首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gentle removal of chromatin uncovers a nuclear matrix consisting of two parts: a nuclear lamina connected to the intermediate filaments of the cytoskeleton and an internal matrix of thick, polymorphic fibers connecting the lamina to masses in the nuclear interior. This internal nuclear matrix can be further fractionated to uncover a highly branched network of 9 nm and 13 nm core filaments retaining some enmeshed bodies. The core filament network retains most of the nuclear RNA, as well as the fA12RNP antigen, and may be the most basic or core element of internal nuclear structure. One high molecular weight protein component of the core filament network, the H1B2 antigen, is normally masked in the interphase nucleus and is uncovered as the chromatin condenses at mitosis. This protein is associated with a fibrogranular network surrounding and connected to the chromosomes. The core filament-associated fA12 antigen also becomes associated with this perichromosomal network. We propose that the core filament nuclear matrix structure may not completely disassemble at mitosis but, rather, that parts remain as a structural network connected to chromosomes and other mitotic structures. These mitotic networks may, in turn, serve as the core structures on which the nuclear matrices of daughter cells are built.  相似文献   

3.
The nuclear matrix is the structure that persists after removal of chromatin and loosely bound components from the nucleus. It consists of a peripheral lamina-pore complex and an intricate internal fibrogranular structure. Little is known about the molecular structure of this proteinaceous internal network. Our aim is to identify the major proteins of the internal nuclear matrix of HeLa S3 cells. To this end, a cell fraction containing the internal fibrogranular structure was compared with one from which this structure had been selectively dissociated. Protein compositions were quantitatively analyzed after high-resolution two-dimensional gel electrophoresis. We have identified the 21 most abundant polypeptides that are present exclusively in the internal nuclear matrix. Sixteen of these proteins are heterogeneous nuclear ribonucleoprotein (hnRNP) proteins. B23 (numatrin) is another abundant protein of the internal nuclear matrix. Our results show that most of the quantitatively major polypeptides of the internal nuclear matrix are proteins involved in RNA metabolism, including packaging and transport of RNA. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The nuclear matrix is operationally defined as the structure remaining after nuclease-digested nuclei are extracted with high concentrations of salt. The nuclear matrix is thought to have a role in organizing higher order chromatin into loop domains. We determined whether specific regions of the histone H5 gene were very tightly bound to protein of erythrocyte and liver nuclear matrices in vitro. We demonstrate that DNA fragments spanning sequences 5' to the promoter and the 3' enhancer region of the histone H5 gene, but not DNA fragments spanning the promoter, were very tightly bound to protein of nuclear matrices of erythrocytes and liver. The nuclear matrix consists of internal nuclear matrix and nuclear pore-lamina complex. Recently, we demonstrated that histone deacetylase could be used as a marker enzyme of the internal nuclear matrix. We demonstrate that nuclear pore-lamina complex preparations that were depleted of histone deacetylase activity, and thus of internal nuclear matrix, retained the protein that bound very tightly to the beta-globin and histone H5 enhancers. These results provide evidence that specific regions of the histone H5 gene are very tightly bound to nuclear pore-lamina complex protein.  相似文献   

5.
In this paper we describe a 160-kDa protein (p160) which is present in the nuclear matrix of rat, mouse, and human cells. Biochemical and ultrastructural analysis shows that p160 is associated with the internal matrix and is not present in the lamina-pore complex. Immunoelectron microscopy shows that the protein is part of the extranucleolar, fibrogranular network of the nuclear matrix. During an in vivo 42 degrees C heat treatment of HeLa cells, A431 human epidermoid cells, and T24 human bladder carcinoma cells, p160 transiently formed large clusters inside the nucleus. These p160 clusters are associated with the nuclear matrix network, as judged by immunolabeling on isolated nuclear matrices. The percentage of cells showing p160 clusters increased proportionally with longer heat treatments, reaching a maximum after a period of 3 h. At this time 70 +/- 5% of the cells displayed these clusters. Clustering decreased after longer heat treatments and the anti-p160 staining pattern became diffuse granular again. Other nuclear components, such as the A1 antigen of hnRNP (ribonucleoprotein), the Sm antigen of snRNPs, and lamins A and C, did not cluster during the 42 degrees C treatment, indicating that this reallocation is characteristic for the p160 matrix protein. These results demonstrate that p160 is an internal nuclear matrix element with a dynamic spatial distribution.  相似文献   

6.
We describe a method for immunogold staining of nuclear matrix proteins using ultra-small gold particles. The nuclear matrix of HeLa cells is obtained by two fractionation steps: (a) cell permeabilization with Triton X-100 to isolate the cytoskeleton, and (b) nuclease digestion followed by an incubation in 0.25 M ammonium sulfate to isolate the nuclear matrix. To prevent redistribution of internal matrix proteins during nuclear matrix preparation, pre-fixation with 0.1% acrolein was performed. Under this condition up to 80% of protein and 90% of DNA and RNA could be removed on nuclear matrix isolation, without redistribution of internal nuclear matrix proteins. For immunogold labeling, 1-nm gold probes appeared to be required to obtain optimal penetration into the nucleus. These particles can be visualized after silver enhancement. After gold labeling the matrices are stained, embedded in Epon, and ultra-thin sections are prepared for examination in the electron microscope. The applicability of this method is examplified by the localization of a 125 KD internal nuclear matrix protein and the lamins A and C in nuclear matrix preparations of HeLa cells.  相似文献   

7.
Chicken histone H5 is an H1-like linker histone that is expressed only in nucleated erythrocytes. The histone H5 promoter has binding sites for Sp1 (a high affinity site) and UPE-binding protein, while the 3′ erythroid-specific enhancer has binding sites for Sp1 (one moderate and three weak affinity), GATA-1, and NF1. In this study we investigated whether trans-acting factors that bind to the chicken histone H5 promoter or enhancer are associated with adult chicken immature and mature erythrocyte nuclear matrices. We show that NF1, but not Sp1, GATA-1, or UPE-binding protein, is associated with the internal nuclear matrices of these erythroid cells. Further, we found that a subset of the NF1 family of proteins is bound to the mature erythrocyte nuclear matrix. These results suggest that in chicken erythrocytes NF1 may mediate an interaction between the histone H5 enhancer and the erythroid internal nuclear matrix. NF1 was also present in the internal nuclear matrices of chicken liver and trout liver. The observations of this study provide evidence that NF1 may have a role in a variety of cell types in targeting specific DNA sequences to the nuclear matrix. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Cancer is diagnosed by examining the architectural alterations to cells and tissues. Changes in nuclear structure are among the most universal of these and include increases in nuclear size, deformities in nuclear shape, and changes in the internal organization of the nucleus. These may all reflect changes in the nuclear matrix, a non-chromatin nuclear scaffolding determining nuclear form, higher order chromatin folding, and the spatial organization of nucleic acid metabolism. Malignancy-induced changes in this structure may have profound effects on chromatin folding, on the fidelity of genome replication, and on gene expression. Elucidating the mechanisms and the biological consequences of nuclear changes will require the identification of the major structural molecules of the internal nuclear matrix and an understanding of their assembly into structural elements. If biochemical correlates to malignant alterations in nuclear structure can be identified then nuclear matrix proteins and, perhaps nuclear matrix-associated structural RNAs, may be an attractive set of diagnostic markers and therapeutic targets. J. Cell. Biochem. 70:172–180, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
We examined the distribution of actin in isolated nuclear matrices from mouse leukemia L5178Y cells using an anti-actin antibody and protein A-conjugated colloidal gold particles. Before immunogold staining, we partially digested the surface lamina of the nuclear matrix with trypsin (Nakayasu and Ueda, Exp. Cell Res. 143, 55-62, 1983) to allow penetration of the gold particles into the nuclear matrix. Trypsin digestion slightly modified the internal structure of the nuclear matrix, but did not affect the actin content in the nuclear matrix nor the reactivity of actin with the antibody. Many colloidal gold particles were present along fibrogranular structures in the nuclear matrix. The results reported here confirm the existence of actin in the interior of the nuclear matrices of L5178Y cells.  相似文献   

10.
A nuclear framework structure termed the nuclear matrix has been isolated and characterized. This matrix forms the major residual structure of isolated nuclei and consists largely of protein with smaller amounts of RNA, DNA, carbohydrate, and phospholipid. The nuclear matrix can be further resolved by combined treatment with DNase and RNase. The remaining nuclear protein structure, after extraction of 90 percent of the nuclear protein, 99.9 percent of the DNA, and 98 percent of the RNA and phospholipid, is termed the nuclear protein matrix. Electron microscopy of this final nuclear protein matrix reveals an interior framework structure composed of residual nucleolar structures associated with a granular and fibrous internal matrix structure. The internal matrix framework is derived from the interchromatinic structures of the nucleus, and is connected to a surrounding residual nuclear envelope layer containing residual nuclear pore complex structures. Sodium dodecyl sulfate-acrylamide gel electrophoresis of the nuclear matrix proteins demonstrates three major polypeptide fractions, P-1, P-2, and P-3, with average molecular weights of approximately 69,000, 66,000 and 62,000, as well as several minor polypeptides which migrate at approximately 50,000 and at higher molecular weights (>100,000). Polypeptides with molecular weights identical to those of P-1, P-2 and P-3 are also components of isolated nuclear envelopes and nucleoli, whereas isolated chromatin contains no detectable matrix polypeptides. This suggests that the major matrix polypeptides are localized in specific structural regions of the nucleus, i.e., nuclear envelope, nucleoli, and interchromatinic structures. The presence of cytochrome oxidase activity in the isolated nuclear matrix indicates that at least some integral proteins of the nuclear membrane are associated with the matrix.  相似文献   

11.
We compared the protein composition of the nuclear matrix isolated from several murine embryonal carcinoma cells and mature tissues by two-dimensional gel electrophoresis. Two nuclear matrix fractions were investigated: the "peripheral" nuclear matrix (matrix proteins that remain insoluble after reduction), and the "internal" nuclear matrix (matrix proteins released by reduction). The two subfractions have completely different protein compositions. Although numerous differences in nuclear matrix protein composition among different cell types were observed, a limited set of polypeptides common to all mouse cell types was identified. A majority of these common proteins was also present in cells from other mammalian species (i.e. rat and human). For this set of proteins, we coin the term "minimal matrix." As expected, lamin B, known to be expressed throughout differentiation, is part of the common set of peripheral nuclear matrix proteins. Lamins A and C are not because these proteins were absent from undifferentiated embryonal carcinoma cells. Since these common nuclear matrix proteins occur in all mammalian nuclear matrices analyzed so far, it is likely that they have a basic role in nuclear organization and function.  相似文献   

12.
The role of the nuclear matrix components in the organization of structural and functional domains of interphase nuclei was studied using irradiation with blue light in the presence of a photosensibilized agent (Ethidium bromide). Nuclear domain resistance to extractive solution (2 M NaCl) treatment served as a criterion of irradiation-induced stabilization of different nuclear domains. The following results have been obtained: 1) the structural organization of the complexes of chromatin and clusters of replication does not depend on the state of the nuclear matrix in isolated nuclei; 2) chemical stabilization of the nuclear matrix by Cu(2+)-ions is not sufficient for the organization of chromatin domains; 3) irradiation in the presence of Ethidium bromide stabilizes domains of the nuclei, but does not lead to stabilization of the nuclear matrix internal network. Hence, the irradiation prevented extraction from the nuclear domains of nonhistone proteins which were not standard matrix proteins. Based on the results obtained, a hypothesis was proposed about a coexistence of two groups of nonhistone proteins in the cell nucleus. The first group includes proteins of the nuclear matrix involved in immobilization of scafford attachment regions and active genes. The second group includes some hypothetical structural proteins participating only in compaction of DNA of condensed chromatin.  相似文献   

13.
14.
In a previous paper we have described a 23 kD nuclear endonuclease (p23) that was mostly found to exist in a state of association with the isolated rat hepatocyte nuclear matrix. To investigate the nature of this interaction, the nuclear matrix was prepared using different procedures and examined for the presence/absence of the enzyme by activity gel analysis. Treatment of isolated nuclei with sodium tetrathionate (NaTT), a sulfhydryl-cross-linking agent, led to the complete recovery of p23 in the nuclear matrix, whereas incubation of nuclei with dithiothreitol (DTT), a sulfhydryl-reducing agent, led to its complete solubilization and resulting absence from the nuclear matrix. Exposure of the isolated nuclear matrix to DTT in high-ionic strength buffer, a procedure that promotes the solubilization of the internal nuclear matrix, caused the nearly complete solubilization of p23. It was concluded that disulfide bonds play an essential role in the association of p23 with the nuclear matrix and that p23 is mostly localized in the nuclear matrix interior.  相似文献   

15.
16.
A new look at the nuclear matrix   总被引:9,自引:0,他引:9  
Hancock R 《Chromosoma》2000,109(4):219-225
  相似文献   

17.
阐述了凋亡过程中,核基质所发生的形态、生化变化及相关凋亡基因的表达,尤其是凋亡早期便出现核基质蛋白的降解.核基质是细胞核最基本的组分,对维持细胞核形态结构和功能非常重要,其主要由核纤层,核内骨架及核孔复合体构成,在DNA复制、转录、RNA加工转运等事件中起支持作用.多少年来,关于凋亡时细胞核形态及生化改变的分子机理一直未阐明,最近对核基质与细胞凋亡的研究取得了重大进展.  相似文献   

18.
When the nucleus is stripped of most DNA, RNA, and soluble proteins, a structure remains that has been referred to as the nuclear matrix, which acts as a framework to determine the higher order of chromatin organization. However, there is always uncertainty as to whether or not the nuclear matrix, isolated in vitro, could really represent a skeleton of the nucleus in vivo. In fact, the only nuclear framework of which the existence is universally accepted is the nuclear lamina, a continuous thin layer that underlies the inner nuclear membrane and is mainly composed of three related proteins: lamins A, B, and C. Nevertheless, a number of recent investigations performed on different cell types have suggested that nuclear lamins are also present within the nucleoplasm and could be important constituents of the nuclear matrix. In most cell types investigated, the nuclear matrix does not spontaneously resist the extraction steps, but must rather be stabilized before the application of extracting agents. In this investigation, by immunochemical and morphological analysis, we studied the effect of stabilization with different divalent cations (Zn(2+), Cu(2+), Cd(2+)) on the distribution of lamin A and B1 in the nuclear matrix obtained from K562 human erythroleukemia cells. In intact cells, antibodies to both lamin A and B1 mainly stained the nuclear periphery, although some immunoreactivity was detected in the nuclear interior. The fluorescent lamin A pattern detected in Cu(2+)- and Cd(2+)-stabilized nuclei was markedly modified, whereas Zn(2+)-incubated nuclei showed an unaltered pattern of lamin A distribution. By contrast, the distribution of lamin B1 in isolated nuclei was not modified by the stabilizing cations. When chromatin was removed by nuclease digestion and extraction with solutions of high ionic strength, a previously masked immunoreactivity for lamin A, but not for lamin B1, became evident in the internal part of the residual structures representing the nuclear matrix. Our results indicate that when metal ions are used as stabilizing agents for the recovery of the nuclear matrix, the distribution of both lamin A and lamin B1 in the final structures, corresponds to the pattern we have very recently reported using different extraction procedures. This observation strengthen the concept that intranuclear lamins may act as structural components of the nuclear matrix.  相似文献   

19.
When fused with mouse L-cell cytoplasts, chick erythrocyte nuclei enlarge, take up proteins from the host cytoplasm, and recommence RNA synthesis. We found that during this transition the erythrocyte nuclei gain an internal nuclear matrix, thus providing a novel approach to questions concerning the nature of the salt-resistant intranuclear skeleton. A new method for preparation and examination of the nuclear matrix in situ is also described.  相似文献   

20.
Binding of matrix attachment regions to lamin B1.   总被引:33,自引:0,他引:33  
Eukaryotic chromatin is organized into topologically constrained loops that are attached to the nuclear matrix. The regions of DNA that interact with the matrix are called matrix attachment regions (MARs). We studied the spatial distribution of MAR-binding sites in the nuclear matrix from rat liver cells, following a combined biochemical and ultrastructural approach. We found that MAR-binding sites are distributed equally over the internal fibrogranular network and the peripheral nuclear lamina. Internal and peripheral binding sites have similar binding characteristics: both sets of binding sites show specific and saturable binding of MARs from different organisms. By means of a DNA-binding protein blot assay and in vitro binding studies, we identified lamin B1 as a MAR-binding protein, which provides evidence for a specific interaction of DNA with the nuclear lamina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号