首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex III was purified from submitochondrial particles prepared from Euglena gracilis. The purified complex consisted of 10 subunits and lost antimycin sensitivity. The Euglena complex III showed an atypical difference absorption spectrum for cytochrome c1 with its alpha-band maximum at 561 nm. The pyridine ferrohemochrome prepared from covalently bound heme in the Euglena complex III had an alpha-peak at 553 nm. This wavelength is the same as that of pyridine ferrohemochrome prepared from Euglena mitochondrial cytochrome c (c-558), the heme of which is linked to only a single cysteine residue through a thioether bond. Cytochrome c1 which was a heme-stained subunit with a molecular mass of 32.5 kDa was isolated from the purified complex III and its N-terminal sequence of 46 amino acids was determined. On the basis of apparent homologies to cytochromes c1 from other sources, this sequence included the heme-binding region. However, the amino acid at position 36, corresponding to the first cysteine involved in heme linkage in other cytochromes c1, was phenylalanine. Position 39, corresponding to the second cysteine, was not identified despite the treatment for removal of the heme and carboxymethylation of the expected cysteine. The unidentified amino acid is assumed to be a derivative of cysteine to which the heme is linked through a single thioether bond. The histidine-40 corresponding to the probable fifth ligand for heme iron was conserved in Euglena cytochrome c1.  相似文献   

2.
Although Cys-14 (human numbering) of cytochrome c was conserved during its molecular evolution and it is supposed to be essential for most cytochromes c to retain heme c via two thioether bonds, a site-directedly mutated human cytochrome c which has an alanine residue at this position and only one thioether bond through Cys-17 turns out to be functional. This shows that Cys-14 is not essential. The absorption spectrum of the atypical cytochrome c is red shifted, and similar to those of Euglena and Crithidia cytochromes c, which also have only one thioether bond [Pettigrew, G.W., Leaver, J.L., Meyer, T.E., & Ryle, A.P. (1975) Biochem. J. 147, 291-302].  相似文献   

3.
在酸性条件下用硫酸银断裂马心细胞色素c(以下简称cyt.c)的肽链与血红素相连的硫醚键,通过酸性丙酮抽提,硫基乙醇处理及超速离心等步骤纯化得去血红素的cyt.c(以下简称Apo-cyt.c)。Apo-cyt.c与天然cyt.c相比,其酸性电泳迁移率明显降低,紫外-可见光谱在190~220nm处吸收上升,荧光光谱的最大发射峰波长产生红移,同时CD谱中α螺旋的特征峰完全消失,这说明在cyt.c去血红素的过程中,蛋白质已由原来的紧密球状结构变成了较为松散、伸展的无规卷曲构象。因此,血红素对cyt.c天然构象的维持有着重要作用。  相似文献   

4.
Ishida M  Dohmae N  Shiro Y  Oku T  Iizuka T  Isogai Y 《Biochemistry》2004,43(30):9823-9833
Natural c-type cytochromes are characterized by the consensus Cys-X-X-Cys-His heme-binding motif (where X is any amino acid) by which the heme is covalently attached to protein by the addition of the sulfhydryl groups of two cysteine residues to the vinyl groups of the heme. In this work, the consensus sequence was used for the heme-binding site of a designed four-helix bundle, and the apoproteins with either a histidine residue or a methionine residue positioned at the sixth coordination site were synthesized and reacted with iron protoporphyrin IX (protoheme) under mild reducing conditions in vitro. These polypeptides bound one heme per helix-loop-helix monomer via a single thioether bond and formed four-helix bundle dimers in the holo forms as designed. They exhibited visible absorption spectra characteristic of c-type cytochromes, in which the absorption bands shifted to lower wavelengths in comparison with the b-type heme binding intermediates of the same proteins. Unexpectedly, the designed cytochromes c with bis-His-coordinated heme iron exhibited oxidation-reduction potentials similar to those of their b-type intermediates, which have no thioether bond. Furthermore, the cytochrome c with His and Met residues as the axial ligands exhibited redox potentials increased by only 15-30 mV in comparison with the cytochrome with the bis-His coordination. These results indicate that highly positive redox potentials of natural cytochromes c are not only due to the heme covalent structure, including the Met ligation, but also due to noncovalent and hydrophobic environments surrounding the heme. The covalent attachment of heme to the polypeptide in natural cytochromes c may contribute to their higher redox potentials by reducing the thermodynamic stability of the oxidized forms relatively against that of the reduced forms without the loss of heme.  相似文献   

5.
In vitro formation of Hydrogenobacter thermophilus cytochrome c552 has previously been demonstrated (Daltrop, O., Allen, J. W. A., Willis, A. C., and Ferguson, S. J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7872-7876). Now we report that the single cysteine variants of H. thermophilus c552, which bind heme via a single thioether bond, also form in vitro. Furthermore, reaction of the apocytochromes containing either AXXCH or CXXAH in the binding motif with 2-vinyldeuteroheme and 4-vinyldeuteroheme resulted predominantly in covalent attachment between Cys-11 and the 2-vinyl moiety and Cys-14 and the 4-vinyl functionality. This observation shows that the covalent attachment of heme to apocytochrome is stereoselective, indicating that the initial non-covalent complexes between apoprotein and heme have to be in the correct stereochemical orientation for preferential promotion of thioether bond formation. Additionally, the heme derivatives 2-vinyldeuteroheme and 4-vinyldeuteroheme were reacted with wild-type H. thermophilus c552 to yield another modification of cytochromes containing only one thioether bond. These results show that the formation of the two thioether bonds in typical c-type cytochromes can occur independently from one another. Aspects of rotational isomerism of heme in heme-proteins are discussed.  相似文献   

6.
Structure and heme environment of ferrocytochrome c553 from 1H NMR studies   总被引:1,自引:0,他引:1  
Cytochrome c553 is a photosynthetic electron transport protein found in algae and cyanobacteria. We have purified cytochromes c553 from five cyanobacteria and studied the structures of the ferrocytochromes by 1H NMR spectroscopy at 360 and 470 MHz. Using standard NMR techniques and by comparing the amino acid sequences of four cytochromes c553 with their 1H NMR spectra, we have assigned in the spectrum of the Aphanizomenon flos-aquae protein 18 resonances to specific amino acid residues and 12 resonances to specific heme protons. Steady state and truncated driven nuclear Overhauser enhancement experiments indicate that a tyrosine and methionine are located near pyrrole ring IV of the heme and that a phenylalanine ring is near the heme alpha-mesoproton. The general folding of the cytochrome c553 protein backbone appears to resemble that of Pseudomonas aeruginosa cytochrome c551, but the chirality of the cytochrome c553 axial methine sulfur is R, the same as that of horse heart cytochrome c.  相似文献   

7.
Cytochromes c are characterized by the presence of a protoporphyrin IX group covalently attached to the polypeptide via one or two thioether bonds to Cys side chains. The heme attachment process, known as cytochrome c maturation, occurs posttranslationally in the periplasm (for bacterial cytochromes c) or in the mitochondrial intermembrane space (for eukaryotic cytochromes c) through a pathway dependent on the organism. It is demonstrated in this work that a mitochondrial cytochrome c expressed in Escherichia coli that undergoes maturation under control of the E. coli cytochrome c maturation factors achieves a native-like structure and stability. The recombinant protein is characterized spectroscopically (by circular dichroism (CD), absorption, and nuclear magnetic resonance (NMR) spectroscopy) and it is verified that the heme and its environment are indistinguishable from authentic horse cytochrome c. Mass spectrometry reveals that the recombinant protein is not acetylated at the N terminus, however, no significant effect on protein structure or stability is detected as a result.  相似文献   

8.
Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment is restricted to, but conserved throughout, the protist phylum Euglenozoa.  相似文献   

9.
Cytochrome c has been chemically modified by methylene blue mediated photooxidation. It is established that the methionine residues of the protein have been specifically converted to methionine sulfoxide residues. No oxidation of any other amino acid residues or the cysteine thioether bridges of the molecule occurs during the photooxidation reaction. The absorbance spectrum of methionine sulfoxide ferricytochrome c at neutrality is similar to that of the unmodified protein except for an increase in the extinction coefficient of the Soret absorbance band and for the complete loss of the ligand sensitive 695 nm absorbance band in the spectrum of the derivative. The protein remains in the low spin configuration which implies the retention of two strong field ligands. Spin state sensitive spectral titrations and model studies of heme peptides indicate that the sixth ligand is definitely not provided by a lysine residue but may be methionine-80 sulfoxide coordinated via its sulfur atom. Circular dichroism spectra indicate that the heme crevice of methionine sulfoxide ferri- and ferrocytochrome c is weakened relative to native cytochrome c. The redox potential of methionine sulfoxide cytochrome c is 184 mV which is markedly diminished from the 260 mV redox potential of native cytochrome c. The modified protein is equivalent to native cytochrome c as a substrate for cytochrome oxidase and is not autoxidizable at neutral pH but is virtually inactive with succinate-cytochrome c reductase. These results indicate that the major role of the methionine-80 in cytochrome c is to preserve a closed hydrophobic heme crevice which is essential for the maintainance of the necessary redox potential.  相似文献   

10.
Almost without exception, c-type cytochromes have heme covalently attached via two thioether linkages to the cysteine residues of a CXXCH motif. The reasons for the covalent attachment are not understood. Reported here is cytoplasmic expression in Escherichia coli of AXXCH and CXXAH variants of cytochrome c(552) from Hydrogenobacter thermophilus; remarkably, the single thioether bond proteins have, apart from an altered visible absorption spectrum, almost identical properties, including thermal stability and reduction potential, to the wild type CXXCH protein. In combination with previous work showing that an AXXAH variant of cytochrome c(552) is much less stable than the CXXCH form, it can be concluded that covalent attachment of heme via either of thioether bonds is sufficient to confer considerable stability and that these bonds contribute little to the setting of the reduction potential. The absence of AXXCH or CXXAH heme-binding motifs from bacterial cytochromes c may relate to the coexistence of the assembly pathway with that for formation of disulfide bonds in the bacterial periplasm.  相似文献   

11.
C-type cytochromes are characterized by having the heme moiety covalently attached via thioether bonds between the heme vinyl groups and the thiols of conserved cysteine residues of the polypeptide chain. Previously, we have shown the in vitro formation of Hydrogenobacter thermophilus cytochrome c(552) (Daltrop, O., Allen, J. W. A., Willis, A. C., and Ferguson, S. J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7872-7876). In this work we report that thioether bonds can form spontaneously in vitro between heme and the apocytochromes c from horse heart and Paracoccus denitrificans via b-type cytochrome intermediates. Both apocytochromes, but not the holo forms, bind 8-anilino-1-naphthalenesulfonate, indicating that the apoproteins each have an affinity for a hydrophobic ligand. Furthermore, for both apocytochromes c an intramolecular disulfide can form between the cysteines of the CXXCH motif that is characteristic of c-type cytochromes. In vitro reaction of these apocytochromes c with heme to yield holocytochromes c, and the tendency to form a disulfide, have implications for the different systems responsible for cytochrome c maturation in vivo in various organisms.  相似文献   

12.
Biogenesis of c-type cytochromes requires the covalent attachment of heme to the apoprotein. In Escherichia coli, this process involves eight membrane proteins encoded by the ccmABCDEFGH operon. CcmE binds heme covalently and transfers it to apocytochromes c in the presence of other Ccm proteins. CcmC is necessary and sufficient to incorporate heme into CcmE. Here, we report that the CcmC protein directly interacts with heme. We further show that CcmC co-immunoprecipitates with CcmE. CcmC contains two conserved histidines and a signature sequence, the so-called tryptophan-rich motif, which is the only element common to cytochrome c maturation proteins of bacteria, archae, plant mitochondria, and chloroplasts. We report that mutational changes of these motifs affecting the function of CcmC in cytochrome c maturation do not influence heme binding of CcmC. However, the mutants are defective in the CcmC-CcmE interaction, suggesting that these motifs are involved in the formation of a CcmC-CcmE complex. We propose that CcmC, CcmE, and heme interact directly with each other, establishing a periplasmic heme delivery pathway for cytochrome c maturation.  相似文献   

13.
The cytochromes c are a family of hemoproteins that share a number of structural features: a thioether linkage between the protein and the heme, histidine and methionine as the fifth and sixth iron ligands, and a tertiary structure known as the "cytochrome fold." These proteins follow a common mechanism of equilibrium unfolding in methanol and acid, differing only in their reactivity to the denaturing conditions. The reduced cytochromes c exhibit an increased conformational stability which is consistent with the presence of a strengthened iron-methionine linkage in the reduced state.  相似文献   

14.
The cytochrome c(1) subunit of the ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) contains a single heme group covalently attached to the polypeptide via thioether bonds of two conserved cysteine residues. In the photosynthetic bacterium Rhodobacter (Rba.) capsulatus, cytochrome c(1) contains two additional cysteines, C144 and C167. Site-directed mutagenesis reveals a disulfide bond (rare in monoheme c-type cytochromes) anchoring C144 to C167, which is in the middle of an 18 amino acid loop that is present in some bacterial cytochromes c(1) but absent in higher organisms. Both single and double Cys to Ala substitutions drastically lower the +320 mV redox potential of the native form to below 0 mV, yielding nonfunctional cytochrome bc(1). In sharp contrast to the native protein, mutant cytochrome c(1) binds carbon monoxide (CO) in the reduced form, indicating an opening of the heme environment that is correlated with the drop in potential. In revertants, loss of the disulfide bond is remediated uniquely by insertion of a beta-branched amino acid two residues away from the heme-ligating methionine 183, identifying the pattern betaXM, naturally common in many other high-potential cytochromes c. Despite the unrepaired disulfide bond, the betaXM revertants are no longer vulnerable to CO binding and restore function by raising the redox potential to +227 mV, which is remarkably close to the value of the betaXM containing but loop-free mitochondrial cytochrome c(1). The disulfide anchored loop and betaXM motifs appear to be two independent but nonadditive strategies to control the integrity of the heme-binding pocket and raise cytochrome c midpoint potentials.  相似文献   

15.
The low-potential cytochrome c550 has been purified from the cyanobacterium Microcystis aeruginosa and its amino acid sequence has been determined. The protein contains 135 amino acid residues with the Cys-X-X-Cys-His heme binding site at residues 37 to 41. The sequence from residue 28 to 45 shows similarity to cytochrome c553 residues 1 to 18 when the heme binding sites are aligned. Another region of similarity is in the carboxyl-terminal regions of these two proteins. The two aligning regions of cytochrome c553 correspond to helical segments in other related cytochromes. A partial sequence of cytochrome c550 from Aphanizomenon flos-aquae was obtained and showed a 48% identity to the sequence of the M. aeruginosa cytochrome. The single methionine residue in cytochrome c550 of M. aeruginosa occurs at position 119 but there is no methionine in this region in the A. flos-aquae cytochrome, indicating that methionine is not the sixth ligand to the heme iron atom. Histidine 92 is a possible sixth ligand in M. aeruginosa cytochrome c550. The far-uv circular dichroism spectrum indicates that this protein is approximately 17% alpha helix, 42% beta-pleated sheet, and 41% random coil.  相似文献   

16.
To probe the details of protein heme interactions, we have developed a Raman difference spectroscopic technique, which allows reliable detection of very small, approximately equal to 0.01 cm-1, frequency differences. When this technique is applied to heme proteins, structural differences in the protein which perturb the porphyrin macrocycle may be examined by obtaining Raman difference data on the porphyrin vibrational modes which are strongly enhanced in the Raman spectrum produced with visible laser excitation. We report here Raman difference spectroscopic data on cytochromes c from 24 species. The differences in the Raman spectrum of the porphyrin between the cytochromes c of any two species are small, confirming that all of the cytochromes we have examined have the same "cytochrome fold". However, many small (0.02-2 cm-1) but systematic differences were detected which indicate structural differences among these proteins. These differences could be classified into three different groups and interpreted in terms of different types of structural variations resulting from specific differences in the amino acid sequences. First, direct interactions between near-heme residues and the porphyrin influence the electron density in the pi orbitals of the porphyrin macrocycle. Second, variation in the residue at position 92, far removed from the heme, affects the frequency of the core-size marker line at 1584 cm-1. Third, the conformation near cysteine 14 affects the shape of the Raman mode which is sensitive to the pyrrole ring substituents (approximately 1313 cm-1). From these data we conclude that there are several ways in which the protein amino acid sequence may regulate the oxidation-reduction potential and several ways in which the sequence can modify the binding site between cytochrome c and its redox partners.  相似文献   

17.
A c-type monoheme ferricytochrome c550 (9.6 kDa) was isolated from cells of Bacillus halodenitrificans sp.nov., grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination. The midpoint redox potential was determined at several pH values by visible spectroscopy. The redox potential at pH 7.6 is 138 mV. When studied by 1H-NMR spectroscopy as a function of pH, the spectrum shows a pH dependence with pKa values of 6.0 and 11.0. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c550. The first pKa is probably associated with protonation of the propionate groups. The second pKa value introduces a larger effect in the 1H-NMR spectrum and is probably due to the ionisation of the axial histidine. Studies of temperature variation of the 1H-NMR spectra for both the ferrous and ferri forms of the cytochrome were performed. Heme meso protons, the heme methyl groups, the thioether protons, two protons from a propionate and the methylene protons from the axial methionine were identified in the reduced form. The heme methyl resonances of the ferri form were also assigned. EPR spectroscopy was also used to probe the ferric heme environment. A signal at gmax approximately 3.5 at pH 7.5 was observed indicating an almost axial heme environment. At higher pH values the signal at gmax approximately 3.5 converts mainly to a signal at g approximately 2.96. The pKa associated with this change is around 11.3. The N-terminal sequence of this cytochrome was determined and compared with known amino acid sequences of other cytochromes.  相似文献   

18.
Incubation of the 125I-labeled apoprotein, prepared from 125I-labeled iso-1-cytochrome c, with a yeast mitochondrial fraction in the presence of hemin, NADPH, and an extract of the postmitochondrial fraction at 32 +/- 1 degree C for 30 min has resulted in formation of cytochrome c-like species in yields of up to 35%. This radioactive synthesized species contains a functional group which responds to reduction with ascorbate and oxidation with K3Fe(CN)6 in that it is resistant in the reduced form and susceptible in the oxidized form to trypsin action in a manner characteristic of native cytochrome c. The functional group cannot be removed from the protein by cold HCl-acetone or 8 M urea treatment. The reduced form of the synthesized species exhibits resistance against autoxidation and the oxidized form can be reduced also by cytochrome b2. The synthesized species exhibits the same compact hydrodynamic volume of native cytochrome c. Treatment with silver sulfate followed by incubation with dithiothreitol converts the synthesized species to the original apoprotein as judged by an increase in the hydrodynamic volume. Thus, the synthesized species is indistinguishable from the original labeled iso-1-cytochrome c by these measurements; i.e. the synthesized species consists of the apoprotein to which heme is covalently attached through the thioether bond(s). The active factor of the mitochondrial fraction is heat-labile. The synthetic activity is strongly dependent on pH with a maximum approximately at pH 7.0. Hemin (or heme) appears to be required for this synthesis. The postmitochondrial fraction is inactive by itself. However, its addition markedly increases the synthetic activity. This factor is heat-stable, soluble in 80% methanol (or 75% ethanol), and insoluble in ethyl ether or ethyl acetate. Addition of NADP(H) (or NAD(H)) also increases the synthetic activity, the reduced form being more effective than the oxidized form. The postmitochondrial factor and the pyridine nucleotides appear to enhance the effect of each other. Thus, it seems that cytochrome c or a cytochrome c-like species is formed from the apoprotein and heme (or hemin) by an enzyme, cytochrome c synthetase, present in mitochondria.  相似文献   

19.
Structural homology of cytochromes c.   总被引:1,自引:0,他引:1  
Cytochromes c from many eukaryotic and diverse prokaryotic organisms have been investigated and compared using high-resolution nuclear magnetic resonance spectroscopy. Resonances have been assigned to a large number of specific groups, mostly in the immediate environment of the heme. This information, together with sequence data, has allowed a comparison of the heme environment and protein conformation for these cytochromes. All mitochondrial cytochromes c are found to be very similar to the cytochromes c2 from Rhodospirillaceae. In the smaller bacterial cytochromes, Pseudomonas aeruginosa cytochrome c551 and Euglena gracilis cytochrome c552, the orientation of groups near the heme is very similar, but the folding of the polypeptide chain is different. The heme environment of these two proteins is similar to that of the larger bacterial and mitochondrial cytochromes. Two low-potential cytochromes, Desulfovibrio vulgaris cytochrome c553 and cytochrome c554 from a halotolerant micrococcus have heme environments which are not very similar to those of the other proteins reported here.  相似文献   

20.
This article reports the first X-ray structure of the soluble form of a c-type cytochrome isolated from a Gram-positive bacterium. Bacillus pasteurii cytochrome c(553), characterized by a low reduction potential and by a low sequence homology with cytochromes from Gram-negative bacteria or eukaryotes, is a useful case study for understanding the structure-function relationships for this class of electron-transfer proteins. Diffraction data on a single crystal of cytochrome c(553) were obtained using synchrotron radiation at 100 K. The structure was determined at 0.97-A resolution using ab initio phasing and independently at 1.70 A in an MAD experiment. In both experiments, the structure solution exploited the presence of a single Fe atom as anomalous scatterer in the protein. For the 0.97-A data, the phasing was based on a single data set. This is the most precise structure of a heme protein to date. The crystallized cytochrome c(553) contains only 71 of the 92 residues expected from the intact protein sequence, lacking the first 21 amino acids at the N-terminus. This feature is consistent with previous evidence that this tail, responsible for anchoring the protein to the cytoplasm membrane, is easily cleaved off during the purification procedure. The heme prosthetic group in B. pasteurii cytochrome c(553) is surrounded by three alpha-helices in a compact arrangement. The largely exposed c-type heme group features a His-Met axial coordination of the Fe(III) ion. The protein is characterized by a very asymmetric charge distribution, with the exposed heme edge located on a surface patch devoid of net charges. A structural search of a representative set of protein structures reveals that B. pasteurii cytochrome c(553) is most similar to Pseudomonas cytochromes c(551), followed by cytochromes c(6), Desulfovibrio cytochrome c(553), cytochromes c(552) from thermophiles, and cytochromes c from eukaryotes. Notwithstanding a low sequence homology, a structure-based alignment of these cytochromes shows conservation of three helical regions, with different additional secondary structure motifs characterizing each protein. In B. pasteurii cytochrome c(553), these motifs are represented by the shortest interhelix connecting fragments observed for this group of proteins. The possible relationships between heme solvent accessibility and the electrochemical reduction potential are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号