共查询到20条相似文献,搜索用时 15 毫秒
1.
A retrotransposon from the fungal plant pathogen Fusarium oxysporum f. sp. lycopersici has been isolated and characterized. The element, designated skippy (skp) is 7846 by in length, flanked by identical long terminal repeats (LTR) of 429 by showing structural features characteristic of retroviral and retrotransposon LTRs. Target-site duplications of 5 bp were found. Two long overlapping open reading frames (ORF) were identified. The first ORF, 2562 by in length, shows homology to retroviral gag genes. The second ORF, 3888 bp in length, has homology to the protease, reverse transciptase. RNase H and integrase domains of retroelement pol genes in that order. Sequence comparisons and the order of the predicted proteins from skippy indicate that the element is closely related to the gypsy family of LTR-retrotransposons. The element is present in similar copy numbers in the two races investigated, although RFLP analysis showed differences in banding patterns. The number of LTR sequences present in the genome is higher than the number of copies of complete elements, indicating excision by homologous recombination between LTR sequences. 相似文献
2.
Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis 总被引:1,自引:0,他引:1
Kidd BN Kadoo NY Dombrecht B Tekeoglu M Gardiner DM Thatcher LF Aitken EA Schenk PM Manners JM Kazan K 《Molecular plant-microbe interactions : MPMI》2011,24(6):733-748
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed. 相似文献
3.
4.
5.
6.
Alejandre-Durán E Roldán-Arjona T Ariza RR Ruiz-Rubio M 《Fungal genetics and biology : FG & B》2003,40(2):159-165
Survival of irradiated spores from Fusarium oxysporum with ultraviolet radiation (UV) was increased following exposition to visible light, indicating that this phytopathogenic fungus has a mechanism of photoreactivation able to counteract the lethal effects of UV. A genomic sequence containing the complete photolyase gene (phr1) from F. oxysporum was isolated by heterologous hybridisation with the Neurospora crassa photolyase gene. The F. oxysporum phr1 cDNA was isolated and expressed in a photolyase deficient Escherichia coli strain. The complementation of the photoreactivation deficiency of this E. coli mutant by phr1 cDNA demonstrated that the photolyase gene from F. oxysporum encodes a functional protein. The F. oxysporum PHR1 protein has a domain characteristic of photolyases from fungi (Trichoderma harziaium, N. crassa, Magnaporthe grisea, Saccharomyces cerevisiae) to bacteria (E. coli), and clusters in the photolyases phylogenetic tree with fungal photolyases. The F. oxysporum phr1 gene was inducible by visible light. The phr1 expression was also detected in presence of alpha-tomatine, a glycoalkaloid from tomato damaging cell membranes, suggesting that phr1 is induced by this cellular stress. 相似文献
7.
Ito S Ihara T Tamura H Tanaka S Ikeda T Kajihara H Dissanayake C Abdel-Motaal FF El-Sayed MA 《FEBS letters》2007,581(17):3217-3222
The tomato saponin alpha-tomatine has been proposed to kill sensitive cells by binding to cell membranes followed by leakage of cell components. However, details of the modes of action of the compound on fungal cells are poorly understood. In the present study, mechanisms involved in alpha-tomatine-induced cell death of fungi were examined using a filamentous pathogenic fungus Fusarium oxysporum. alpha-Tomatine-induced cell death of F. oxysporum (TICDF) occurred only under aerobic conditions and was blocked by the mitochondrial F(0)F(1)-ATPase inhibitor oligomycin, the caspase inhibitor D-VAD-fmk, and protein synthesis inhibitor cycloheximide. Fungal cells exposed to alpha-tomatine showed TUNEL-positive nuclei, depolarization of transmembrane potential of mitochondria, and reactive oxygen species (ROS) accumulation. These results suggest that TICDF occurs through a programmed cell death process in which mitochondria play a pivotal role. Pharmacological studies using inhibitors suggest that alpha-tomatine activates phosphotyrosine kinase and monomeric G-protein signaling pathways leading to Ca(2+) elevation and ROS burst in F. oxysporum cells. 相似文献
8.
The genome of the fungal plant pathogenFusarium oxysporum contains at least six different families of transposable elements. Representatives of both DNA transposons and retrotransposons have been identified, either by cloning of dispersed repetitive sequences (Foret andpalm) or by trapping in the nitrate reductase gene (Fot1, Fot2 Impala andHop).Fot1 andImpala elements are related to theTc1 andmariner class of transposons. These transposable elements can affect gene structure and function in several ways: inactivation of the target gene through insertion, diversification of the nucleotide sequence by imprecise excisions, and probably chromosomal rearrangements as suggested by the extensive karyotype variation observed among field isolates. Comparisons of the distribution of these elements inFusarium populations have improved our understanding of population structure and epidemiology and provided support for horizontal genetic transfer. Also they could be developed as genetic tools for tagging genes, a cloning strategy that is particularly promising in imperfect fungi. 相似文献
9.
Navarro-Velasco GY Prados-Rosales RC Ortíz-Urquiza A Quesada-Moraga E Di Pietro A 《Fungal genetics and biology : FG & B》2011,48(12):1124-1129
Fusarium oxysporum, the causal agent of vascular wilt disease, affects a wide range of plant species and can produce disseminated infections in humans. F. oxysporum f. sp. lycopersici isolate FGSC 9935 causes disease both on tomato plants and immunodepressed mice, making it an ideal model for the comparative analysis of fungal virulence on plant and animal hosts. Here we tested the ability of FGSC 9935 to cause disease in the greater wax moth Galleria mellonella, an invertebrate model host that is widely used for the study of microbial human pathogens. Injection of living but not of heat-killed microconidia into the hemocoel of G. mellonella larvae resulted in dose-dependent killing both at 30 °C and at 37 °C. Fluorescence microscopy of larvae inoculated with a F. oxysporum transformant expressing GFP revealed hyphal proliferation within the hemocoel, interaction with G. mellonella hemocytes, and colonization of the killed insects by the fungus. Fungal gene knockout mutants previously tested in the tomato and immunodepressed mouse systems displayed a good correlation in virulence between the Galleria and the mouse model. Thus, Galleria represents a useful non-vertebrate infection model for studying virulence mechanisms of F. oxysporum on animal hosts. 相似文献
10.
A white female with chronic glomerular nephritis received a renal transplant in 1971. After 1 year, Livido Reticularis (LR) developed and in 1976 erythematous, painful nodules formed on the LR and ulcerated. The patient also suffered diffuse calcification of the major blood vessels and small arterioles of the extremities with progressive necrosis and gangrene of the fingers. Hyperparathyroidism was evident. The necrotic ulcers yielded Candida albicans and Fusarium oxysporum; both organisms were seen in histological preparations. The ulcers were excised and grafted; no specific antifungal therapy was given. 相似文献
11.
Significantly more 5-methylcytosine residues were found in the DNA from the dormant sclerotia of Phymatotrichum omnivorum than in the DNA from the metabolically active mycelia of the fungus, as shown by high-pressure liquid chromatography of acid-hydrolyzed DNA digests and by restriction of the DNA with the isoschizomers MspI and HpaII. N6-Methyladenine was not detected in GATC sequences in the DNA isolated from either stage. 相似文献
12.
The plant defensin, NaD1, from the flowers of Nicotiana alata displays potent antifungal activity against a variety of agronomically important filamentous fungi including Fusarium oxysporum f. sp. vasinfectum (Fov). To understand the mechanism of this antifungal activity, the effect of NaD1 on Fov fungal membranes and the location of NaD1 in treated hyphae was examined using various fluorescence techniques. NaD1 permeabilized fungal plasma membranes via the formation of an aperture with an internal diameter of between 14 and 22A. NaD1 bound to the cell walls of all treated hyphae and entered several hyphae, resulting in granulation of the cytoplasm and cell death. These results suggest that the activity of antifungal plant defensins may not be restricted to the hyphal membrane and that they enter cells and affect intracellular targets. 相似文献
13.
Nitrate reductase-formate dehydrogenase couple involved in the fungal denitrification by Fusarium oxysporum 总被引:1,自引:0,他引:1
Dissimilatory nitrate reductase (Nar) was solubilized and partially purified from the large particle (mitochondrial) fraction of the denitrifying fungus Fusarium oxysporum and characterized. Many lines of evidence showed that the membrane-bound Nar is distinct from the soluble, assimilatory nitrate reductase. Further, the spectral and other properties of the fungal Nar were similar to those of dissimilatory Nars of Escherichia coli and denitrifying bacteria, which are comprised of a molybdoprotein, a cytochrome b, and an iron-sulfur protein. Formate-nitrate oxidoreductase activity was also detected in the mitochondrial fraction, which was shown to arise from the coupling of formate dehydrogenase (Fdh), Nar, and a ubiquinone/ubiquinol pool. This is the first report of the occurrence in a eukaryote of Fdh that is associated with the respiratory chain. The coupling with Fdh showed that the fungal Nar system is more similar to that involved in the nitrate respiration by Escherichia coli than that in the bacterial denitrifying system. Analyses of the mutant species of F. oxysporum that were defective in Nar and/or assimilatory nitrate reductase conclusively showed that Nar is essential for the fungal denitrification. 相似文献
14.
Habrylo O Song X Forster A Jeltsch JM Phalip V 《Journal of microbiology and biotechnology》2012,22(8):1118-1126
Four putative GH12 genes were found in the Fusarium graminearum genome. The corresponding proteins were expressed in Escherichia coli, purified, and evaluated. FGSG_05851 and FGSG_11037 displayed high activities towards xyloglucan (V(max) of 4 and 11 micronmol/min, respectively), whereas FGSG_07892 and FGSG_16349 were much less active with this substrate (0.081 and 0.004 micronmol/min, respectively). However, all four of these enzymes had a similar binding affinity for xyloglucan. Xyloglucan was the substrate preferred by FGSG_05851, in contrast to the three other enzymes, which preferred beta-glucan or lichenan. Therefore, FGSG_05851 is a xyloglucan-specific glucanase (E.C. 3.2.1.151) rather than an endoglucanase (E.C. 3.2.1.4) with broad substrate specificity. FGSG_11037 displayed a peculiar behavior in that the xyloglucan binding was highly cooperative, with a Hill coefficient of 2.5. Finally, FGSG_05851 essentially degraded xyloglucan into hepta-, octa-, and nonasaccharides, whereas the three other enzymes yielded hepta- and octa-saccharides as well as larger molecules. 相似文献
15.
The effect of the biological control agent Aureobasidium pullulans (de Bary) G. Arnaud on the development of Fusarium head blight (FHB) on winter wheat and kernel contamination with fungi of the genera Fusarium, Acremonium, Cladosporium and Penicillium was analyzed in a greenhouse experiment. Scanning electron microscopy was used to evaluate the distribution of A. pullulans cells and aggregates on wheat kernels, infection structures of Fusarium culmorum (W.G. Smith) Sacc and the antagonist-pathogen interactions. Biological control with A. pullulans reduced FHB severity by 21.67 % and improved grain filling by 5.02 %, compared with the control treatment. The survival of A. pullulans was good (to 31 cells per kernel), in particular on the surface and in the crease of kernels, including in pathogen-inoculated wheat plants. A. pullulans cells firmly adhered to F. culmorum hyphae, and damaged them. In most cases, autochthonous communities of filamentous fungi of the genera Acremonium and Penicillium developed at a slower rate after kernel inoculation with the pathogen. 相似文献
16.
17.
Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations 总被引:1,自引:0,他引:1
下载免费PDF全文

Gale LR Bryant JD Calvo S Giese H Katan T O'Donnell K Suga H Taga M Usgaard TR Ward TJ Kistler HC 《Genetics》2005,171(3):985-1001
A genetic map of the filamentous fungus Fusarium graminearum (teleomorph: Gibberella zeae) was constructed to both validate and augment the draft whole-genome sequence assembly of strain PH-1. A mapping population was created from a cross between mutants of the sequenced strain (PH-1, NRRL 31084, originally isolated from Michigan) and a field strain from Minnesota (00-676, NRRL 34097). A total of 111 ascospore progeny were analyzed for segregation at 235 loci. Genetic markers consisted of sequence-tagged sites, primarily detected as dCAPS or CAPS (n = 131) and VNTRs (n = 31), in addition to AFLPs (n = 66) and 7 other markers. While most markers exhibited Mendelian inheritance, segregation distortion was observed for 25 predominantly clustered markers. A linkage map was generated using the Kosambi mapping function, using a LOD threshold value of 3.5. Nine linkage groups were detected, covering 1234 cM and anchoring 99.83% of the draft sequence assembly. The nine linkage groups and the 22 anchored scaffolds from the sequence assembly could be assembled into four chromosomes, leaving only five smaller scaffolds (59,630 bp total) of the nuclear DNA unanchored. A chromosome number of four was confirmed by cytological karyotyping. Further analysis of the genetic map data identified variation in recombination rate in different genomic regions that often spanned several hundred kilobases. 相似文献
18.
《Journal of Plant Interactions》2013,8(1):23-30
Abstract In this study we assessed microconidia germination of the tomato pathogens F. oxysporum f. sp. lycopersici (Fol) and F. oxysporum f. sp. radicis-lycopersici (Forl) in the presence of root exudates. Tomato root exudates stimulated microconidia germination and the level of stimulation was affected by plant age. Treatment of root exudates with insoluble polyvinylpolypyrrolidone, which binds phenolic compounds, indicated that tomato root exudates contain phenolic compounds inhibitory to F. oxysporum microconidia germination. Our study indicates that tomato root exudates similarly stimulate microconidia germination of both Fol and Forl. However, individual F. oxysporum strains differ in the degree of germination response to the root exudates. Furthermore, root exudates from non-host plants also contain compounds that stimulate microconidia germination of Fol. In general, the effects of root exudates from non-host plants did not differ considerably from those of tomato. The ability of phenolic compounds to inhibit germination of Fol seems not to be plant-specific. 相似文献
19.
Constitutive expression, purification and characterization of a phosphoglucomutase from Fusarium oxysporum 总被引:1,自引:0,他引:1
Kourtoglou E Anasontzis GE Mamma D Topakas E Hatzinikolaou DG Christakopoulos P 《Enzyme and microbial technology》2011,48(3):217-224
The phosphoglucomutase gene from a wild type Fusarium oxysporum strain (F3), was homologously expressed, under the control of the constitutive promoter of gpdA of Aspergillus nidulans. The transformant produced elevated levels of phosphoglucomutase activity compared to the wild type, a fact that facilitated the subsequent purification procedure. The enzyme (FoPGM) was purified to homogeneity applying three anion exchange and one gel filtration chromatography steps. The native enzyme revealed a monomeric structure with a molecular mass of 60 kDa, while the isoelectric point was 3.5. FoPGM was active in pH ranged from 6.0 to 8.0, with an optimum using 3-(N-morpholino)propanesulfonic acid buffer at 7.0, while loss of activity was observed when phosphate buffer was used in the above mentioned pH range. The optimal temperature for activity was 45°C but the enzyme became unstable at temperatures above 40°C. FoPGM requires the presence of a divalent cation for its function with maximum activity being obtained with Co(2+). The apparent K(m) for Co(2+) was found to be 10 μM. The enzyme was also active with other divalent metal ions such as Mn(2+), Mg(2+), Ni(2+) and Ca(2+) but to a lesser extent. The following kinetic constants were determined: v(max), 0.74 μmol mg(protein)(-1)min(-1); k(cat), 44.2 min(-1); K(m)(G1P), 0.10mM; K(m)(G1,6 diP), 1.03 μM; k(cat)/K(m)(G1P), 443 mM(-1)min(-1) and k(cat)/K(m)(G1,6 diP), 42,860 mM(-1)min(-1). The enzyme was considered to follow a Ping Pong substituted enzyme or enzyme isomerization mechanism. 相似文献
20.
L. Vajna 《Journal of Phytopathology》1985,114(4):338-347
Fusarium oxysporum f. sp. dianthi, f. sp. lycopersici, f. sp. cepae, f. sp. niveum and one unidentified F. oxysporum isolate proved to be active necrotrophic mycoparasites. In dual cultures hyphae of Trichoderma hamatum, T. longibrachiatum, T. pseudokoningii, T. harzianum, Botrytis cinerea and Rhizoctonia solani were parasitized and destroyed by F. oxysporum. One isolate of Phytophthora sp. was not affected. Mutual parasitism between F. oxysporum and T. pseudokoningii and T. longibrachiatum has been observed, too. Details of parasitic hyphal interactions: hyphal coiling, penetration sites, resistance sheat formation, hyphal invasion and internal growing are described. The mycoparasitic feature as well as antimicrobial metabolic production of F. oxysporum is probably a common phenomenon to ensure this important plant pathogenic species to compete successfully against other soil-borne fungal pathogens and saprophytes. 相似文献