首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of rapid (picosecond) backbone motions within the glucocorticoid receptor DNA-binding domain (GR DBD) has been investigated using proton-detected heteronuclear NMR spectroscopy on uniformly 15N-labeled protein fragments containing the GR DBD. Sequence-specific 15N resonance assignments, based on two- and three-dimensional heteronuclear NMR spectra, are reported for 65 of 69 backbone amides within the segment C440-A509 of the rat GR in a protein fragment containing a total of 82 residues (MW = 9200). Individual backbone 15N spin-lattice relaxation times (T1), rotating-frame spin-lattice relaxation times (T1 rho), and steady-state (1H)-15N nuclear Overhauser effects (NOEs) have been measured at 11.74 T for a majority of the backbone amide nitrogens within the segment C440-N506. T1 relaxation times and NOEs are interpreted in terms of a generalized order parameter (S2) and an effective correlation time (tau e) characterizing internal motions in each backbone amide using an optimized value for the correlation time for isotropic rotational motions of the protein (tau R = 6.3 ns). Average S2 order parameters are found to be similar (approximately 0.86 +/- 0.07) for various functional domains of the DBD. Qualitative inspection as well as quantitative analysis of the relaxation and NOE data suggests that the picosecond flexibility of the DBD backbone is limited and uniform over the entire protein, with the possible exception of residues S448-H451 of the first zinc domain and a few residues for which relaxation and NOE parameters were not obtained. in particular, we find no evidence for extensive rapid backbone motions within the second zinc domain. Our results therefore suggest that the second zinc domain is not disordered in the uncomplexed state of DBD, although the possibility of slowly exchanging (ordered) conformational states cannot be excluded in the present analysis.  相似文献   

2.
Monoclonal antibodies to the rat liver glucocorticoid receptor.   总被引:10,自引:1,他引:10       下载免费PDF全文
Monoclonal antibodies against the 90 000 mol. wt. form of the activated rat liver glucocorticoid receptor were generated from mice immunized with a partially purified receptor preparation. The screening assay was based on the precipitation of liver cytosol, labelled with [3H]triamcinolone acetonide, with monoclonal antibodies bound to immobilized rabbit anti-mouse IgG. Out of 102 hybridomas obtained, 76 produced immunoglobulin and eight of them were found to react with the receptor molecule. Only one of the positive clones secreted IgG whereas the other seven produced IgM. The complexes of receptor and antibodies were identified by sucrose density gradient centrifugation. All seven monoclonal antibodies tested reacted with the 90 000 mol. wt. form of the receptor but not with the 40 000 mol. wt. form that contains the steroid and DNA binding domains. None of the monoclonal antibodies interfered with the binding of the receptor to DNA cellulose, thus suggesting that the antigenic determinants are located in a region of the receptor that is not directly implicated in either steroid binding or DNA binding. These antigenic determinants were common to glucocorticoid receptors from several tissues of the rat, whereas glucocorticoid receptors from other species react only with some of the antibodies.  相似文献   

3.
Summary Photo-CIDNP studies were performed on two protein fragments that both contain the double zinc-finger DNA-binding domain of the glucocorticoid receptor. In the absence of DNA, Tyr452 and Tyr474 are polarised in both fragments while Tyr497 is not. Addition of a palindromic glucocorticoid response element (GRE) results in the suppression of Tyr474 polarization while the polarization of Tyr452 is unaffected. The same result is observed upon adding a half GRE to the protein fragment indicating that the suppression of Tyr474 polarization is not due to protein-protein contacts but to interaction with DNA.  相似文献   

4.
We have employed fluorescence spectroscopy to study the chemical equilibrium between a 115 amino acid protein fragment containing the DNA-binding domain of the human glucocorticoid receptor (DBDr) and a 24-base-pair DNA oligomer containing the glucocorticoid response element (GRE) from the mouse mammary tumor virus promoter region and compared it with the binding to nonspecific DNA at various ionic conditions. We find that binding to both DNAs is cooperative but that DBDr shows a higher affinity for the GRE than for nonspecific DNA and that this difference is more pronounced at increased salt concentrations. Sequence-specific binding to the GRE sequence at 570 mM monovalent cations can be described by a two-site cooperative model, and this supports the notion that DBDr binding to the GRE is enhanced by dimer formation at the recognition site. The product between the (average) association constant for binding to a GRE half-site and the cooperativity parameter was estimated to be K omega = (1-4) x 10(7) M-1 at this salt concentration and 20 degrees C. The sequence-specific binding is not very sensitive to salt concentration in the interval 270-570 mM monovalent cations. However, at lower salt (70 mM) additional binding takes place, presumably nonspecific (cooperative) association to DNA adjacent to the GRE sequence. DBDr binding to nonspecific DNA can be described by the McGhee-von Hippel model for cooperative binding to a chain polymer and is very sensitive to ionic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The generation of monoclonal antibodies to synthetic peptides of the glucocorticoid receptor is described. Two antibodies to sequences from the DNA binding region are IgMs. Two other antibodies to sequences in the steroid binding region and the C-terminus belong to the IgG class. The specificity of the IgG binding to the receptor in an ELISA assay is demonstrated by competition with the relevant peptides. Both IgGs are able to recognize the receptor in Western blots, but do not form stable complexes in sucrose gradients. Steroid binding to the receptor is not influenced by preincubation with antibodies. This indicates that denaturation or distortion of the receptor is necessary for the accessibility of these antibodies to their epitopes. Both antibodies can be used to stain the glucocorticoid receptor in neoplastic cells of patients suffering from chronic lymphatic leukemia.  相似文献   

6.
We have studied the interaction of the DNA-binding domain of the glucocorticoid receptor with a glucocorticoid response element from the tyrosine aminotransferase gene. This response element consists of two binding sites (half-sites) for the glucocorticoid receptor DNA-binding domain. The sequences of these two half-sites are not identical, and we have previously shown that binding occurs preferentially to one of the half-sites (Tsai, S.-Y., Carlstedt-Duke, J., Weigel, N. L., Dahlman, K., Gustafsson, J.-A., Tsai, M.-J., and O'Malley, B. W. (1988) Cell 55, 361-369). We show here that binding to the low affinity half-site is dependent on previous occupancy of the high affinity half-site. This facilitated binding is dependent on the distance between the two half-sites and their relative orientation but is not dependent on the integrity of the DNA backbone. This is consistent with a model where DNA binding is not only dependent on interactions between the protein and its DNA target sequence but is also influenced by interactions between the protein molecules bound.  相似文献   

7.
8.
Molecular dynamics simulations (MD) have been performed on variant crystal and NMR-derived structures of the glucocorticoid receptor DNA-binding domain (GR DBD). A loop region five residues long, the so-called D-box, exhibits significant flexibility, and transient perturbations of the tetrahedral geometry of two structurally important Cys4 zinc finger are seen, coupled to conformational changes in the D-box. In some cases, one of the Cys ligands to zinc exchanges with water, although no global distortion of the protein structure is observed. Thus, from MD simulation, dynamics of the D-box could partly be explained by solvent effects in conjunction with structural reformation of the zinc finger.  相似文献   

9.
10.
The glucocorticoid receptor is phosphorylated, but the precise location of the phosphorylated groups is unknown. We cultured AtT-20 cells in medium containing [32P]-orthophosphate and used immunoaffinity methods to isolate the intact receptor and a tryptic fragment containing the DNA binding domain. Analysis of the intact receptor, co-labeled with the affinity ligand dexamethasone-mesylate, confirmed that the receptor was phosphorylated. Isolation of the DNA binding domain by trypsinization and immunopurification showed that it was not phosphorylated. Interestingly, a non-immunoreactive phosphorylated fragment similar in size to the DNA-binding fragment was observed. Our results suggest that phosphorylation of the DNA binding domain of the glucocorticoid receptor is not essential for hormone action.  相似文献   

11.
12.
13.
In this study, we have investigated the influence of regions outside the DNA-binding domain of the human glucocorticoid receptor on high-affinity DNA binding. We find that the DNA-binding domain shows a 10-fold lower affinity for a palindromic DNA-binding site than the intact receptor. The N-terminal part of the receptor protein does not influence its DNA-binding affinity, while the C-terminal steroid-binding domain increases the DNA-binding affinity of the receptor molecule. It has previously been shown that both the intact glucocorticoid receptor and the glucocorticoid receptor DNA-binding domain bind to a palindromic glucocorticoid response element on DNA as dimers. It is likely that differences in DNA-binding affinity observed result from protein-protein interactions outside the DNA-binding domain between receptor monomers, as has been shown for the estrogen receptor. We have previously identified a segment involved in protein-protein interactions between DNA-binding domains of glucocorticoid receptors. This, in combination with results presented in this study, suggests that there are at least two sites of contact between receptor monomers bound to DNA. We suggest that the interaction between the DNA-binding domains may act primarily to restrict DNA binding to binding sites with appropriate half-site spacing and that additional stability of the receptor dimer is provided by the interactions between the steroid-binding domains.  相似文献   

14.
We used isothermal titration calorimetry in the temperature range 21-25 degrees C to investigate the effect of pH on the calorimetric enthalpy (delta H(cal)) for sequence specific DNA-binding of the glucocorticoid receptor DNA-binding domain (GR DBD). Titrations were carried out in solutions containing 100 mM NaCl, 1 mM dithiothreitol, 5% glycerol by volume, and 20 mM Tris, Hepes, Mops, or sodium phosphate buffers at pH 7.5. A strong dependence of delta H(cal) on the buffer ionization enthalpy is observed, demonstrating that the DNA binding of the GR DBD is linked to proton uptake at these conditions. The apparent increase in the pK(a) for an amino acid side chain upon DNA binding is supported by the results of complementary titrations, where delta H(cal) shows a characteristic dependence on the solution pH. delta H(cal) is also a function of the NaCl concentration, with opposite dependencies in Tris and Hepes buffers, respectively, such that a similar delta H(cal) value is approached at 300 mM NaCl. This behavior shows that the DNA-binding induced protonation is inhibited by increased concentrations of NaCl. A comparison with structural data suggests that the protonation involves a histidine (His451) in the GR DBD, because in the complex this residue is located close to a DNA phosphate at an orientation that is consistent with a charged-charged hydrogen bond in the protonated state. NMR spectra show that His451 is not protonated in the unbound protein at pH 7.5. The pH dependence in delta H(cal) can be quantitatively described by a shift of the pK(a) of His451 from approximately 6 in the unbound state to close to 8 when bound to DNA at low salt concentration conditions. A simple model involving a binding competition between a proton and a Na(+) counterion to the GR DBD-DNA complex reproduces the qualitative features of the salt dependence.  相似文献   

15.
The glucocorticoid receptor binds with high specificity to glucocorticoid response elements, discriminating them from other closely related binding sites. Three amino acids in the recognition alpha-helix of the DNA-binding domain of the receptor are primarily responsible for this specific DNA binding activity. In this study we analyze in detail how these residues determine the specific DNA binding by studying a series of mutant glucocorticoid receptor DNA-binding domains containing all combinations of glucocorticoid and estrogen receptor-specific residues at these positions. Statistical analysis of the results enables us to create models describing the association between amino acids and base pairs. Several strategies appear to be used in accomplishing discrimination between the glucocorticoid and estrogen response elements. Single residues (i.e., Val-443 in the glucocorticoid receptor and Glu-439 in the estrogen receptor) appear to form both positive contacts with specific base pairs in the cognate binding site and negative contacts in the non-cognate site. In the glucocorticoid receptor Ser-440 is pleiotropically negative for all sites tested but the negative effect is stronger for the estrogen response element thus contributing to binding site discrimination. Furthermore, combinations of amino acids appear to act synergistically, most often causing a reduction in binding to non-cognate sites.  相似文献   

16.
Molecular dynamics simulations have been performed on the glucocorticoid receptor DNA binding domain (GR DBD) in aqueous solution as a dimer in complex with DNA and as a free monomer. In the simulated complex, we find a slightly increased bending of the DNA helix axis compared with the crystal structure in the spacer region of DNA between the two half-sites that are recognized by GR DBD. The bend is mainly caused by an increased number of interactions between DNA and the N-terminal extended region of the sequence specifically bound monomer. The recognition helices of GR DBD are pulled further into the DNA major groove leading to a weakening of the intrahelical hydrogen bonds in the middle of the helices. Many ordered water molecules with long residence times are found at the intermolecular interfaces of the complex. The hydrogen-bonding networks (including water bridges) on either side of the DNA major groove involve residues that are highly conserved within the family of nuclear receptors. Very similar hydrogen-bonding networks are found in the estrogen receptor (ER) DBD in complex with DNA, which suggests that this is a common feature for proper positioning of the recognition helix in ER DBD and GR DBD.  相似文献   

17.
Glucocorticoid receptors of S49.1 mouse lymphoma cells were analyzed under a variety of conditions. The complexes with an agonist or a steroidal antagonist can be formed in cytosolic extracts, they are of high molecular weight, Mr approximately 330,000 and have a Stokes radius of 82 A. Cross-linking by several agents stabilized this structure against subunit dissociation which produces the activated receptor form of 60 A and DNA-binding ability. Careful analysis of intermediate cross-linked forms lead to the conclusion that the large receptor structure is a hetero-tetramer consisting of one hormone-bearing polypeptide of Mr approximately 94,000, two 90 kDa subunits and a protein component of Mr approximately 50,000. The 90 kDa subunits are the heat shock protein hsp90. The high molecular weight receptor form also exists in intact cells as revealed again by cross-linking. The cytosolic complex with the antagonist can become activated to the DNA-binding form upon warming but simultaneously looses the ligand. Ligand rebinding does not occur subsequent to receptor dissociation. Upon incubation of intact cells at 37 degrees C with agonist or antagonist the respective receptor-ligand complexes are formed. The agonist complex is immediately activated, however, the antagonist complex remains stable in the undissociated state. This explains the biological effect of the antagonist.  相似文献   

18.
In this work we have probed the mechanism responsible for two non-DNA-binding states of the mouse glucocorticoid receptor. In the first case, transformed receptors were treated with hydrogen peroxide. It is known that oxidizing agents promote the formation of disulfide bonds in the glucocorticoid receptor, but it has not been determined what domains are involved in any disulfide bond formation that leads to inactivation of DNA-binding activity. We show here that hydrogen peroxide inhibits DNA-binding by the 15-kDa tryptic fragment containing the DNA-binding fingers with the same concentration dependency as it inhibits DNA-binding by the uncleaved receptor. This suggests that all of the effect of peroxide is on sulfhydryl groups within the zinc fingers. After dissociation (transformation) of cytosolic heteromeric glucocorticoid receptor complexes, only a portion (40–60%) of the dissociated receptors can bind to DNA-cellulose. We show that the 15-kDA tryptic fragment derived from the portion of transformed receptors that do not bind to DNA is itself competent at DNA-binding.  相似文献   

19.
The amino-terminus region of tetracycline (tet) repressors contains a helix-turn-helix structure that binds to DNA. A computer-based comparison of a residues 18-61 of the tet repressor, which contains this DNA-binding domain, with a residues 304-347 of the human estrogen receptor (ER) yields a score that is 6.7 standard deviations higher than that obtained with 2,500 comparisons of randomized sequences of these segments. The probability of getting this score by chance is less than 10(-11). This part of the ER could be important in nuclear actions of ER in target tissues.  相似文献   

20.
Hydrogen peroxide produces all of the effects on glucocorticoid receptors that are produced by molybdate, including stabilization of the receptor 90-kDa heat shock protein (hsp90) complex (Tienrungroj, W., Meshinchi, S., Sanchez, E. R., Pratt, S. E., Grippo, J. F., Holmgren, A., and Pratt, W. B. (1987) J. Biol. Chem. 262, 6992-7000). When the glucocorticoid receptor is exposed simultaneously to molybdate and peroxide at concentrations that are optimal for receptor stabilization if each agent is present alone, there is an irreversible loss of steroid binding activity. The effect is accompanied by a covalent modification of the receptor, which is demonstrated by an increase in its apparent Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Preincubation of the receptor with the sulfhydryl-modifying reagents methyl methanethiosulfonate or N-ethylmaleimide prevents covalent modification, suggesting that cysteine moieties are the site of attack. The covalently modified receptor can still bind to DNA. Molybdate-peroxide treatment does not covalently modify the 15-kDa tryptic fragment containing the DNA-binding domain and 11 of the 20 cysteine moieties in the receptor. However, the 27-kDa tryptic fragment, which contains the steroid-binding domain and 5 cysteines, is covalently modified. The 27-kDa tryptic fragment is covalently modified by the molybdate-peroxide combination when [3H]dexamethasone 21-mesylate is covalently bound to Cys-644. This leaves some combination of 4 cysteines in the steroid-binding domain (628, 649, 671, and 742) as the modified groups. These modifications occur in a region of the receptor that is known to contain its sites of interaction with both hsp90 and molybdate, with the latter having a well-established avidity for sulfur. These observations raise the possibility that the covalent modification caused by the molybdate-peroxide combination represents a modification of sulfur ligands involved in molybdate stabilization of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号