首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA sequences of the Adh genes of three members of the Drosophila melanogaster species subgroup have been determined. This completes the Adh sequences of the eight species of this subgroup. Two species, D. yakuba and D. teissieri, possess processed Adh pseudogenes. In all of the species of the subgroup, a gene of unknown function, Adhr, is located about 300 bp 3' to Adh. Although this gene is experiencing a higher rate of synonymous substitution than Adh, it is more constrained at the amino acid level. Phylogenetic relationships between all eight members of the melanogaster subgroup have been analyzed using a variety of methods. All analyses suggested that the D. yakuba and D. teissieri pseudogenes have a single common ancestor, rather than evolving independently in each species, and that D. melanogaster is the sister species to D. simulans, D. sechellia, and D. mauritiana. The evolutionary relationships of the latter three species remain equivocal.   相似文献   

2.
The complete coding region of the yellow (y) gene was sequenced in different Drosophila species. In the species of the melanogaster subgroup (D. melanogaster, D. simulans, D. mauritiana, D. yakuba, and D. erecta), this gene is located at the tip of the X chromosome in a region with a strong reduction in recombination rate. In contrast, in D. ananassae (included in the ananassae subgroup of the melanogaster group) and in the obscura group species (D. subobscura, D. madeirensis, D. guanche, and D. pseudoobscura), the y gene is located in regions with normal recombination rates. As predicted by the hitchhiking and background selection models, this change in the recombinational environment affected synonymous divergence in the y-gene-coding region. Estimates of the number of synonymous substitutions per site were much lower between the obscura group species and D. ananassae than between the species of the obscura group and the melanogaster subgroup. In fact, a highly significant increase in the rate of synonymous substitution was detected in all lineages leading to the species of the melanogaster subgroup relative to the D. ananassae lineage. This increase can be explained by a higher fixation rate of mutations from preferred to unpreferred codons (slightly deleterious mutations). The lower codon bias detected in all species of the melanogaster subgroup relative to D. ananassae (or to the obscura group species) would be consistent with this proposal. Therefore, at least in Drosophila, changes in the recombination rate in different lineages might cause deviations of the molecular-clock hypothesis and contribute to the overdispersion of the rate of synonymous substitution. In contrast, the change in the recombinational environment of the y gene has no detectable effect on the rate of amino acid replacement in the Yellow protein.  相似文献   

3.
SGM (Drosophila subobscura, Drosophila guanche, and Drosophila madeirensis) transposons are a family of transposable elements (TEs) in Drosophila with some functional and structural similarities to miniature inverted-repeat transposable elements (MITEs). These elements were recently active in D. subobscura and D. madeirensis (1-2 MYA), but in D. guanche (3-4 MYA), they gave rise to a species-specifically amplified satellite DNA making up approximately 10% of its genome. SGM elements were already active in the common ancestor of all three species, giving rise to the A-type specific promoter section of the P:-related neogene cluster. SGM sequences are similar to elements found in other obscura group species, such as the ISY elements in D. miranda and the ISamb elements in Drosophila ambigua. SGM elements are composed of different sequence modules, and some of them, i.e., LS and LS-core, are found throughout the Drosophila and Sophophora radiation with similarity to more distantly related TEs. The LS-core module is highly enriched in the noncoding sections of the Drosophila melanogaster genome, suggesting potential regulatory host gene functions. The SGM elements can be considered as a model system elucidating the evolutionary dynamics of mobile elements in their arms race with host-directed silencing mechanisms and their evolutionary impact on the structure and composition of their respective host genomes.  相似文献   

4.
5.
C. Segarra  G. Ribo    M. Aguade 《Genetics》1996,144(1):139-146
Twenty-two markers located on Muller's elements D or E have been mapped by in situ hybridization in six species of the obscura group of Drosophila and in D. melanogaster. The obscura species can be grouped into a Palearctic cluster (D. subobscura, D. madeirensis and D. guanche) and a Nearctic one (D. pseudoobscura, D. persimilis and D. miranda). Eleven of the probes contain known genes: E74, Acp70A, Est5, hsp28/23, hsp83, emc, hsp70, Xdh, Acph-1, Cec and rp49. The remaining probes are recombinant phages isolated from a D. subobscura genomic library. All these markers hybridize to the putative homologous chromosome or chromosomal arm of elements D and E. Thus, these elements have conserved their genic content during species divergence. Chromosomal homologies proposed previously for each element among the species of the same cluster have been compared with the present results. The distribution of markers within each element has changed considerably as inferred from pairwise comparisons of obscura species included in the two different clusters. Only chromosomal segments defined by closely linked markers have been conserved: one such segment has been detected in element D and three in element E between D. subobscura and D. pseudoobscura.  相似文献   

6.
C. Segarra  M. Aguade 《Genetics》1992,130(3):513-521
Nine single copy regions located on the X chromosome have been mapped by in situ hybridization in six species of the obscura group of Drosophila. Three Palearctic species, D. subobscura, D. madeirensis and D. guanche, and three Nearctic species, D. pseudoobscura, D. persimilis and D. miranda, have been studied. Eight of the regions include known genes from D. melanogaster (Pgd, zeste, white, cut, vermilion, RNA polymerase II 215, forked and suppressor of forked) and the ninth region (lambda DsubF6) has not yet been characterized. In all six species, as in D. melanogaster, all probes hybridize to a single site. Established chromosomal arm homologies of Muller's element A are only partly supported by present results since two of the probes (Pgd and zeste) hybridize at the proximal end of the XR chromosomal arm in the three Nearctic species. In addition to the centric fusion of Muller's A (= XL) and D (= XR) elements, the metacentric X chromosome of the Nearctic species requires a pericentric inversion to account for this result. Previously proposed homologies of particular chromosomal regions of the A (= X) chromosome in the three species of the D. subobscura cluster and of the XL chromosomal arm in the three species of the D. pseudoobscura cluster are discussed in light of the present results. Location of the studied markers has changed drastically not only since the divergence between the melanogaster and obscura groups but also since the Palearctic and Nearctic species of the obscura group diverged.  相似文献   

7.
A Brehm  C B Krimbas 《Génome》1992,35(6):1075-1085
The phylogenetic relationships among nine species belonging to the obscura group of the genus Drosophila were deduced, based on similarities of the banding pattern of their polytene chromosomal element D. These similarities were inferred by the comparison of chromosomal photomaps. The phylogenetic reconstruction was the most parsimonious based on seriation by overlapping inversions and on the principle of conservation/disassociation of nearby located segments. The gene sequences of element D for all species studied were relatively easy to recognize in terms of the map of D. obscura, already found to occupy a relative central position in this group. Thus, three clusters of closely related species could be identified: obscura (D. obscura, D. ambigua, and D. tristis), African (D. kitumensis and D. microlabis), and subobscura (D. subobscura, D. madeirensis and D. guanche), with D. subsilvestris standing apart. The results are in agreement with those from the previously studied elements B and E, but element D was found to be much more conclusive concerning the links among the different clusters. Thus, it is inferred that D. guanche occupies an intermediate position between the other two species of its own cluster and all the others. The gene arrangement of D. obscura, directly related to those of the other species, has been identified. In the phylogenetic tree proposed, both the African cluster and D. subsilvestris derive from a hypothetical gene arrangement, intermediate in the pathway between the subobscura and obscura clusters.  相似文献   

8.
The phylogenetic relationships among nine Drosophila species belonging to the obscura group were investigated by establishing the segments displaying banding homologies in their element B (equivalent to the U element of D. subobscura). The phylogenetic ordering of the species was accomplished using overlapping inversions. Two African species, D. kitumensis and D. microlabis, were investigated. These species are homosequential for their element B gene arrangement but differ from that of D. obscura by several rearrangements. Drosophila obscura seems to be most closely related to D. subsilvestris, from which the respective element B gene arrangements differ at least by six inversions. Three species, D. obscura, D. ambigua, and D. tristis, are closely related and form a cluster. Drosophila obscura displays an element B polymorphism for a pericentric inversion for which D. ambigua is fixed for one gene arrangement and D. tristis for the other. Both D. ambigua and D. tristis share a short distal inversion in the small arm of the chromosome, and differ in this respect from D. obscura. Drosophila madeirensis, D. guanche, and D. subobscura all share the same element B gene arrangement, which is acrocentric, but metacentric in all the other species mentioned. It was found that the gene arrangements of the species from the obscura cluster seem to occupy an intermediate position between those of the species of the D. subobscura cluster and those of the African one. The data reported generally are in good agreement with information provided in the literature.  相似文献   

9.
Llopart A  Aguadé M 《Genetics》1999,152(1):269-280
The region encompassing the RpII215 gene that encodes the largest component of the RNA polymerase II complex (1889 amino acids) has been sequenced in Drosophila subobscura, D. madeirensis, D. guanche, and D. pseudoobscura. Nonsynonymous divergence estimates (Ka) indicate that this gene has a very low rate of amino acid replacements. Given its low Ka and constitutive expression, synonymous substitution rates are, however, unexpectedly high. Sequence comparisons have allowed the molecular clock hypothesis to be tested. D. guanche is an insular species and it is therefore expected to have a reduced effective size relative to D. subobscura. The significantly higher rate of synonymous substitutions detected in the D. guanche lineage could be explained if synonymous mutations behave as nearly neutral. Significant departure from the molecular clock hypothesis for synonymous and nonsynonymous substitutions was detected when comparing the D. subobscura, D. pseudoobscura, and D. melanogaster lineages. Codon bias and synonymous divergence between D. subobscura and D. melanogaster were negatively correlated across the RpII215 coding region, which indicates that selection coefficients for synonymous mutations vary across the gene. The C-terminal domain (CTD) of the RpII215 protein is structurally and functionally differentiated from the rest of the protein. Synonymous substitution rates were significantly different in both regions, which strongly indicates that synonymous mutations in the CTD and in the non-CTD regions are under detectably different selection coefficients.  相似文献   

10.
GEM is a new family of repetitive sequences detected in the D. subobscura genome. Two of the four described GEM elements encompass a heterogeneous central module, with no detectable ORF, flanked by two long inverted repeats. These elements are composed of a set of repetitive modules, which are inverted repeat (IR), direct repeat (DR), palindromic sequence (PS), long sequence (LS) and short sequence (SS). These five modules can be found either clustered or dispersed as single modules in the D. subobscura genome, in euchromatic and heterochromatic regions. In addition to the 3' region of Adh retrosequences, single IR and LS blocks were found associated with the promoter region of different genes, in particular, LS-like blocks have also been found associated with functional genes in D. melanogaster and D. virilis. Conversely, the DR block is highly similar to satellite DNAs from some other species of the obscura group. In addition, GEM elements share some structural features with IS elements described in different Drosophila species. It is likely that both GEM and IS sequences would be vestiges of an ancestral transposable element.  相似文献   

11.
Mitochondrial DNA evolution in themelanogaster species subgroup ofDrosophila   总被引:11,自引:0,他引:11  
Detailed restriction maps (40 cleavage sites on average) of mitochondrial DNAs (mtDNAs) from the eight species of the melanogaster species subgroup of Drosophila were established. Comparison of the cleavage sites allowed us to build a phylogenetic tree based on the matrix of nucleotide distances and to select the most parsimonious network. The two methods led to similar results, which were compared with those in the literature obtained from nuclear characters. The three chromosomally homosequential species D. simulans, D. mauritiana, and D. sechellia are mitochondrially very related, but exhibit complex phylogenetic relationships. D. melanogaster is their closest relative, and the four species form a monophyletic group (the D. melanogaster complex), which is confirmed by the shared unusual length of their mt genomes (18-19 kb). The other four species of the subgroup (D. yakuba, D. teissieri, D. erecta, and D. orena) are characterized by a much shorter mt genome (16-16.5 kb). The monophyletic character of the D. yakuba complex, however, is questionable. Two species of this complex, D. yakuba and D. teissieri, are mitochondrially indistinguishable (at the level of our investigation) in spite of their noticeable allozymic and chromosomal divergence. Finally, mtDNA distances were compared with the nuclear-DNA distances thus far established. These sequences seem to evolve at rather similar rates, the mtDNA rate being barely double that of nuclear DNA.  相似文献   

12.
Evolution of the Transposable Element Mariner in Drosophila Species   总被引:3,自引:0,他引:3       下载免费PDF全文
K. Maruyama  D. L. Hartl 《Genetics》1991,128(2):319-329
The distribution of the transposable element mariner was examined in the genus Drosophila. Among the eight species comprising the melanogaster species subgroup, the element is present in D. mauritiana, D. simulans, D. sechellia, D. yakuba and D. teissieri, but it is absent in D. melanogaster, D. erecta and D. orena. Multiple copies of mariner were sequenced from each species in which the element occurs. The inferred phylogeny of the elements and the pattern of divergence were examined in order to evaluate whether horizontal transfer among species or stochastic loss could better account for the discontinuous distribution of the element among the species. The data suggest that the element was present in the ancestral species before the melanogaster subgroup diverged and was lost in the lineage leading to D. melanogaster and the lineage leading to D. erecta and D. orena. This inference is consistent with the finding that mariner also occurs in members of several other species subgroups within the overall melanogaster species group. Within the melanogaster species subgroup, the average divergence of mariner copies between species was lower than the coding region of the alcohol dehydrogenase (Adh) gene. However, the divergence of mariner elements within species was as great as that observed for Adh. We conclude that the relative sequence homogeneity of mariner elements within species is more likely a result of rapid amplification of a few ancestral elements than of concerted evolution. The mariner element may also have had unequal mutation rates in different lineages.  相似文献   

13.
In contrast to Drosophila melanogaster and Drosophila simulans, the yellow (y) gene region of Drosophila subobscura is not located in a region with a strong reduction in recombination. In addition, this gene maps very close to the breakpoints of different inversions that segregate as polymorphic in natural populations of D. subobscura. Therefore, levels of variation at the y gene region in this species relative to those found in D. melanogaster and D. simulans may be affected not only by the change in the recombinational environment, but also by the presence of inversion polymorphism. To further investigate these aspects, an approximately 5.4-kb region of the A (=X) chromosome including the y gene was sequenced in 25 lines of D. subobscura and in the closely related species Drosophila madeirensis and Drosophila guanche. The D. subobscura lines studied differed in their A-chromosomal arrangements, A(st), A(2), and A(1). Unlike in D. melanogaster and D. simulans, levels of variation at the y gene region of D. subobscura are not reduced relative to those found at other genomic regions in the same species (rp49, Acp70A, and Acph-1). This result supports the effect of the change in the recombinational environment of a particular gene on the level of neutral variation. In addition, nucleotide variation is affected by chromosomal polymorphism. A strong genetic differentiation is detected between the A(1) arrangement and either A(st) or A(2), but not between A(st) and A(2). This result is consistent with the location of the y gene relative to the breakpoints of inversions A(1) and A(2). In addition, the pattern of nucleotide polymorphism in A(st)+A(2) and A(1) seems to point out that variation at the y gene region within these chromosomal classes is in the phase transient to equilibrium. The estimated ages of these arrangements assuming a star genealogy indicate that their origin cannot predate the D. madeirensis split. Therefore, the present results are consistent with a chromosomal phylogeny where Am(1), which is an arrangement present in D. madeirensis but absent in current populations of D. subobscura, would be the ancestral arrangement.  相似文献   

14.
The bilbo element is a non-LTR retrotransposon isolated from Drosophila subobscura. We conducted a distribution survey by Southern blot for 52 species of the family Drosophilidae, mainly from the obscura and melanogaster groups. Most of the analyzed species bear sequences homologous to bilbo from D. subobscura. In the obscura group, species from the same species subgroup also share similar Southern blot patterns. To investigate the phylogenetic relationship among these elements, we analyzed eight copies of a short sequence of the element from several species of the obscura group. The obtained phylogram agrees with the phylogeny of the species, which suggests vertical transmission of the element.  相似文献   

15.
Lerat E  Burlet N  Biémont C  Vieira C 《Gene》2011,473(2):100-109
Transposable elements (TEs) are indwelling components of genomes, and their dynamics have been a driving force in genome evolution. Although we now have more information concerning their amounts and characteristics in various organisms, we still have little data from overall comparisons of their sequences in very closely-related species. While the Drosophila melanogaster genome has been extensively studied, we have only limited knowledge regarding the precise TE sequences in the genomes of the related species Drosophila simulans, Drosophila sechellia and Drosophila yakuba. In this study we analyzed the number and structure of TE copies in the sequenced genomes of these four species. Our findings show that, unexpectedly, the number of TE insertions in D. simulans is greater than that in D. melanogaster, but that most of the copies in D. simulans are degraded and in small fragments, as in D. sechellia and D. yakuba. This suggests that all three species were invaded by numerous TEs a long time ago, but have since regulated their activity, as the present TE copies are degraded, with very few full-length elements. In contrast, in D. melanogaster, a recent activation of TEs has resulted in a large number of almost-identical TE copies. We have detected variants of some TEs in D. simulans and D. sechellia, that are almost identical to the reference TE sequences in D. melanogaster, suggesting that D. melanogaster has recently been invaded by active TE variants from the other species. Our results indicate that the three species D. simulans, D. sechellia, and D. yakuba seem to be at a different stage of their TE life cycle when compared to D. melanogaster. Moreover, we show that D. melanogaster has been invaded by active TE variants for several TE families likely to come from D. simulans or the ancestor of D. simulans and D. sechellia. The numerous horizontal transfer events implied to explain these results could indicate introgression events between these species.  相似文献   

16.
The phylogenetic relationship of Eurasian species of the Drosophila obscura species group remains ambiguous in spite of intensive analyses based on morphology, allozymes and DNA sequences. The present analysis based on sequence data for cytochrome oxidase subunit I (COI) and a-glycerophosphate dehydrogenase (Gpdh) suggests that the phylogenetic position of D. alpina is also ambiguous. These ambiguities have been considered to be attributable to rapid phyletic radiation in this group at an early stage of its evolution. Overwintering strategies are diversified among these species: D. alpina and D. subsihestris pass the winter in pupal diapause, D. bifasciata and D. obscura in reproductive diapause, and D. subobscura and D. guanche without entering diapause. This diversity may also suggest rapid radiation at an early phase of adaptations to temperate climates. On the other hand, adult tolerance of cold was closely related to overwintering strategy and distribution: D. obscura and D. bifasciata with reproductive diapause were very tolerant; D. alpina and D. subsilvestris which pass the winter in pupal diapause were less tolerant; D. subobscura having no diapause was moderately tolerant and D. guanche occurring in the Canary Islands was rather susceptible. Tolerance of high temperature at the preimaginal stages seemed to be also associated with overwintering strategy; i.e. lower in the species with pupal diapause than in those with reproductive diapause or without diapause mechanism.  相似文献   

17.
18.
L. Sanchez  P. Santamaria 《Genetics》1997,147(1):231-242
This article reports the breaking of ethological barriers through the constitution of soma-germ line chimeras between species of the melanogaster subgroup of Drosophila, which are ethologically isolated. Female Drosophila yakuba and D. teissieri germ cells in a D. melanogaster ovary produced functional oocytes that, when fertilized by D. melanogaster sperm, gave rise to sterile yakuba-melanogaster and teissieri-melanogaster male and female hybrids. However, the erecta-melanogaster and orena-melanogaster hybrids were lethal, since female D. erecta and D. orena germ cells in a D. melanogaster ovary failed to form oocytes with the capacity to develop normally. This failure appears to be caused by an altered interaction between the melanogaster soma and the erecta and orena germ lines. Germ cells of D. teissieri and D. orena in a D. melanogaster testis produced motile sperm that was not stored in D. melanogaster females. This might be due to incompatibility between the teissieri and orena sperm and the melanogaster seminal fluid. A morphological analysis of the terminalia of yakuba-melanogaster and teissieri-melanogaster hybrids was performed. The effect on the terminalia of teissieri-melanogaster hybrids of a mutation in doublesex, a regulatory gene that controls the development of the terminalia, was also investigated.  相似文献   

19.
We have sequenced 4 kb of the genomic region comprising the Adh (Alcohol dehydrogenase) gene of Drosophila subobscura. In agreement with other species which belong to the same subgenus, two structural genes, Adh and Adh-dup, are contained in this region. The main features of these two genes of D. subobscura have been inferred from the sequence data and compared with the homologous region of D. ambigua and D. pseudoobscura. Drosophila subobscura Adh and Adh-dup differ from those of D. ambigua at a corrected estimation of 10.1% and 12.5%, respectively, while from those of D. pseudoobscura they differ by 9.5% and 8.1%, respectively. Our data suggest that Adh and Adh-dup are evolving independently, showing a species-specific pattern. Moreover, particular features of some regions of these genes make them valuable evolutionary hallmarks. For instance, replacement substitutions in the third exon of Adh may indicate the branching of the melanogaster-obscura groups, whereas replacement substitutions in the third exon of the Adh-dup could be used to assess speciation within the obscura group.  相似文献   

20.
The repeating units of the histone gene cluster containing the H1, H2A, H2B and H4 genes were amplified by PCR from the Drosophila melanogaster species subgroup, i.e., D. yakuba, D. erecta, D. sechellia, D. mauritiana, D. teissieri and D. orena. The PCR products were cloned and their nucleotide sequences of about 4.6-4.8kbp were determined to elucidate the mechanism of molecular evolution of the histone gene family. The heterogeneity among the histone gene repeating units was 0.6% and 0.7% for D. yakuba and D. sechellia, respectively, indicating the same level of heterogeneity as in the H3 gene region of D. melanogaster. Divergence of the genes among species even in the most closely related ones was much greater than the heterogeneity among family members, indicating a concerted mode of evolution for the histone gene repeating units. Among the species in the D. melanogaster species subgroup, the histone gene regions as well as 3rd codon position of the coding region showed nearly the same GC contents. These results suggested that the previous conclusion on analysis of the H3 gene regions, the gene family evolution in a concerted fashion, holds true for the whole histone gene repeating unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号