首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The antimutagenic effect of selenium as sodium selenite, sodium selenate, selenium dioxide, and seleno-methionine was studied in the AmesSalmonella/microsome mutagenicity test using 7,12-dimethylbenz(a)anthracene (DMBA) and some of its metabolites. Selenium (20 ppm) as sodium selenite reduced the number of histidine revertants on plates containing up to 100 μg DMBA/plate. Increasing concentrations of selenium as sodium selenite, sodium selenate, and selenium dioxide up to 40 ppm Se progressively decreased the number of revertants caused by 50 μg DMBA. DMBA and its metabolites 7-hydroxymethyl-12-methylbenz(a)anthracene, 12-hydroxymethyl-7-methylbenz(a)anthracene, and 3-hydroxy-7,12-dimethylbenz(a)anthracene were mutagenic forSalmonella typhimurium TA100 in the presence of an S-9 mixture. Selenium supplementation as Na2SeO3 reduced the number of revertants induced by these metabolites to background levels. The antimutagenic effect of inorganic selenium compounds cannot be explained by toxicity of selenium as determined by viability tests withSalmonella typhimurium TA100. Selenium supplementation in all forms examined, except sodium selenate, decreased the rate of spontaneous reversion. Selenium as sodium selenate was slightly mutagenic at concentrations of 4 ppm or less. Higher concentration of Na2SeO4 inhibited the mutagenicity of DMBA. The present studies support the anticarcinogenic potential of selenium and indicate that form and concentration are important factors in this trace element's efficacy.  相似文献   

2.
Zinc deficiency during pregnancy and postnatal life can adversely increase risk of developing human diseases at adulthood. The present study was designed to evaluate whether dietary zinc deficiency or supplementation during the pregnancy, lactation and juvenile stages interferes in the development of mammary tumors induced by 7,12-dimethylbenzanthracene (DMBA) in female Sprague–Dawley (SD) rats. Pregnant female SD rats were allocated into three groups: zinc-adequate diet (ZnA - 35-mg/kg chow), zinc-deficient diet (ZnD - 3-mg/kg chow) or zinc-supplemented diet (ZnS - 180-mg/kg chow) during gestational day 10 (GD 10) until the litters' weaning. Female offspring received the same diets as their dams until postnatal day (PND) 51. At PND 51, the animals received a single dose of DMBA (50 mg/kg, ig) and zinc-adequate diets. At PND 180, female were euthanized, and tumor samples were processed for histological evaluation and gene expression microarray analysis. The ZnD induced a significant reduction in female offspring body weight evolution and in mammary gland development. At late in life, the ZnD or ZnS did not alter the latency, incidence, multiplicity, volume or histological types of mammary tumors in relation to the ZnA group. However, the total tumor number in ZnS group was higher than in ZnA group, accompanied by distinct expression of 4 genes up- and 15 genes down-regulated. The present findings indicate that early-in-life dietary zinc supplementation, differently to zinc deficiency, has a potential to modify the susceptibility to the development of mammary tumors induced by DMBA.  相似文献   

3.
The aim of this study was to evaluate the influence of arsenic and bromine exposure with or without iodine and selenium supplementation on the element level in the thyroid of rats. Four major groups of Wistar female rats were fed with respective diets: group A - standard diet, group B - iodine rich diet (10 mg I/kg food), group C - selenium rich diet (1 mg Se/kg) and group D - iodine and selenium rich diet (as in group B and C). Each group was divided into four subgroups per 7 animals each receiving either NaAsO(2) ip (6.5 mg.kg(-1) twice a week for two weeks and 3.25 mg.kg(-1) for six weeks) or KBr in drinking water (58.8 mg.l(-1)) for 8 weeks or combined administration of both substances. Remaining subgroup served as controls. After 8 weeks thyroid glands were analyzed by ICP-MS for As, Br, Se, and I content. The exposition of rat to arsenic or bromine causes the accumulation of these elements in the thyroid gland ( approximately 18 ppm of As, approximately 90 ppm of Br) and significantly affects iodine and selenium concentration in the thyroid. In iodine and/or selenium supplemented rats the bromine intake into the thyroid was lowered to approximately 50% of the level in unsupplemented animals. Also selenium thyroid level elevated due to KBr administration was lowered by iodine supplementation in the diet. The accumulation of arsenic in the thyroid was not influenced by selenium or iodine supplementation; however, As(III) administration increased iodine thyroid level and suppressed selenium thyroid level in selenium or iodine supplemented group of animals.  相似文献   

4.
The metabolism of carcinogens in fish was examined by measuring the activation of different polycyclic aromatic hydrocarbons (PAH) by carp (Cyprinus carpio L.) liver post-mitochondrial fractions (S9) using the Salmonella typhimurium TA100 reverse mutation assay. For this study, 1 non-carcinogen, anthracene (AN), and 4 carcinogens, chrysene (CHR), benzo[a]pyrene (BaP), 3-methylcholanthrene (3MC) and 7,12-dimethylbenzanthracene (DMBA), were chosen. The bioactivating potency of the metabolic systems of carp pretreated with phenobarbital (PB), 3MC or Aroclor 1254 (ARO) were compared to uninduced carp liver. The results show that carp liver has the ability to metabolize carcinogenic PAH into mutagenic metabolites, which is enhanced when carp are pretreated with 3MC or ARO, but not with PB. A positive correlation between the induction of aryl hydrocarbon hydroxylase (AHH) activity in carp liver and the mutagenic potencies of CHR, BaP, DMBA and 3MC, has been observed. The bioactivating ability of carp liver S9 was compared with the ability of the same fractions from female Wistar rats (this study) as well as from Sprague-Dawley rats (literature data). When the mutagenic potencies of selected PAH had been normalized on the activity of BaP, the following order of mutagenic activities with S9 fractions from ARO-treated animals was obtained: (1) BaP (1) greater than DMBA (0.26) greater than 3MC (0.22) greater than CHR (0.05) greater than AN (0) for carp; (2) BaP (1) greater than 3MC (0.48) greater than CHR (0.31) greater than DMBA (0.16) greater than AN (0) for Sprague-Dawley rats; and (3) BaP (1) greater than 3MC (0.17) greater than DMBA (0.11) greater than CHR (0) = AN (0) for female Wistar rats. We conclude that carp and rats are very similar in their ability to activate carcinogenic PAH into mutagenic metabolites, which suggests that carp may be very susceptible to the carcinogenic activity of these compounds. According to our results from the mutagenicity study, as well as from the enzyme induction study, we propose the use of carp as a suitable model system for the study of chemical carcinogens.  相似文献   

5.
The present report demonstrates, for the first time, that feeding rats 50 ppm cadmium for just 7 wk results in detectable levels of cadmium in the eye of rats. Furthermore, these ocular cadmium concentrations affect significant alterations in the levels of the essential trace elements selenium, calcium iron, and copper in the eye. Rats were fed a low-selenium (<0.02 ppm selenium), high-copper basal diet (50 ppm copper) supplemented with 0, 0.1, and 0.5 ppm selenium. The animals were either untreated or treated with 50 ppm cadmium admixed with their feed. Cadmium treatment resulted in significant reductions (up to 50%) in ocular selenium. Furthermore, rats fed the basal diet and given 100 ppm cadmium via their feed for 6 wk exhibited a 69% reduction in the activity of the selenoenzyme, glutathione peroxidase, in the eye. Cadmium treatment also resulted in reductions of up to 50% in ocular calcium, irrespective of dietary selenium supplementation. Iron levels were increased by 30% in rats fed the low-selenium diet and decreased by as much as 40% in rats fed the selenium-supplemented diets, compared to animals fed identical levels of selenium without cadmium. Ocular copper levels were significantly increased only in rats fed the low-selenium diet and treated with cadmium. Ocular zinc levels were not significantly affected by dietary cadmium or selenium.  相似文献   

6.
The effect of dietary selenium (Se) and vitamin E supplementation on tissue reduced glutathione (GSH) and glutathione peroxidase activity has been studied in the rat. Increasing Se intake by 0.4 ppm gave significantly higher enzyme levels in all tissues studied, an effect not influenced by vitamin E intake. Further increasing Se to 4 ppm gave higher enzyme levels in red blood cells only, while in liver was there was a significant decrease in enzyme activity probably reflecting Se hepatotoxicity. In the absence of Se supplements increasing dietary vitamin E to 100 mg/kg diet significantly increased enzyme activity but this effect was modified by simultaneous Se supplementation.Se intake had no effect on GSH levels. Rats on high vitamin E intake 500 mg/kg had a significantly higher tissue GSH level. Dietary Se had a sparing effect on vitamin E, rats supplemented with Se having significantly raised plasma vitamin E levels.These results confirm the role of selenium in glutathione peroxidase and also show that vitamin E influences the activity of the enzyme.  相似文献   

7.
That enzyme fractions derived from animals chronically fed alcohol can alter the metabolism of carcinogenic xenobiotic compounds has been documented. To further understand this relationship the mutagenicity of 3 aromatic amines was determined in the Ames test, employing activation systems derived from rats maintained on an alcohol-containing liquid diet, an isocaloric control liquid diet or Aroclor 1254-pretreated animals fed standard laboratory chow. Depending upon protein and substrate concentrations, S9 from ethanol-fed rats was 30-50% less efficient than S9 from pair-fed rats in activating arylamines (2-aminofluorene, 2-aminoanthracene and 2-acetylaminofluorene) to mutagens in Salmonella typhimurium TA98 and TA100. Cytosolic fractions from ethanol-fed animals always resulted in greater arylamine activation than that of controls whereas the opposite was true of the microsomal compartment in which the ethanol-treated group was consistently less active than the controls. The cytosolic N-acetyltransferase activities with respect to 2 different substrates, isoniazid and 2-aminofluorene, were unaffected by ethanol consumption, indicating that this activity probably does not account for the different activation profiles exhibited by the ethanol and pair-fed cytosolic systems. Both the cytosolic and microsomal compartments are required for maximal expression of the mutagenicity of each arylamine however, each compartment can activate arylamines independently of the other. Reconstituting cytosol with microsomes from ethanol- and pair-fed rats, but not Aroclor-pretreated rats, resulted in a synergistic activation of the aromatic amines and displayed an effect similar to that of S9. Compared to Aroclor pretreatment and pair-fed controls, microsomes from ethanol-fed rats displayed the least capacity for activating any of the arylamines to mutagens. Microsomes from Aroclor-pretreated rats accounted for at least 80% of the S9-mediated activation of each of the arylamines to mutagenic metabolites which was in marked contrast to the contribution of the microsomal fractions to the S9 activity in the ethanol- (5-20% of S9 activity) and pair-fed systems (22-30% of S9 activity). The data indicate that 2 opposing reactions occur in S9, a cytosolic activity that augments and a microsomal activity that attenuates the mutagenicity of arylamines. Both activities are modified by ethanol consumption and Aroclor pretreatment.  相似文献   

8.
Rat-liver S9 preparations became highly mutagenic to cultured L5178Y mouse lymphoma cells when the exposure period was increased to 18-24 h or when S9 mix was preincubated in Fischer's medium at 37 degrees C for 19 h and then used to treat the cells for 4 h. Five different S9 preparations (from untreated and Aroclor 1254-treated Fischer 344 or Sprague-Dawley male rats) behaved similarly. S9 mix, which contained 1 mM NADP and 5 mM isocitrate as cofactors, was more mutagenic than S9 alone. Heat treatment of S9 did not destroy its mutagenic activity, but the addition of cofactors no longer stimulated an increase in mutagenicity, as observed with native S9. Treatment with cofactors was not mutagenic. These results implied the involvement of both energy-independent and NADPH-dependent enzymatic changes in S9 mix in producing mutagenic substances. The mutagenic treatments with S9 or S9 mix induced predominantly small TFT-resistant mutant colonies, which suggested that these treatments should be clastogenic to cultured mammalian cells. A warning was given that test chemicals evaluated as mutagenic only in the presence of S9 mix may instead be accelerating the decomposition of S9 mix into mutagens, and it may become necessary to experimentally distinguish between these two mechanisms before a chemical can be regarded as mutagenic.  相似文献   

9.
Persistent Mg2+ deficiency may interfere with restoration of normal tissue K+ levels. This study examined: a) the effects of chronic furosemide treatment on K+ of sartorius, aorta and ventricle of rats fed Mg2(+)-deficient (100 ppm) or Mg2(+)-sufficient (400 ppm) diet and deionized water; b) whether normal tissue K+ is restored by oral K+ or K+/Mg2+ supplementation with continued furosemide therapy. Levels of Mg2+ were also measured. Furosemide (20 mg/kg i.p.) decreased K+ in sartorius, aorta and ventricle by 5.5, 4.3 and 19.9 microEq/gm (p less than .05), respectively, in rats fed 100 ppm Mg2+ diet. Furosemide did not alter K+ levels in rats fed 400 ppm Mg2+ diet. K+ supplementation (1 mEq/kg for 7 days) restored K+ to normal in sartorius but the addition of Mg2+ supplementation was necessary to restore K+ levels to normal in ventricle and aorta. These data indicate that furosemide can decrease tissue K+ in rats on a Mg2(+)-deficient diet. This decrease can be reversed during diuretic administration by K+ supplementation in sartorius, or K+ plus Mg2+ supplementation in ventricle and aorta.  相似文献   

10.
Liver S9 fractions were prepared from male Wistar rats, either non-induced or induced with Aroclor 1254 and from 5 human kidney transplant donors. The preparations were compared for their ability to metabolize the premutagens present in coal tar to mutagenic metabolites in the Salmonella mutagenicity assay towards strain TA98. Low levels of mutagenicity of coal tar were seen with human S9 preparations. The differences between the S9 mix of the 5 donors in capacity to activate premutagens were approximately 6-fold. The activation of coal tar by rat liver S9 preparations was higher than by the human S9 preparations. The metabolic conversion of pyrene in coal tar to 1-hydroxypyrene by the same human S9 preparations was determined in a parallel assay. 3 human preparations showed a high correlation between the formation of 1-hydroxypyrene and bioactivation of coal tar to mutagenic metabolites. The slope values of the individual regression lines were equal, suggesting that 1-hydroxypyrene is a good indicator for the activation of premutagens present in coal tar.  相似文献   

11.
Selenium added to the incubation mix containing rat-liver S9 modified both the metabolism and mutagenicity of benzo[a]pyrene (BaP) and several of its metabolites. Selenium (Na2SeO3) inhibited the S9-dependent mutagenic effects of BaP on Salmonella typhimurium strain TA100 as indicated by the number of histidine-dependent revertants counted. This inhibition was concentration-dependent over a range of 12.5 to 100 ppm. When used as the substrate the BaP metabolites 7,8-dihydrodiol, 9,10-dihydrodiol and 3-hydroxy also produced significantly fewer revertants in TA100 when selenium was included in the incubation mix. High-performance liquid chromatographic analysis of metabolites from S9-dependent metabolism of BaP indicated that selenium inhibited the formation of 3-hydroxy-BaP, 9,10-dihydrodiol, 7,8-dihydrodiol, 1,3- and 3,6-quinone. Eluting samples on an alumina column to isolate the conjugated metabolites showed that selenium caused 12% less binding to glucuronides, no significant differences in binding to sulfate esters or glutathione but the amount of unmetabolized BaP and unconjugated metabolites was increased by 48%. These results suggest that selenium inhibits S9-dependent BaP metabolism therefore reducing the mutagenic effects of this compound.  相似文献   

12.
The fungicide benomyl and its commercial preparations Fundazol 50WP and Benlate 50WP and the benomyl metabolite methyl-2-benzimidazole carbamate and its commercial preparation MBC 50WP were tested for mutagenicity in in vitro spot tests, in microsomal plate assay, in liquid-culture treatments, or in rodent host-mediated assay. The base-pair substitution Salmonella typhimurium mutant hisG46 and the hisG46-bearing uvrB excision-repair-deficient mutants TA100, TA1530, TA1535 or TA1950 were used as test organisms. Complete genotypic information of these mutants is given in Ames et al. [2]. Captain 50WP, streptozotocin (SZN), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 2-aminopurine and N-acetylaminofluorene were used as positive control compounds. In nonoverlay spot tests Benlate 50WP was not mutagenic over a dose range of 50-5000 microgram/spot in hisG46 and TA1535. In overlay spot tests 50 or 100 microgram/spot Benomyl, MBC, Fundazol 50WP, Benlate 50WP and MBC 50WP were tested in hisG46, TA1530 or TA1950. Only a non-commercial MBC sample at 100 microgram/spot showed weak mutagenic activity in hisG46. In microsomal activation plate assay MBC, benomyl, Fundazol 50WP and Benlate 50WP were tested in TA100 over a dose range of 50-2000 microgram/plate. None of the compounds showed mutagenicity. In a 20-h liquid-culture treatment 10, 100, 1000 and 10 000 microgram/ml Fundazol 50WP were not mutagenic in TA 30. In 1-h liquid-culture treatments benomyl, Benlate 50WP or Fundazol 50WP failed to induce mutations in hisG46, TA100 or TA1950 over a dose range of 0.25-1000 microgram/ml. Appropriate positive controls were mutagenic in each experiment. The consistently negative results in this study with commercial MBC and benomyl preparations are contrary to positive results reported earlier with similar methods and similar commercial preparations. Possible reasons to explain the different results are presented. The alkylating agents SZN and MNNG induced fewer mutations in TA1530 and TA1950 uvrB excision-repair-deficient strains than in the hisG46 excision-proficient strain, indicating that with these mutagens excision-repair is also a mutation-prone process. In rodent host-mediated assays with Fundazol 50WP in mice 3 consecutive subcutaneous hourly doses of 500 mg/kg in hisG46 and TA1950 and in rats or mice an oral dose of 4000 mg/kg in TA1950 were not mutagenic. The positive control SZN was mutagenic.  相似文献   

13.
Ameltolide, a novel anticonvulsant agent, has been shown in animal models to be effective in controlling seizures. The developmental toxicity of ameltolide was evaluated in two species. Naturally mated rats and rabbits were dosed once daily by gavage on gestation days (GD) 6-17 and 6-18, respectively. Rats were given doses of 0, 10, 25, or 50 mg/kg; rabbits were given 0, 25, 50, or 100 mg/kg. Laparotomy was performed on rats on GD 20 and on rabbits on GD 28. In rats, maternal toxicity was indicated at the 25- and 50-mg/kg dose levels by depressed body weight gain. Fetal body weight was depressed at the 50-mg/kg dose level. Fetal viability and morphology were not affected. The no-observed effect levels (NOEL) for adult and developmental toxicity in the rat were 10 and 25 mg/kg, respectively. In rabbits, maternal toxicity was indicated by a net loss in body weight at the 50- and 100-mg/kg dose levels. Fetal viability and body weight were depressed at the 100 mg/kg dose level. Shortened digits occurred on the right forepaw of one fetus at the 50-mg/kg dose level (in conjunction with severe maternal toxicity) and on the hindpaws of two fetuses from separate litters at the 100-mg/kg dose level. Incomplete ossification of the phalanges occurred on the forepaws of nine fetuses from four litters at the 100-mg/kg dose level. Ameltolide was weakly teratogenic in the rabbit. The NOEL for adult and developmental toxicity in the rabbit was 25 mg/kg.  相似文献   

14.
Diethylstilbestrol was tested for mutagenicity with his- S. typhimurium strains under 10 different matabolic situations (no exogenous metabolizing system; S9 mix from liver homogenate of rats induced with Aroclor 1254, with or without inhibition of epoxide hydratase; liver and/or kidney S9 mix from control or hamsters treated with Aroclor 1254; horse-radish peroxidase + H2O2). Under none of these conditions did diethylstilbestrol give any indication of a mutagenic effect. Furthermore, 11 metabolites and other derivatives of diethylstilbestrol, 2 of them potent inducers of sister-chromatid exchange in cultured fibroblasts, were not mutagenic with any of the 4 tester strains (S. typhimurium TA100, TA98, TA1537, TA1535) in the presence or absence of S9 mix from liver homogenate of rats induced with Aroclor 1254. Thus, one of the few known human carcinogens is very resistant to detection by the mammalian enzyme-mediated Salmonella typhimurium mutagenicity test (Ames test). This is especially remarkable since the metabolizing systems used included: (1) some of very high metabolic activity (S9 mix from liver homogenate of rats and hamsters induced with Aroclor 1254); (2) metabolizing systems from organs susceptible to the carcinogenic activity of diethylstilbestrol (hamster kidney); as well as (3) a mixture of (1) and (2) in case both activities are required for the carcinogenic effect in the whole animal.  相似文献   

15.
The mutagenic potential of three alkyl 2-cyanoacrylate adhesives, three commercial alkyl 2-cyanoacrylate adhesives and three methyl 2-cyano-3-phenylacrylates, was assessed using the Salmonella/microsome mutagenicity assay. Compounds were tested with and without Aroclor 1254-induced rat-liver homogenate (S9 mix). The methyl 2-cyanoacrylate adhesives were mutagenic in the standard plate test with S. typhimurium strain TA100 with and without S9 activation. Methyl 2-cyano-3-(2-bromophenyl)acrylate revealed a direct mutagenic action to S. typhimurium strain TA1535. The compounds most toxic towards the bacterium S. typhimurium, were the methyl 2-cyanoacrylate adhesives (greater than 500 micrograms/plate). All alkyl 2-cyanoacrylate adhesives were tested in a modified spot test for volatile compounds with tester strain TA100. Mutagenic and toxic effects were observed with the three methyl 2-cyanoacrylate adhesives. It can be concluded from the results that the bacterial toxicity and mutagenicity of methyl 2-cyanoacrylate adhesives may be due to the methyl 2-cyanoacrylate monomer.  相似文献   

16.
Inbred female C3H/St mice exhibit the normal incidence of spontaneous mammary adenocarcinoma of 80--100% if they are maintained on a standard commercial laboratory diet containing 0.15 ppm of selenium with meat and dried skimmed milk as major sources of protein. The tumor incidence drops to 42% if animals of the same strain are kept on a diet containing 0.45 ppm of selenium, with fishmeal as the main source of protein. The tumor incidence declines further to 25, 19 and 10% if the animals in addition receive 0.1, 0.5, and 1.0 ppm of selenium in the drinking water. Selenium supplementation at these levels has no noticable adverse effects on weight-grains and survival of the mice. Selenium supplmented groups of animals also remained tumor-free for longer periods than the unsupplemented controls. The results of this study indicate that a diet rich in seafoods and cereals provides more selenium and may in turn lower the probability of cancer development. Reference is made to the average human diet in the U.S.A., which only contains 0.07--0.15 ppm of selenium due to the comparatively low consumption of cereals and seafoods. An equivalent mouse diet would not have any cancer-protecting effect in the C3H/St mice of our study. Australian workers have reported significantly lower tumor incidence in a different strain of C3H mice if it was kept in Australia rather than in the U.S.A. We have found that the Australian feed contained three times more selenium than that employed in the U.S.A. and propose that this difference in selenium content was primarily responsible for these previous observations.  相似文献   

17.
Individual S9 microsomal fractions prepared from normal livers of 8 rodent species or strains and from 1 rat strain pretreated with Aroclor 1254, were used to metabolize the promutagens N-acetyl-2-aminofluorene, 1,2--benzanthracene, to metabolize the promutagens N-acetyl-2-aminofluorene, 1,2-benzanthracene, benzo[a]pyrene, and 3-methylcholanthrene to active forms during 3-h co-incubation in the presence of L5178Y/TK+/− cells. The 8 compatible S9 preparations all converted each of the 4 chemical carcinogens into active mutagens with varied efficiencies except for the Aroclor-induced rat S9/benzanthracene combination which produced only weak activity. Aroclor induction did not notably enhance the mutagenicity of benzo[a]pyrene or 3-methylcholanthrene beyond that activity mediated by the other non-induced preparations. Syrian hamster S9 and, to a lesser degree, C57BL/6J mouse S9 were exceptionally active in converting N-acetyl-2-aminofluorene to toxic and mutagenic metabolites. One source of Swiss mouse liver (Blu : Ha ICR) provided the most active S9 when tested with the 3 polycyclic aromatic hydrocarbons.In general, mutagenicity and cytotoxicity were roughly correlated within S9 + promutagen combinations. Almost all of the methylcholanthrene metabolizing activity was lost by the 12th week when Aroclor-induced rat S9 was held at −20°C, yet this activity remained constant when similar S9 was stored at −80°C for 14 weeks. Surprisingly, some S9 sources including the induced rat-liver preparation converted anthracene to a weak or border-line mutagen. The activation of both 1,2-benzanthracene and anthracene may be linked within each species or strain although Aroclor induction enhanced anthracene mutagenicity yet attenuated the mutagenicity of 1,2-benzanthracene. Collectively, these data underscore the current inchoate state of development for S9 coupled somatic cell mutation assays.  相似文献   

18.
A recent finding in epidemiological and laboratory studies suggests that the ratio of selenium to glutathione is lower in breast cancer subjects than its control counterparts. Selenium, an antioxidant and anticarcinogen, can modify the status of glutathione and some associated enzymes by blocking peroxidation of lipids in membranes of cancer subjects. Studies were conducted using female albino rats of Wistar strain bearing mammary tumor induced by 7,12-dimethylbenz(a) anthracene to assess the biological role of selenium on some antioxidant enzymes associated with the maintenance of glutathione status. For induction of mammary tumor, 25 mg DMBA in a 1 ml emulsion of sunflower oil and physiological saline was injected subcutaneously to each rat. One group in each of control and tumor bearing rats, were fed 5 mg sodium selenite/kg diet from the day of tumor induction for 24 weeks. Increase in the reduced glutathione concentration was preceded by significant increase in the oxidized glutathione as well as in the activities of -glutamylcysteine synthetase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, and glucose-6-phosphate dehydrogenase by selenium administration in rats bearing tumor. However, selenium administration to rats bearing tumor decreased the activity of -glutamyl transpeptidase. These observations clearly demonstrate the influence of dietary selenium supplementation in correcting abnormal changes in glutathione turnover and some associated enzymes in tumor induced rats.  相似文献   

19.
The influence of dietary supplementation with thiamine on lead (Pb) contents in blood and tissues, blood δ-aminolevulinic acid dehydratase (δ-ALAD) activity, and urinary excretion of δ-aminolevulinic acid (δ-ALA) was evaluated in male Sprague-Dawley rats. Groups of randomly selected animals were given a thiamine-deficient diet, a diet containing normal thiamine (20 mg/kg), or a thiamine-supplemented diet (50 mg/kg), along with control drinking water or water containing 100 ppm Pb, for 4 mo. Animals fed the thiamine-supplemented diet (50 mg/kg) and Pb showed decreased urinary excretion of δ-ALA and a decreased inhibition of δ-ALAD activity in blood compared to those given Pb with normal thiamine diet. The liver, kidney, and blood of rats receiving supplemental thiamine also contained significantly less Pb than the other two treatment groups given Pb-containing water. The protective effect of thiamine against Pb toxicity may be attributed to its interference with retention of the metal in body tissue, possibly resulting from the formation of excretable thiamine-lead complexes.  相似文献   

20.
The constitutive and Aroclor 1254-induced activities of hepatic microsomal benzo[a]pyrene hydroxylases in male and female rats were determined in animals from ages 11 to 120 days. In 11-day-old noninduced male rats, benzo[a]pyrenediones and 9-hydroxybenzo[a]pyrene were the major microsomal metabolites; in 21-day-old males benzo[a]pyrene-diones and benzo[a]pyrene-9,10-dihydrodiol were predominant. In 60- and 120-day-old animals 3-hydroxybenzo[a]pyrene was the major microsomal metabolite. A similar trend was observed for the development of benzo[a]pyrene hydroxylase activities in female rats. With the exception of 4,5-dihydrodiol formation, the highest induction of individual and total benzo[a]pyrene hydroxylase activities by Aroclor 1254 was observed in the 21-day-old immature male rats, in which there was a 330- and 4.5-fold increase in the formation of 3-hydroxybenzo[a]pyrene and quinone metabolites, respectively. The induction of benzo[a]pyrene total metabolite formation by Aroclor 1254 in female rats from 11 to 120 days of age was relatively constant (i.e., 13.3- to 10.1-fold induction); however, the relative induction of the individual benzo[a]pyrene hydroxylases was highly variable. In a second set of experiments, male and female rats were neonatally exposed to phenobarbital (600 mumol/kg) or Aroclor 1254 (100 mumol/kg), and the effects of these xenobiotics on neonatal imprinting of hepatic microsomal benzo[a]pyrene hydroxylase activities were determined in the 120-day-old animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号