首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The demand for measuring forces exerted by animals during locomotion has increased dramatically as biomechanists strive to understand and implement biomechanical control strategies. In particular, multi-axial force transducers are often required to capture animal limb coordination patterns. Most existing force transducers employ strain gages arranged in a Wheatstone bridge on a cantilever beam. Bi-axial measurements require duplicating this arrangement in the transverse direction. In this paper, we reveal a method to embed a Wheatstone bridge inside another to allow bi-axial measurements without additional strain gages or additional second beams. This hybrid configuration resolves two force components from a single bridge circuit and simplifies fabrication for the simultaneous assessment of normal and transverse loads. This design can be implemented with two-dimensional fabrication techniques and can even be used to modify a common full bridge cantilever force transducer. As a demonstration of the new design, we built a simple beam which achieved bi-axial sensing capability that outperformed a conventional half-bridge-per-axis bi-axial strain gage design. We have used this design to measure the ground reaction forces of a crawling caterpillar and a caterpillar-mimicking soft robot. The simplicity and increased sensitivity of this method could facilitate bi-axial force measurements for experimental biologists.  相似文献   

2.
A mathematical model was developed for an implantable force transducer to be inserted within the midsubstance of a ligament or tendon. The model was generated by performing both equilibrium and strain-displacement analyses on a metallic, curved beam structure placed within a parallel-fibered tissue. The analysis permitted the transverse pressure acting between the device and fibers to be calculated along with peak device strain and sensitivity (ratio of strain output to axial tissue force). Transducer pressure and transducer strain were expressed in terms of nondimensionalized design factors. A parametric analysis of the key design factors was then performed. The transverse pressure was shown to vary little for large changes in these factors whereas device strain changed markedly. The analysis was verified by a bench test on an example device. Such a model permits a proposed design to be evaluated without having to conduct costly experiments.  相似文献   

3.
Papillary muscle isolated from adult mouse hearts can be used to study cardiac contractility during different physiological/pathological conditions. The contractile characteristics can be evaluated independently of external influences such as vascular tonus or neurohumoral status. It depicts a scientific approach between single cell measurements with isolated cardiac myocytes and in vivo studies like echocardiography. Thus, papillary muscle preparations serve as an excellent model to study cardiac physiology/pathophysiology and can be used for investigations like the modulation by pharmacological agents or the exploration of transgenic animal models. Here, we describe a method of isolating the murine left anterior papillary muscle to investigate cardiac contractility in an organ bath setup. In contrast to a muscle strip preparation isolated from the ventricular wall, the papillary muscle can be prepared in toto without damaging the muscle tissue severely. The organ bath setup consists of several temperature-controlled, gassed and electrode-equipped organ bath chambers. The isolated papillary muscle is fixed in the organ bath chamber and electrically stimulated. The evoked twitch force is recorded using a pressure transducer and parameters such as twitch force amplitude and twitch kinetics are analyzed. Different experimental protocols can be performed to investigate the calcium- and frequency-dependent contractility as well as dose-response curves of contractile agents such as catecholamines or other pharmaceuticals. Additionally, pathologic conditions like acute ischemia can be simulated.  相似文献   

4.
Complete software support has been developed for a direct memory access microprocessor system used to store and analyze diffraction data from striated muscle. These studies are based on the premise that the regularly alternating light and dark regions of the fiber behave like a phase grating to incident laser light. A knowledge of the position of a diffracted order can thus be used to determine striation spacing. Since these striations are directly associated with the force generating components of the muscle, diffraction data can provide insights into the mechanism of force generation in muscle.In our system, a charge-coupled device (CCD) is used to detect diffracted order, position, and intensity. In addition, a high speed muscle puller and tension transducer are used to characterize or alter the mechanical state of the muscle.The software has been designed to allow the inexperienced user to perform sophisticated diffraction experiments. The user may present several experimental parameters: magnitude and direction of puller movement; number of frames of data to be taken; and delay of puller or scan. This has been accomplished by interleaving DMA and control loop cycles.System performance indicates that the full 256 point analog output of the CCD can be digitized and stored in about 2 ms. The data can be transferred directly from the CCD to memory leaving the CPU free for experimental control or closed-loop processing.  相似文献   

5.
Using newly developed nanofabricated cantilever force transducers, we have measured the mechanical properties of isolated thick filaments from the anterior byssus retractor muscle of the blue mussel Mytilus edulis and the telson levator muscle of the horseshoe crab Limulus polyphemus. The single thick filament specimen was suspended between the tip of a flexible cantilever and the tip of a stiff reference beam. Axial stress was placed on the filament, which bent the flexible cantilever. Cantilever tips were microscopically imaged onto a photodiode array to extract tip positions, which could be converted into force by using the cantilever stiffness value. Length changes up to 23% initial length (Mytilus) and 66% initial length (Limulus) were fully reversible and took place within the physiological force range. When stretch exceeded two to three times initial length (Mytilus) or five to six times initial length (Limulus), at forces approximately 18 nN and approximately 7 nN, respectively, the filaments broke. Appreciable and reversible strain within the physiological force range implies that thick-filament length changes could play a significant physiological role, at least in invertebrate muscles.  相似文献   

6.
Cross-bridge elasticity in single smooth muscle cells   总被引:7,自引:5,他引:2       下载免费PDF全文
In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross-bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge.  相似文献   

7.
The subfragment 2/light meromyosin “hinge” region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.  相似文献   

8.
A transducer for measuring the force applied to the trumpet mouthpiece during performance is described. The device allowed the players to perform on their own instrument and in their usual manner. The results of tests on 60 subjects showed that during playing the force between the mouthpiece and instrument increased with increasing loudness and ascending pitch but that there was no significant correlation between mouthpiece force and proficiency or style. The maximum force which the players could tolerate was greater for high proficiency players than for medium.  相似文献   

9.
This study examines vascular reactivity to alpha-adrenoceptor agonists in mineralocorticoid (deoxycorticosterone acetate (DOCA-salt) hypertensive and normotensive rats. The rats were anesthetized and the mesenteric artery was excised and cut helically into strips that were mounted in a muscle bath for the measurement of isometric force development. Addition of norepinephrine, epinephrine, phenylephrine, methoxamine, or clonidine to the bath caused contractions in all arteries. Arteries from hypertensive rats were more sensitive (lower ED50 values) to each of the agonists than arteries from normotensive rats. alpha-Adrenoceptor affinity for phentolamine (Schild analysis; norepinephrine as the agonist) in hypertensive arteries was not significantly different from that in normotensive arteries. Maximal force generation to clonidine was greater in hypertensive arteries than in normotensive arteries. These results demonstrate an augmented vascular sensitivity to several alpha-adrenoceptor agonists in DOCA hypertensive rats. This change in sensitivity is independent of a change in affinity for the adrenoceptor antagonist, phentolamine. It may be that a change in receptor number or an alteration in a post-receptor activation event accounts for this enhanced adrenoceptor responsiveness in mineralocorticoid hypertension.  相似文献   

10.
Many studies have demonstrated that mitotic cells can round up against external impediments. However, how the stiffness of external confinement affects the dynamics of rounding force/pressure and cell volume remains largely unknown. Here, we develop a theoretical framework to study the rounding of adherent cells confined between a substrate and a cantilever. We show that the rounding force and pressure increase exclusively with the effective confinement on the cell, which is related to the cantilever stiffness and the separation between cantilever and substrate. Remarkably, an increase of cantilever stiffness from 0.001 to 1 N/m can lead to a 100-fold change in rounding force. This model also predicts an active role of confinement stiffness in regulating the dynamics of cell volume and hydrostatic pressure. We find that the dynamic changes of cellular volume and hydrostatic pressure after osmotic shocks are opposite if the cantilever is soft, whereas the dynamic changes of cellular volume and pressure are the same if the cantilever is stiff. Taken together, this work demonstrates that confinement stiffness appears as a critical regulator in regulating the dynamics of rounding force and pressure. Our findings also indicate that the difference in cantilever stiffness need to be considered when comparing the measured rounding force and pressure from various experiments.  相似文献   

11.
The atomic force microscopy (AFM) has been used as a force sensor to measure unbinding forces of single bound complexes in the nanonewton and piconewton range. Force spectroscopy measurements can be applied to study both intermolecular and intramolecular interactions of complex biological and synthetic macromolecules. Although the AFM has been extensively used as a nano force sensor, the commercially available cantilever is limited to silicon and silicon nitride. Those materials reduce the adhesion sensitivity with specific surface and/or molecule. Here, we functionalized the AFM tip with carboxylic groups by applying acrylic acid (AA) vapor at radio frequency plasma treatment at 100 W for 5 min. This method provides a remarkable sensitivity enhancement on the functional group interaction specificity. The functionalized tip was characterized by scanning electron microscopy. The electron beam high resolution images have not shown significant tip sharpness modification. Silicon wafers (1 0 0)-no treated and functionalized by AA plasma treatment-were characterized by Auger electron spectroscopy to elucidate the silicon surface sputtering and demonstrate functionalization. The Fourier transform-infrared spectroscopy spectrum shows a high absorbance of avidin protein over the silicon surface functionalized by AA plasma treatment.We carried out force spectroscopy assay to measure the unbinding force between the well-established pair biotin-avidin. At pulling speed of 2 μm/s, we measured the unbinding force of 106?±?23 pN, which is in good agreement with the literature, demonstrating the effectiveness of the tip functionalization by AA plasma treatment in biological studies.  相似文献   

12.
BackgroundForce measurements on the mitral valve apparatus have been reported from in vivo and in vitro studies. Recent reparative techniques for ischemic mitral valve insufficiency call for papillary muscle relocation. This study describes a device to measure forces generated on traction sutures utilized for this purpose.MethodsThe transducer design was based on a modified caliper with strain gauges attached. Finite element computer simulation was employed to optimize the signal output. The system was designed to facilitate investigation of the effects of shortening GoreTex traction suture that was extended from near the fibrous trigones of the mitral valve through the papillary muscles. The suture was exteriorized out through the left ventricle in a porcine setup (n=11) and attached to the dedicated device for simultaneous papillary muscle relocation and traction suture force measurement.ResultsThe transducer demonstrated excellent signal strength, linearity, and durability. Peak force was seen at the onset of the systolic isovolumic contraction (p<0.001). Initial results indicated that this external approach can document force magnitudes comparable to previous internally measured forces in the mitral valve apparatus.ConclusionsIt has been proven feasible to measure forces in the mitral valve papillary muscle relocation sutures with an external device. The results from using this equipment will provide insight into the biomechanical requirements of relocation traction sutures and other devices utilized for papillary muscle relocation.  相似文献   

13.
In architecturally complex muscles with large attachment areas, it can be expected that during movement different muscle regions undergo different amounts of length excursions. As a consequence, the amount of passive force produced by the regions will differ. Therefore, we tested the hypothesis that during movement the vector of the passive force of such a muscle, which defines the magnitude, position and orientation of the resultant force of the various regions, has no fixed position, between the muscle's center of origin and insertion. As a model for an architecturally complex muscle we used the masseter muscle. It was expected that during jaw opening anterior muscle regions are more stretched than posterior regions, leading to an anterior shift of the passive force vector. A three-component force transducer was used to measure both the position and magnitude of passive force in the masseter muscle of 9 rabbits. Forces were recorded during repeated cycles of stepwise opening and closure of the jaw. The muscle exhibited a clear hysteresis: passive force measured during jaw opening was larger than that during jaw closing. With an increase of the jaw gape there was an approximately exponential increase of the magnitude of the passive muscle force, while simultaneously the passive force vector shifted anteriorly. Moment arm length of passive force increased by about 100%. This anterior shift contributed substantially to the increase of the passive muscle moment generated during jaw opening. It can be concluded that in architecturally complex muscles the increase of the passive resistance moment which is associated with muscle lengthening might not only be due to an increase of the magnitude of passive muscle force but also to an increase of the moment arm of this force.  相似文献   

14.
In single smooth muscle cells, shortening velocity slows continuously during the course of an isotonic (fixed force) contraction (Warshaw, D.M. 1987. J. Gen. Physiol. 89:771-789). To distinguish among several possible explanations for this slowing, single smooth muscle cells were isolated from the gastric muscularis of the toad (Bufo marinus) and attached to an ultrasensitive force transducer and a length displacement device. Cells were stimulated electrically and produced maximum stress of 144 mN/mm2. Cell force was then reduced to and maintained at preset fractions of maximum, and cell shortening was allowed to occur. Cell stiffness, a measure of relative numbers of attached crossbridges, was measured during isotonic shortening by imposing 50-Hz sinusoidal force oscillations. Continuous slowing of shortening velocity was observed during isotonic shortening at all force levels. This slowing was not related to the time after the onset of stimulation or due to reduced isometric force generating capacity. Stiffness did not change significantly over the course of an isotonic shortening response, suggesting that the observed slowing was not the result of reduced numbers of cycling crossbridges. Furthermore, isotonic shortening velocity was better described as a function of the extent of shortening than as a function of the time after the onset of the release. Therefore, we propose that slowing during isotonic shortening in single isolated smooth muscle cells is the result of an internal load that opposes shortening and increases as cell length decreases.  相似文献   

15.
When a fish swims in water, muscle contraction, controlled by the nervous system, interacts with the body tissues and the surrounding fluid to yield the observed movement pattern of the body. A continuous dynamic beam model describing the bending moment balance on the body for such an interaction during swimming has been established. In the model a linear visco-elastic assumption is made for the passive behaviour of internal tissues, skin and backbone, and the unsteady fluid force acting on the swimming body is calculated by the 3D waving plate theory. The body bending moment distribution due to the various components, in isolation and acting together, is analysed. The analysis is based on the saithe (Pollachius virens), a carangiform swimmer. The fluid reaction needs a bending moment of increasing amplitude towards the tail and near-standing wave behaviour on the rear-half of the body. The inertial movement of the fish results from a wave of bending moment with increasing amplitude along the body and a higher propagation speed than that of body bending. In particular, the fluid reaction, mainly designed for propulsion, can provide a considerable force to balance the local momentum change of the body and thereby reduce the power required from the muscle. The wave of passive visco-elastic bending moment, with an amplitude distribution peaking a little before the mid-point of the fish, travels with a speed close to that of body bending. The calculated muscle bending moment from the whole dynamic system has a wave speed almost the same as that observed for EMG-onset and a starting instant close to that of muscle activation, suggesting a consistent matching between the muscle activation pattern and the dynamic response of the system in steady swimming. A faster wave of muscle activation, with a variable phase relation between the strain and activation cycle, appears to be designed to fit the fluid reaction and, to a lesser extent, the body inertia, and is limited by the passive internal tissues. Higher active stress is required from caudal muscle, as predicted from experimental studies on fish muscle. In general, the active force development by muscle does not coincide with the propulsive force generation on the tail. The stiffer backbone may play a role in transmitting force and deformation to maintain and adjust the movement of the body and tail in water.  相似文献   

16.
There are many circumstances where it is desirable to obtain the contractile response of skeletal muscle under physiological circumstances: normal circulation, intact whole muscle, at body temperature. This includes the study of contractile responses like posttetanic potentiation, staircase and fatigue. Furthermore, the consequences of disease, disuse, injury, training and drug treatment can be of interest. This video demonstrates appropriate procedures to set up and use this valuable muscle preparation. To set up this preparation, the animal must be anesthetized, and the medial gastrocnemius muscle is surgically isolated, with the origin intact. Care must be taken to maintain the blood and nerve supplies. A long section of the sciatic nerve is cleared of connective tissue, and severed proximally. All branches of the distal stump that do not innervate the medial gastrocnemius muscle are severed. The distal nerve stump is inserted into a cuff lined with stainless steel stimulating wires. The calcaneus is severed, leaving a small piece of bone still attached to the Achilles tendon. Sonometric crystals and/or electrodes for electromyography can be inserted. Immobilization by metal probes in the femur and tibia prevents movement of the muscle origin. The Achilles tendon is attached to the force transducer and the loosened skin is pulled up at the sides to form a container that is filled with warmed paraffin oil. The oil distributes heat evenly and minimizes evaporative heat loss. A heat lamp is directed on the muscle, and the muscle and rat are allowed to warm up to 37°C. While it is warming, maximal voltage and optimal length can be determined. These are important initial conditions for any experiment on intact whole muscle. The experiment may include determination of standard contractile properties, like the force-frequency relationship, force-length relationship, and force-velocity relationship. With care in surgical isolation, immobilization of the origin of the muscle and alignment of the muscle-tendon unit with the force transducer, and proper data analysis, high quality measurements can be obtained with this muscle preparation.  相似文献   

17.
邹沙舟  李云霞 《生理学报》1992,44(4):420-425
扩充了A/D接口的Z-80微机和编制的软件,与肌力计和力位移双态换能器组成伺服系统,可以自动控制换能器金属杆的工作状态和“后负荷”水平,使离体心肌产生时相顺序类同于射血心室的四个时相“生理性”收缩,从而获得心肌的张力长度关系、作功量等心肌力学信息,并可同步观察收缩末期张力长度关系和张力速度关系。  相似文献   

18.
S100A1, a Ca2+-binding protein of the EF-hand type, is most highly expressed in striated muscle and has previously been shown to interact with the skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor (RyR1) isoform. However, it was unclear whether S100A1/RyR1 interaction could modulate SR Ca2+ handling and contractile properties in skeletal muscle fibers. Since S100A1 protein is differentially expressed in fast- and slow-twitch skeletal muscle, we used saponin-skinned murine Musculus extensor digitorum longus (EDL) and Musculus soleus (Soleus) fibers to assess the impact of S100A1 protein on SR Ca2+ release and isometric twitch force in functionally intact permeabilized muscle fibers. S100A1 equally enhanced caffeine-induced SR Ca2+ release and Ca2+-induced isometric force transients in both muscle preparations in a dose-dependent manner. Introducing a synthetic S100A1 peptide model (devoid of EF-hand Ca2+-binding sites) allowed identification of the S100A1 C terminus (amino acids 75-94) and hinge region (amino acids 42-54) to differentially enhance SR Ca2+ release with a nearly 3-fold higher activity of the C terminus. These effects were exclusively based on enhanced SR Ca2+ release as S100A1 influenced neither SR Ca2+ uptake nor myofilament Ca2+ sensitivity/cooperativity in our experimental setting. In conclusion, our study shows for the first time that S100A1 augments contractile performance both of fast- and slow-twitch skeletal muscle fibers based on enhanced SR Ca2+ efflux at least mediated by the C terminus of S100A1 protein. Thus, our data suggest that S100A1 may serve as an endogenous enhancer of SR Ca2+ release and might therefore be of physiological relevance in the process of excitation-contraction coupling in skeletal muscle.  相似文献   

19.

Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle.

  相似文献   

20.
Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin "hinge" region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial "melting" of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was approximately 5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus, alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号