首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic analysis of nuclear ribosomal DNA external and internal transcribed spacer region (ETS and ITS) sequences for Sidalcea (Malvaceae) resolved five major, well-supported lineages, three of which represent species groups that have each been noted for complex patterns of morphological variation: the oregana, malviflora, and glaucescens clades. Very low variation within each of the three groups in the sequenced regions is consistent with recent radiation of each clade. We reject the previously suggested hypothesis of monophyly for the annual species of Sidalcea. Based on our findings, the annual habit in Sidalcea arose at least four times, probably as an adaptation to seasonally dry habitats. The hypothesis that the perennial species S. hickmanii and S. malachroides represent basally divergent groups within Sidalcea is supported, but the more recently discovered S. stipularis represents an additional basally divergent lineage. The previous suggestion that the genus spread northward from Mexico along two major routes (through the Rocky Mountains and the Sierra Nevada foothills), with the Rocky Mountain species S. candida and S. neomexicana representing basally divergent lineages, is not supported. Sidalcea neomexicana is nested within the malviflora clade and is likely a lineage of relatively recent descent that originated in California and subsequently spread to the Rocky Mountains.  相似文献   

2.
Checker mallows (Sidalcea, Malvaceae) constitute a western North American genus of annuals and perennials that have been regarded as taxonomically difficult because of complex patterns of morphological variation putatively stemming from hybridization and polyploidy. In recent molecular phylogenetic investigations extensive polymorphism was observed in the internal and external transcribed spacers (ITS and ETS) of 18S-26S nuclear ribosomal DNA for some Sidalcea samples. To resolve the evolutionary basis for this polymorphism and to readdress the evolutionary impact of hybridization in Sidalcea we cloned and sequenced the polymorphic DNAs and included the clones in phylogenetic analyses together with direct sequences of non-polymorphic samples. The positions of cloned spacer sequences in the phylogenetic trees suggest that S. reptans and two subspecies of S. malviflora may have been influenced by past hybridization with lineages of the "glaucescens" clade. Polymorphic sequence patterns in other taxa may be a result of extensive interbreeding within young clades, in keeping with the minimal sequence divergence, largely overlapping geographic distributions and morphology, and ploidy variation in these groups. Other possible explanations for polymorphic sequences in members of Sidalcea include slow concerted evolution relative to mutation rates, incomplete lineage sorting, and recent pseudogene formation.  相似文献   

3.
A phylogenetic analysis of DNA sequences from the internal transcribed spacer (ITS), the external transcribed spacer (ETS), and the 5.8S regions of 18S-26S nuclear rDNA from all diploid species of Stephanomeria and related genera shows that Stephanomeria does not include either Munzothamnus blairii (previously S. blairii) or Pleiacanthus spinosus (previously S. spinosa). Without these two taxa, Stephanomeria is a well-supported (100% bootstrap), monophyletic group of ten perennial and six annual species. Munzothamnus blairii and Pleiacanthus spinosus, both now considered members of monotypic genera, had been placed in Stephanomeria primarily because they have the same chromosome number as Stephanomeria and similar pollen surface features, but many disparities were ignored in previous classifications. Within Stephanomeria, an unsuspected sister relationship was detected between the montane S. lactucina and coastal S. cichoriacea. A second clade contained all the annual taxa and five of the perennial species. Among the annuals, strong bootstrap support was obtained for the previously recognized relationships between S. diegensis and S. exigua (98%) and between S. malheurensis and its progenitor, S. exigua subsp. coronaria (96%). Among the five perennial species that constitute a clade with the annuals, the recently described S. fluminea was shown to be sister to S. runcinata, and both of them were closely allied to S. tenuifolia and S. thurberi. The clade including the annuals (and five of the perennial species) was subtended by perennial lineages and pairwise divergence values among the annual taxa were much lower than among the perennial taxa as a group (though not too different than among the perennials in the same clade). The annuals probably originated recently within the genus.  相似文献   

4.
Gaura (Onagraceae: Onagreae) is a small North American genus of 21 species consisting mostly of night-blooming, moth-pollinated annuals and perennials. The current infrageneric classification based on differences in habit, floral symmetry, and fruit morphology recognizes eight sections within the genus. We examine the phylogenetic relationships of all 21 species of Gaura using DNA sequence data from the internal transcribed spacer region (ITS), the external transcribed spacer region (ETS), and the plastid trnL-F region. Combined analysis of these regions indicate Gaura is monophyletic only if it includes Stenosiphon, a monotypic genus comprised of S. linifolius. Within Gaura, our studies indicate that sections Gauridium, Schizocarya, Campogaura, Stipogaura, Xenogaura, and Gaura are monophyletic, but sections Xerogaura and Pterogaura are not and should be reevaluated. In addition, molecular data provide support for the hypothesis that G. sinuata and G. drummondii arose via interspecific hybridization followed by genome doubling; their influence on phylogenetic reconstruction is discussed.  相似文献   

5.

Background  

A full understanding of the patterns and processes of biological diversification requires the dating of evolutionary events, yet the fossil record is inadequate for most lineages under study. Alternatively, a molecular clock approach, in which DNA or amino acid substitution rates are calibrated with fossils or geological/climatic events, can provide indirect estimates of clade ages and diversification rates. The utility of this approach depends on the rate constancy of molecular evolution at a genetic locus across time and across lineages. Although the nuclear ribosomal internal transcribed spacer region (nrITS) is increasingly being used to infer clade ages in plants, little is known about the sources or magnitude of variation in its substitution rate. Here, we systematically review the literature to assess substitution rate variation in nrITS among angiosperms, and we evaluate possible correlates of the variation.  相似文献   

6.
Phylogenetic analysis of ribosomal DNA internal transcribed spacer sequences from 35 members of western American Portulacaceae plus seven Portulacaceae outgroups generally supports morphologically based interpretations of multiple intercontinental disjunctions. The data neither support nor refute monophyly of the western American group but strongly support a group comprising the western American taxa plus Phemeranthus, the only strictly American genus of the morphology-based eastern American/African group of Portulacaceae, along with the Australian genus Parakeelya. Support is strong for the monophyly of Calandrinia, Montiopsis, Lewisia, Claytonia, and Montia, along with a sister relationship of the last two. The data neither strongly support nor refute the morphologically based diagnosis of Cistanthe, but they strongly support a clade including the North American Cistanthe section Calyptridium and the South American Cistanthe sections Amarantoideae and Philippiamra. The internal transcribed spacer data fail to resolve the phylogenetic relationships among most of the western American lineages, suggesting either rapid radiation or, alternatively, erratic evolution of the internal transcribed spacer. The internal transcribed spacer and morphological evidence together suggest that in this group there have been 8-13 dispersal and colonization events across >2000 km (1 for every 15-26 extant species in this group). The internal transcribed spacer data document complex molecular evolutionary patterns, including strong substitution biases, among-site rate heterogeneity, positional bias for deamination-type substitutions, nonstationarity, and variable rates of insertion/deletion. Our phylogenetic conclusions, however, do not appear to be sensitive to these patterns.  相似文献   

7.
Cicer L. (Leguminosae: Papilionoideae) consists of 42 species of herbaceous or semi-shrubby annuals and perennials distributed throughout the temperate zones of the Northern Hemisphere. The origin and geographical relationships of the genus are poorly understood. We studied the geographical diversification and phylogenetic relationships of Cicer using DNA sequence data sampled from two plastid regions, trnK / matK and trnS - trnG , and two nuclear regions, the internal transcribed spacer (ITS) and external transcribed spacer (ETS) regions of nuclear ribosomal DNA, from 30 species. The results from the phylogenetic analyses of combined nuclear and chloroplast sequence data revealed four well-supported geographical groups: a Middle Eastern group, a West-Central Asian group, an Aegean–Mediterranean group, and an African group. Age estimates for Cicer based on methods that do not assume a molecular clock (for example, penalized likelihood) demonstrate that the genus has a Mediterranean origin with considerable diversification in the Miocene/Pliocene epochs. Geological events, such as mountain orogenesis and environmental changes, are major factors for the dispersal of Cicer species. The early divergence of African species and their geographically distinct region in the genus suggest a broader distribution pattern of the genus in the past than at present.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 154 , 175–186.  相似文献   

8.

Background  

Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.  相似文献   

9.
Checker mallows (Sidalcea, Malvaceae) constitute a western North American genus of annuals and perennials that have been regarded as taxonomically difficult because of complex patterns of morphological variation putatively stemming from hybridization and polyploidy. In recent molecular phylogenetic investigations extensive polymorphism was observed in the internal and external transcribed spacers (ITS and ETS) of 18S–26S nuclear ribosomal DNA for some Sidalcea samples. To resolve the evolutionary basis for this polymorphism and to readdress the evolutionary impact of hybridization in Sidalcea we cloned and sequenced the polymorphic DNAs and included the clones in phylogenetic analyses together with direct sequences of non-polymorphic samples. The positions of cloned spacer sequences in the phylogenetic trees suggest that S. reptans and two subspecies of S. malviflora may have been influenced by past hybridization with lineages of the “glaucescens” clade. Polymorphic sequence patterns in other taxa may be a result of extensive interbreeding within young clades, in keeping with the minimal sequence divergence, largely overlapping geographic distributions and morphology, and ploidy variation in these groups. Other possible explanations for polymorphic sequences in members of Sidalcea include slow concerted evolution relative to mutation rates, incomplete lineage sorting, and recent pseudogene formation.  相似文献   

10.
The evolutionary history and times of divergence of triatomine bug lineages are estimated from molecular clocks inferred from nucleotide sequences of the small subunit SSU (18S) and the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA of these reduviids. The 18S rDNA molecular clock rate in Triatominae, and Prosorrhynchan Hemiptera in general, appears to be of 1.8% per 100 million years (my). The ITS-2 molecular clock rate in Triatominae is estimated to be around 0.4-1% per 1 my, indicating that ITS-2 evolves 23-55 times faster than 18S rDNA. Inferred chronological data about the evolution of Triatominae fit well with current hypotheses on their evolutionary histories, but suggest reconsideration of the current taxonomy of North American species complexes.  相似文献   

11.
The eastern Asian (EAS)-eastern North American (ENA) floristic disjunction is one of the best-known biogeographic patterns in the Northern Hemisphere. Recent paleontological and molecular analyses have illuminated the origins of the biogeographic pattern, but subsequent diversification and evolution of the disjunct floras in each of the two continents after isolation remains poorly understood. Although similar in climate and floristic composition, EAS has twice as many species as ENA in genera occurring in both regions. Explaining such differences in species diversity between regions with similar environmental conditions (diversity anomalies) is an important goal of the study of the global patterns of biodiversity. We used a phylogenetic approach to compare rates of net speciation and molecular evolution between the two regions. We first identified EAS-ENA disjunct sister clades from ten genera (Asarum, Buckleya, Carpinus, Carya, Cornus, Hamamelis, Illicium, Panax, Stewartia, and Styrax) that represent diverse angiosperm lineages using phylogenetic analyses of ITS (internal transcribed spacer of nuclear ribosomal DNA) sequence data. Species richness and substitution rate of ITS between sister clades were compared. The results revealed a pattern of greater species diversity in the EAS counterparts. A positive relationship between species diversity and ITS substitution rate was also documented. These results suggest greater net speciation and accelerated molecular evolution in EAS. The data support the idea that a regional difference in net speciation rate related to topographic heterogeneity contributes to the diversity anomaly between EAS and ENA. The close relationship between rates of ITS evolution and species richness further suggests that species production may be directly linked to rate of nucleotide substitution.  相似文献   

12.
To understand the success of invasive species, it is important to know whether colonization events are facilitated by adaptive evolution or are limited to sites where a species is pre-adapted to thrive. Studies of the ancient colonization patterns of an invader in its native range provide an opportunity to examine its natural history of adaptation and colonization. This study uses molecular (internal transcribed spacer sequence and amplified fragment length polymorphism) and common garden approaches to assess the ancient patterns of establishment and quantitative trait evolution in the invasive shrub Hypericum canariense. This species has an unusually small and discrete native range in the Canary Islands. Our data reveal two genetic varieties with divergent life histories and different colonization patterns across the islands. Although molecular divergence within each variety is large (pairwise FST from 0.18 to 0.32 between islands) and nearly as great as divergence between them, life-history traits show striking uniformity within varieties. The discrepancy between molecular and life-history trait divergence points to the action of stabilizing selection within varieties and the influence of pre-adaptation on patterns of colonization. The colonization history of H. canariense reflects how the relationship between selective environments in founding and source populations can dictate establishment by particular lineages and their subsequent evolutionary stasis or change.  相似文献   

13.
The nuclear encoded internal transcribed spacer (ITS) region and the plastid encoded trnL-F region were sequenced for 25 populations of Korthalsella, a genus of reduced, monoecious, Old World misletoes. The molecular study confirms the hypothesis that branch shape and cladotaxy (the arrangement of branches with respect to their parent axis) are unreliable indicators of relationship in the genus and demonstrates that many of the taxa previously recognized are not monophyletic. Both gene regions identify three major subgroups within the genus and find lower level relationships within these subgroups highly correlated with geographic distance. An analysis based upon 18S and rbcL sequences identifies Ginalloa as the sister group to Korthalsella, which together with the branching order within the genus, indicates that Korthalsella originated in Papuasia and aids in elucidating evolution of the peculiar inflorescence structure. There are problems associated with species delimitation when evolutionary units are more restricted than morphological lineages, and justification is offered for recognizing only morphologically diagnosable monophyletic lineages as species. Varying substitution rates and differing modes of inheritance in ITS and trnL-F result in complementary utility of the two regions for elucidating infrageneric relationships in Korthalsella.  相似文献   

14.
Identifying causes of genetic divergence is a central goal in evolutionary biology. Although rates of nucleotide substitution vary among taxa and among genes, the causes of this variation tend to be poorly understood. In the present study, we examined the rate and pattern of molecular evolution for five DNA regions over a phylogeny of Cornus, the single genus of Cornaceae. To identify evolutionary mechanisms underlying the molecular variation, we employed Bayesian methods to estimate divergence times and to infer how absolute rates of synonymous and nonsynonymous substitutions and their ratios change over time. We found that the rates vary among genes, lineages, and through time, and differences in mutation rates, selection type and intensity, and possibly genetic drift all contributed to the variation of substitution rates observed among the major lineages of Cornus. We applied independent contrast analysis to explore whether speciation rates are linked to rates of molecular evolution. The results showed no relationships for individual genes, but suggested a possible localized link between species richness and rate of nonsynonymous nucleotide substitution for the combined cpDNA regions. Furthermore, we detected a positive correlation between rates of molecular evolution and morphological change in Cornus. This was particularly pronounced in the dwarf dogwood lineage, in which genome-wide acceleration in both molecular and morphological evolution has likely occurred.  相似文献   

15.
16.
Systematic research provides essential evidence for setting conservation priorities for rare and endangered taxa. Phylogenetic analyses can identify cryptic, genetically distinct lineages as well as actively interbreeding, and hence, non-distinctive lineages earlier perceived as separate taxa. A major aim of this study was to identify genetically distinct, rare lineages within two Malvaceae sister-genera, Sidalcea and Eremalche. The focus was two taxon-pairs each consisting of one rare and one more common taxon. The results demonstrate that even within two closely related genera, with a large number of rare taxa, molecular phylogenetic analyses can reveal contrasting degrees of evolutionary divergence and thus contrasting conservation implications for threatened taxa. Contrary to expectations, the substitution rate in the nuclear ribosomal transcribed spacers for annual Eremalche did not correspond to the faster evolutionary rate of annuals – compared to perennials – detected earlier within Sidalcea. Branch lengths in the (annual) Eremalche clade were shorter than those of annual members of Sidalcea. The phylogenetic analyses showed that the rare and endangered S. keckii and E. kernensis each are most closely related to a common species that has been regarded as insufficiently distinct to warrant separate taxonomic status. An additional aim of the study was to test the utility of the Phylogenetic Diversity (PD) measure to formalize the procedure of prioritizing conservation efforts. The measure demonstrated S. keckii (but not E. kernensis) to be genetically distinct from its closest relative and a good candidate for conservation. The PD measure was earlier used for assessing conservation priorities for areas, but proved useful to more objectively suggest conservation priorities among threatened taxa. Because this measure is calculated directly from the data, it retains more character information and gives a better representation of genetic diversity than other measures relying on tree topologies.  相似文献   

17.
The endemic Hawaiian flora offers remarkable opportunities to study the patterns of plant morphological and molecular evolution. The Hawaiian violets are a monophyletic lineage of nine taxa distributed across six main islands of the Hawaiian archipelago. To describe the evolutionary relationships, biogeography, and molecular evolution rates of the Hawaiian violets, we conducted a phylogenetic study using nuclear rDNA internal transcribed spacer sequences from specimens of each species. Parsimony, maximum likelihood (ML), and Bayesian inference reconstructions of island colonization and radiation strongly suggest that the Hawaiian violets first colonized the Maui Nui Complex, quickly radiated to Kaua'i and O'ahu, and recently dispersed to Hawai'i. The lineage consists of "wet" and "dry" clades restricted to distinct precipitation regimes. The ML and Bayesian inference reconstructions of shifts in habitat, habit, and leaf shape indicate that ecologically analogous taxa have undergone parallel evolution in leaf morphology and habit. This parallel evolution correlates with shifts to specialized habitats. Relative rate tests showed that woody and herbaceous sister species possess equal molecular evolution rates. The incongruity of molecular evolution rates in taxa on younger islands suggests that these rates may not be determined by growth form (or lifespan) alone, but may be influenced by complex dispersal events.  相似文献   

18.
This is the first comparative study of correlated evolution between figs (Ficus species, Moraceae) and their pollinators (Hymenoptera: Agaoninae) based on molecular phylogenies of both lineages. Fig relationships based on the internal transcribed spacer region (ITS) of nuclear ribosomal DNA and pollinator relationships inferred from mitochondrial cytochrome oxidase I (COI) sequences enabled the study of correlated evolution based on molecular phylogenies for the largest set of interacting species ever compared. Comparative methods have been applied to tests of adaptation, but the application of these methods in tests of coadaptation, defined as reciprocal evolutionary change in interacting lineages, has received less attention. I have extended tests of correlated evolution between two traits along a phylogeny to the case of interacting lineages, where two traits may or may not share a common phylogenetic history. Independent contrasts and phylogenetic autocorrelation rejected the null hypothesis that trait correlations within lineages are stronger than trait correlations between interacting lineages. Fig style lengths and pollinator ovipositor lengths, for example, were more highly correlated than were pollinator body size and ovipositor length. Mutualistic interactions between figs and their pollinators illustrate the novel ways in which phylogenies and comparative methods can detect patterns of correlated evolution. The most outstanding evidence of correlated evolution between these obligate mutualists is that interacting trait correlations are stronger than within-lineage allometric relationships.  相似文献   

19.
The order Passeriformes comprises the majority of extant avian species. Analyses of molecular data have provided important insights into the evolution of this diverse order. However, molecular estimates of the evolutionary and demographic timescales of passerine species have been hindered by a lack of reliable calibrations. This has led to a reliance on the application of standard substitution rates to mitochondrial DNA data, particularly rates estimated from analyses of the gene encoding cytochrome b (CYTB). To investigate patterns of rate variation across passerine lineages, we used a Bayesian phylogenetic approach to analyse the protein‐coding genes of 183 mitochondrial genomes. We found that the most commonly used mitochondrial marker, CYTB, has low variation in rates across passerine lineages. This lends support to its widespread use as a molecular clock in birds. However, we also found that the patterns of among‐lineage rate variation in CYTB are only weakly related to the evolutionary rate of the mitochondrial genome as a whole. Our analyses confirmed the presence of mutational saturation at third codon positions across the protein‐coding genes of the mitochondrial genome, reinforcing the view that these sites should be excluded in studies of deep passerine relationships. The results of our analyses have provided information that will be useful for molecular‐clock studies of passerine evolution.  相似文献   

20.
Genome evolution in the genus Sorghum (Poaceae)   总被引:3,自引:0,他引:3  
BACKGROUND AND AIMS: The roles of variation in DNA content in plant evolution and adaptation remain a major biological enigma. Chromosome number and 2C DNA content were determined for 21 of the 25 species of the genus Sorghum and analysed from a phylogenetic perspective. METHODS: DNA content was determined by flow cytometry. A Sorghum phylogeny was constructed based on combined nuclear ITS and chloroplast ndhF DNA sequences. KEY RESULTS: Chromosome counts (2n = 10, 20, 30, 40) were, with few exceptions, concordant with published numbers. New chromosome numbers were obtained for S. amplum (2n = 30) and S. leiocladum (2n = 10). 2C DNA content varies 8.1-fold (1.27-10.30 pg) among the 21 Sorghum species. 2C DNA content varies 3.6-fold from 1.27 pg to 4.60 pg among the 2n = 10 species and 5.8-fold (1.52-8.79 pg) among the 2n = 20 species. The x = 5 genome size varies over an 8.8-fold range from 0.26 pg to 2.30 pg. The mean 2C DNA content of perennial species (6.20 pg) is significantly greater than the mean (2.92 pg) of the annuals. Among the 21 species studied, the mean x = 5 genome size of annuals (1.15 pg) and of perennials (1.29 pg) is not significantly different. Statistical analysis of Australian species showed: (a) mean 2C DNA content of annual (2.89 pg) and perennial (7.73 pg) species is significantly different; (b) mean x = 5 genome size of perennials (1.66 pg) is significantly greater than that of the annuals (1.09 pg); (c) the mean maximum latitude at which perennial species grow (-25.4 degrees) is significantly greater than the mean maximum latitude (-17.6) at which annual species grow. CONCLUSIONS: The DNA sequence phylogeny splits Sorghum into two lineages, one comprising the 2n = 10 species with large genomes and their polyploid relatives, and the other with the 2n = 20, 40 species with relatively small genomes. An apparent phylogenetic reduction in genome size has occurred in the 2n = 10 lineage. Genome size evolution in the genus Sorghum apparently did not involve a 'one way ticket to genomic obesity' as has been proposed for the grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号