. Hematoxylin and eosin (H/E) staining, MTT tetrazolium salt assay, and factor VIII immunostaining were used to evaluate the overall histology, epithelial viability, and vascular endothelial integrity, respectively, of cryopreserved flaps. For the in vivo phase, flaps were isotransplanted to 35 recipient animals, divided into three groups: fresh (n = 10), perfused (n = 8), and cryopreserved (n = 17). Blood vessel patency was assessed via Doppler at 1, 7, and 60 days post-transplantation. For in vitro studies, cryopreserved samples (10/10) retained normal cell architecture and vascular endothelial integrity upon H/E and factor VIII staining. The viability index of cryopreserved composite flap skin (n = 10) was 11.17 ± 2.01, which was not significantly different from fresh controls (n = 10, 12.15 ± 1.32). All transplanted flaps in the fresh and perfusion groups survived with healthy color and hair growth at 60 days after operation. Survival in the cryopreserved group ranged from 2 to 60 days, with a mean of 12 days. These results demonstrate that the long term survival of cryopreserved composite tissue transplants is possible. Further studies are needed to refine protocols for the reliable cryopreservation of composite parts.  相似文献   

19.
鲈鱼胚胎的玻璃化冷冻保存   总被引:6,自引:0,他引:6  
本文对鲈鱼(Lateolabrax japonicus)胚胎进行了玻璃化冷冻保存研究,筛选出了浓度较低、玻璃化程度较稳定的5种玻璃化液,冷冻时形成玻璃化的概率在48.1%~100%,在35~43℃的水浴中解冻时保持玻璃化的概率在44.4%~63.0%;玻璃化液VSD2在解冻时保持玻璃化的概率最高。对鲈鱼神经胚、20对肌节胚、尾芽胚、心跳胚、出膜前胚在玻璃化液VSD2中的适应能力及适合于玻璃化冷冻的胚胎时期进行了比较,结果显示:不同时期胚胎对玻璃化液的耐受能力不同,鲈鱼神经胚耐受能力最低,心跳胚耐受能力最强,出膜前期胚次之,心跳胚和出膜前胚适合于进行玻璃化冷冻。对0.5mol/L蔗糖的洗脱时间进行了选择,结果显示,洗脱10~20min效果较好。利用玻璃化程度较好的VSD2对鲈鱼不同时期胚胎进行超低温(-196℃)冷冻,获得了2.1%~27.9%的透明胚。将鲈鱼心跳胚冷冻解冻后获2粒复活胚,培养至出膜期,成活42~50h;出膜前期胚在冷冻解冻后有1粒胚复活,并且孵化出鱼苗[动物学报49(6):843~850,2003]。  相似文献   

20.
The use of autologous chondrocyte implantation (ACI) and its further development combining autologous chondrocytes with bioresorbable matrices may represent a promising new technology for cartilage regeneration in orthopaedic research. Aim of our study was to evaluate the applicability of a resorbable three-dimensional polymer of pure polyglycolic acid (PGA) for the use in human cartilage tissue engineering under autologous conditions. Adult human chondrocytes were expanded in vitro using human serum and were rearranged three-dimensionally in human fibrin and PGA. The capacity of dedifferentiated chondrocytes to re-differentiate was evaluated after two weeks of tissue culture in vitro and after subcutaneous transplantation into nude mice by propidium iodide/fluorescein diacetate (PI/FDA) staining, scanning electron microscopy (SEM), gene expression analysis of typical chondrocyte marker genes and histological staining of proteoglycans and type II collagen. PI/FDA staining and SEM documented that vital human chondrocytes are evenly distributed within the polymer-based cartilage tissue engineering graft. The induction of the typical chondrocyte marker genes including cartilage oligomeric matrix protein (COMP) and cartilage link protein after two weeks of tissue culture indicates the initiation of chondrocyte re-differentiation by three-dimensional assembly in fibrin and PGA. Histological analysis of human cartilage tissue engineering grafts after 6 weeks of subcutaneous transplantation demonstrates the development of the graft towards hyaline cartilage with formation of a cartilaginous matrix comprising type II collagen and proteoglycan. These results suggest that human polymer-based cartilage tissue engineering grafts made of human chondrocytes, human fibrin and PGA are clinically suited for the regeneration of articular cartilage defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号