首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:建立山茱萸的组织培养及植株再生体系。方法:分别以山茱萸的叶片、花柄和花托为材料,进行山茱萸不同外植体的离体培养研究,筛选最佳培养基组成。结果:适宜山茱萸叶片愈伤组织诱导的培养基组合为1/2MS,附加BA2.0mg/L、IBA0,5—1.0mg/L;适宜山茱萸花柄、花托愈伤组织诱导的培养基组合为1/2MS,附加BA1.0mg/L、2,4-D0.5mg/L;在1/2MS附加BA2.0mg/L、IBA0.05mg/L的培养基上,可诱导不定芽的产生;1/2MS附加IBA2.0mg/L的培养基有利于山茱萸试管苗生根。讨论:山茱萸的花托是进行组织培养的最适外植体,白色或翠绿色、结构致密的愈伤组织较易分化产生不定芽。  相似文献   

2.
Summary Plants regenerated on two different media (NK and I) from the calluses of simple or cloned subcultures, which were originated from a single stock callus of Haworthia setata derived from its flower bud, were observed for eight characters, i.e., somatic chromosome number in root tips, growth vigor, leaf shape, leaf color, number of stomata per unit leaf area, esterase zymogram, chromosome association at meiotic metaphase I in pollen mother cells, and pollen fertility. From these regenerates plants with different characters from those of the parental plant were obtained. With regards to chromosomal aberrations, tetraploids, aneuploids, plants with a part of the chromosome segment deleted, with reciprocal and non-reciprocal translocations, or with paracentric inversions and those showing sub-chromatid aberrations at meiosis were obtained. The NK medium tended to regenerate more tetraploids and less plants carrying translocation than the I medium.Chromosome variabilities in somatic cells of the regenerates correlated with those of the calluses, from which they regenerated, while they did not correlate with either the meiotic irregularities (chromosome association at MI) or pollen fertility of the regenerates. From these facts, it was concluded that a rather large number of callus cells participate in the regeneration of an individual plant, although, however, only a few limited types of the cells form its germ line.Polyploidy affected growth vigor, leaf shape, stomata number and chromosome association at MI, but its effects were not detected on other characters. Chromosomal aberrations at the diploid level produced no clear changes in the regenerate's phenotype except in meiotic chromosome configuration and pollen fertility.Most chromosomal variants obtained in the present study are already reported in plants collected from wild populations, but plants with the deletion of a whole chromosome (karyotype 7L+6S) or chromosome segment (7L+1M+6S and 14L+2M+12S) have never been reported: this fact suggests that tissue culture is a powerful tool for producing plants with novel karyotypes.Contribution from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan, No. 436  相似文献   

3.
An efficient procedure was developed for inducing callus and plant regeneration using hypocotyl segments of Astragalus adsurgens. The combinations and concentrations of different growth regulators were shown to be critical factors for both the frequency and the type of callus formation as well as for the potential of callus differentiation. Of the four morphologically distinct types of calli that were induced, a friable, yellow callus, i.e. type I, induced on MS medium supplemented with 9.0 μM 2,4-dichlorophenoxyacetic acid and 2.2 μM N6-benzylaminopurine (BA), and then transferred to MS medium containing 0.5 μM α-naphthaleneacetic acid and 8.9 μM BA, exhibited the maximum frequency of shoot regeneration (75%). After regenerated shoots were transferred onto half-strength MS medium without growth regulators, they rooted and complete plants were obtained. Plantlet regeneration from callus cultures required 7–8 weeks. Received: 26 February 1997 / Revision received: 28 August 1997 / Accepted: 13 September 1997  相似文献   

4.
Cytokinins, donor plants and their time in vitro as well as basal media were investigated for their influence on shoot regenerative capacity of American elm (Ulmus americana L.) leaves. Leaves excised from six 2-year-old seedlings formed adventitious shoots when placed on Driver and Kuniyuki Walnut (DKW) medium supplemented with 7.5, 15 or 22.5 M of benzyladenine (BA) or thidiazuron (TDZ). Thidiazuron induced significantly higher regeneration percentages on elm leaves than BA, regardless of concentration used. Donor plant also affected the efficiency of shoot regeneration, with certain seedlings having 1.5 to 7 times more explants forming shoots as compared to other seedlings tested. By subculture 15, the average number of shoots per regenerating explant increased at least 3-fold for leaves on media with BA or TDZ for the one donor plant that survived continued subculturing. Leaf explants from donor plants with the highest regenerative capacity had a higher percentage of shoot formation on DKW than MS medium. Explants from productive donor plants should be placed on DKW medium supplemented with TDZ to improve shoot regeneration efficiency from American elm leaves.  相似文献   

5.
A reproducible release of viable protoplasts was obtained from friable calli of Astragalus adsurgens. Protoplasts underwent sustained divisions and formed cell colonies when cultured in either liquid or agarose-solidified Kao and Michayluk (1975) protoplast medium (KM8P) supplemented with 1.5 mg/l 2,4-D, 0.5 mg/l BA and 0.5 M glucose. Compared to liquid culture, agarose bead culture improved division frequency effectively, the two culture systems showing a plating efficiency of 0.8±0.5% and 6.5±0.7%, respectively. Upon transfer to Murashige and Skoog (1962) medium (MS) with 1–2 mg/l BA, alone or in combination with NAA or 2,4-D at 0.1 mg/l, the protoplast-derived calli produced complete plantlets through somatic embryogenesis. The maximum percentage of calli producing somatic embryos (52.5± 2.2%) occurred on MS medium containing 0.1 mg/l NAA and 1 mg/l BA, whereas the maximum number of calli regenerating plantlets (64.7±6.2) was obtained on MS medium with 0.1 mg/l NAA and 2 mg/l BA. Received: 25 April 1997 / Revision received: August 1997 / Accepted: 2 September 1997  相似文献   

6.
Plant regenerations were achieved from tissue cultures of 31 species of 15 genus of legume plants on A and B media. Various factors including medium composition (major elements, minor element:s, organic components and phytohormones), seed germination rate, illumination and temperature conditions were tested for their effects on callus differentiation in tissue cultures. Combinations of major elements of A or B medium, minor elements and organic components of B5 medium, illumination of 1500–2500 lx, and temperature of 18–27℃ were found suitable for callus differentiation of most legume plants. The calli induced from freshly collected seeds had higher differentiation capacity than from seeds sored for three years. Four types(a,b,c and d) of callus were morphologically distinguished during the differentiation in legume plant tissue cultures. Generally, calli from plants of the same genus belonged to the same type.  相似文献   

7.
The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short‐lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to nearly completely (98%) regenerate their amputated caudal fins within 4 weeks, whereas middle‐aged fish reached 78%, old fish 57% and very old fish 46% of their original fin size. The difference in growth rate between young and old fish was already significant at 3 days post amputation (dpa) and increased with time. We therefore hypothesized that early events are crucial for the age‐related differences in regenerative capacity. Indeed, we could observe a higher percentage of proliferating cells in early regenerating fin tissue of young fish compared with aged fish and larger fractions of apoptotic cells in aged fish. Furthermore, young fish showed peak upregulation of several genes involved in fgf and wnt/β‐catenin signalling at an earlier time point than old fish. Our findings suggest that regenerative processes are initiated earlier and that regeneration overall is more efficient in younger fish.  相似文献   

8.
While urodele amphibians (newts and salamanders) can regenerate limbs as adults, other tetrapods (reptiles, birds and mammals) cannot and just undergo wound healing. In adult mammals such as mice and humans, the wound heals and a scar is formed after injury, while wound healing is completed without scarring in an embryonic mouse. Completion of regeneration and wound healing takes a long time in regenerative and non-regenerative limbs, respectively. However, it is the early steps that are critical for determining the extent of regenerative response after limb amputation, ranging from wound healing with scar formation, scar-free wound healing, hypomorphic limb regeneration to complete limb regeneration. In addition to the accumulation of information on gene expression during limb regeneration, functional analysis of signaling molecules has recently shown important roles of fibroblast growth factor (FGF), Wnt/beta-catenin and bone morphogenic protein (BMP)/Msx signaling. Here, the routine steps of wound healing/limb regeneration and signaling molecules specifically involved in limb regeneration are summarized. Regeneration of embryonic mouse digit tips and anuran amphibian (Xenopus) limbs shows intermediate regenerative responses between the two extremes, those of adult mammals (least regenerative) and urodele amphibians (more regenerative), providing a range of models to study the various abilities of limbs to regenerate.  相似文献   

9.
10.
Life‐history attributes can impose differences on root system structures and properties related to nutrient and water uptake. Here, we assess whether plants with different post‐fire regenerative strategies (resprouters, seeders and seeder–resprouters) differ in the topological and morphological properties of their root systems (external path, altitude, magnitude, topological index, specific root length, root length, root‐to‐shoot biomass ratio, length of the main axis of the root system and link length). To achieve these objectives, we sampled individuals from eight woody species in a shrubland located in the western Mediterranean Basin. We sampled the adult root systems using manual field excavation with the aid of an air compressor. The results indicate that resprouters have a higher root‐to‐shoot ratio, confirming their higher ability to store water, starch and nutrients and to invest in the belowground biomass. Moreover, this pattern would allow them to explore deeper parts of the soil layers. Seeder species would benefit from a higher specific root length, pointing to increased relative root growth and water uptake rates. This study confirms that seeders and resprouters may differ in nutrient and water uptake ability according to the characteristics of their root system. Species that can both resprout and establish seedlings after fire had different patterns of root system structure; in particular, root:shoot ratio was more similar to resprouters and specific root length was closer to seeders, supporting the distinct functional performance of this type of species.  相似文献   

11.
紫色大花矮牵牛组织培养与植株再生   总被引:6,自引:2,他引:6  
矮牵牛叶片外植体在MS+6-BA 1.0mg/L+NAA 0.1mg/L培养基上培养3周后产生致密的浅绿色愈伤组织;转入芽分化培养基MS+6-BA 0.5mg/L+4-PU 0.5mg/L+NAA 0.1mg/L 1周后,从愈伤组织表面不断分化产生幼芽;待幼芽长至3cm时转接至生根培养基1/2MS+NAA 1.0 mg/L+GA30.5mg/L中生根,长成完整植株。  相似文献   

12.
地黄组织培养及植株再生的研究   总被引:14,自引:2,他引:14  
以地黄根茎所获无菌苗为材料,对其愈伤组织诱导、分化和再生植株的获取进行了初步研究。结果表明:取叶片、茎段、叶柄进行愈伤组织诱导,筛选出最适培养基为MS附加2,4-D0.5mg/L、BA1.0mg/L,愈伤组织诱导率可达100%。将叶片接种在分化培养基中,诱导不定芽,其最适分化培养基为MS附加BA 3mg/L、NAA 0.1mg/L,分化率为77.5%。试管苗在改良的MS(大量与微量元素、铁盐和有机物质各1/2)附加NAA 0.05mg/L的培养基上,经过15~20d培养,生根率可达100%。  相似文献   

13.
14.
骆驼蓬的组织培养及植株再生   总被引:1,自引:0,他引:1  
以骆驼蓬(Peganum harmala L)无菌苗下胚轴切段为材料,在不同的培养基上进行愈伤组织的诱导,发现在MS基本培养基附加2.0mg/L 2,4—D、0.5mg/L 6—BA和3%蔗糖时,可100%的诱导出愈伤组织。愈伤组织在附加2.0mg/L 6—BA、0.5mg/L NAA、500mg/L CH和3%蔗糖的MS培养基上诱导出丛生芽,进而发育成苗,苗的分化频率在30%左右。分化苗或其茎切断在附加0.2mg/L IBA、0.2mg/L NAA和3%蔗糖的l/2MS培养基上出现根的分化,分化频率在90%以上。再生植株经炼苗后移栽成活,成活率在80%以上。  相似文献   

15.
A continuous-flow culture system was developed for culturing Laminaria japonica protoplasts. Protoplasts were settled on 5-μm pore size nylon mesh fixed inside a 50-ml plastic syringe, and cultured in Provasoli's enriched seawater with iodine medium with a gentle upward flow generated by a peristaltic pump. In the culture system, 50% of the protoplasts regenerated their cell wall within 24 hours and almost all protoplasts regenerated a cell wall after 3 days culture. After cell wall regeneration, a number of cells divided and regenerated into sheet-shaped thalli. The thalli transferred to a tissue culture flask developed into sporophyte-like plantlets within 1 month. Plantlets then differentiated into blade, stipe, and holdfast, with a proper mucilage canal. Received: 21 April 1997 / Revision received: 27 June 1997 / Accepted: 5 July 1997  相似文献   

16.
鼎湖山紫背天葵组织培养及植株再生   总被引:3,自引:0,他引:3  
陈刚  陈雄伟  王瑛华 《广西植物》2010,30(3):407-410
选用紫背天葵无菌苗叶片为外植体,建立了离体培养体系,并探讨其愈伤组织生长和不定芽诱导的适宜培养条件。通过研究得出:愈伤组织诱导的最佳培养基是MS+2,4-D 1.00 mg/L+6-BA 1.0 mg/L+LH 200 mg/L+CH200 mg/L+YE 200 mg/L,愈伤组织诱导率为96.88%。不定芽诱导培养基为MS+6-BA 1.0 mg/L+LH 200 mg/L+CH 200 mg/L+YE 200 mg/L,不定芽诱导率为77.3%。不定芽转至1/2MS培养基中均可100%生根并长成完整植株,小苗移栽成活率达到90%。  相似文献   

17.
用4种诱导培养基P1(MS+2,4-D0.5mg/L)、P2(MS+6-BA0.1mg/L+NAA0.5mg/L)、P3(MS+6-BA0.5mg/L+NAA0.5mg/L)、P4(MS+NAA1.0mg/L+KT0.5mg/L),3种分化培养基(MS+6-BA1mg/L;MS+6-BA0.5mg/L;MS+6-BA1mg/L+NAA0.2mg/L)和4种生根培养基(MS;MS+IBA1mg/L;MS+IBA1mg/L+IAA0.5mg/L;1/2MS+IAA0.2mg/L)对苦豆子愈伤组织进行诱导和植株再生,研究影响苦豆子组织培养的因素,结果表明愈伤组织的诱导频率主要依靠激素的种类和浓度,培养基中加入0.2~2mg/L的2,4-D有利于苦豆子愈伤组织生长,但使褐化发生时间提前;培养基中加入活性炭对苦豆子愈伤组织褐化有明显的抑制作用;加入IAA对苦豆子根的分化是必需的。  相似文献   

18.
Barley microspores from five field-grown breeding lines were isolated using an ultra-speed blender and the effect of co-culture with young florets was investigated. Floret co-culture in the induction stage increased the formation of MCS, ELS and green plant regeneration. The florets of teraploid plant were more effective than ones of diploid plant. For line S23, co-culture with florets from tetraploid plants gave rise to 2.6 and 7.8 times more MCS and ELS, respectively, than non-co-culture control, whereas co-culture with florets from diploid plants resulted in 1.8 and 6.1 times more MCS and ELS, respectively, than non-co-culture control (Table 2). Florets subjected to cold treatment for 10–20 days induced a greater response than fresh ones, and florets with uninucleate microspores surpassed binucleate microspores. For microspores culture from 15-day cold pre-treated spikes, 93A floret co-culture gave rise to 3.6 and 6.8 times more MCS and ELS, respectively, than the non-co-cultured control, while SD1 floret co-culture resulted in 1.9 and 4.0 times more, respectively. Similarly, for microspore culture from 20-day cold pre-treated spikes, 93A floret co-culture gave rise to 2.6 and 5.1 times more MCS and ELS, respectively, than non-co-cultured control, while SD1 floret co-culture resulted in 1.5 and 3.0 times more, respectively (Table 3). Some microspores formed dense MCS that did not develop further. Compared with the control, floret co-culture resulted in less dense MCS formation, indicating that the isolated florets were beneficial to the normal development of MCS. Floret co-culture was only effective when the spikes were cold pre-treated before microspore isolation. Spike cold pre-treatment before microspore preparation was crucial for dedifferentiation of cultured isolated microspores, and this could not be replaced by floret co-culture. It is postulated that the florets provided essential substances for in vitro cultured isolated microspores to undergo dedifferentiation and embryogenesis. Both the genotype selection and the physiological status (developmental status and cold treatment) adjustment of the florets for co-culture could improve barley microspore culture. Compared with ovary co-culture, floret co-culture is more efficient. The technique is of simple application in breeding programs and can be a solution for coping with recalcitrant genotypes and or plant donor condition.  相似文献   

19.
Summary Regenerants from a 30-month-old haploid and a 10-month-old diploid tissue culture were cross-pollinated to generate a synthetic genotype (HE/89) with improved competence for maintenance of totipotency in various cultured expiants. The HE/89 zygotic embryos developed friable, embryogenic cultures in the commonly used MS-and N6-based media without the addition of L-proline. By optimalization and changing the culture conditions, we were able to regulate the maintenance of the earlier, more synchronous (Type II) and the later, asynchronous (Type I) in vitro embryogenesis, as well as the shift between different ontogenic stages. Within 70 days after the inoculation of immature embryos a relatively homogeneous, early-embryogenic suspension culture usable for protoplast isolation was established from the initially surface-grown cultures. Using modified solutions for protoplast isolation and culture, viable protoplasts were reproducibly obtained from which plants were regenerated via defined ontogenic steps. Despite the long in vitro history of the parental genotypes, 60–70% of the more than 500 plants derived from the HE/89 protoplasts set seeds following self or sib-pollination.  相似文献   

20.
The effects of different media and cold pretreatment of spikes on the androgenic response and regeneration capacity from anther culture of tritordeum was studied. L5 medium gave the highest frequency of anther response. The frequency of cultures regenerating green or albino plantlets was not affected by the composition of the medium tested. Cold pretreatment of the spikes significantly increased the frequency of anther response and also the percentage of cultures giving albino plantlets. A mean of four green plants was obtained per 100 subcultured calli/embryos. The percentage of spontaneous chromosome doubling was only 1%. The addition of colchicine at 0.02% to the induction medium significantly increased the frequency of doubled haploids regenerated without any effect on regeneration capacity. This technique proved more efficient than a conventional chromosome-doubling method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号