首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.

Main conclusion

Phyto-S1P and S1P induced stomatal closure in epidermis of pea ( Pisum sativum ) by raising the levels of NO and pH in guard cells. Phosphosphingolipids, such as phytosphingosine-1-phosphate (phyto-S1P) and sphingosine-1-phosphate (S1P), are important signaling components during drought stress. The biosynthesis of phyto-S1P or S1P is mediated by sphingosine kinases (SPHKs). Although phyto-S1P and S1P are known to be signaling components in higher plants, their ability to induce stomatal closure has been ambiguous. We evaluated in detail the effects of phyto-S1P, S1P and SPHK inhibitors on signaling events leading to stomatal closure in the epidermis of Pisum sativum. Phyto-S1P or S1P induced stomatal closure, along with a marked rise in nitric oxide (NO) and cytoplasmic pH of guard cells, as in case of ABA. Two SPHK inhibitors, DL-threo dihydrosphingosine and N’,N’-dimethylsphingosine, restricted ABA-induced stomatal closure and prevented the increase of NO or pH by ABA. Modulators of NO or pH impaired both stomatal closure and increase in NO or pH by phyto-S1P/S1P. The stomatal closure by phyto-S1P/S1P was mediated by phospholipase D and phosphatidic acid (PA). When present, PA elevated the levels of pH, but not NO of guard cells. Our results demonstrate that stomatal closure induced by phyto-S1P and S1P depends on rise in pH as well as NO of guard cells. A scheme of signaling events initiated by phyto-S1P/S1P, and converging to cause stomatal closure, is proposed.
  相似文献   

3.
4.
5.
6.
Microtubules are highly dynamic cellular structures that are required for many biological processes. Cortical microtubules in plant play crucial roles during cell expansion. Its proper dynamics are required for plant growth and responses to environmental stimuli. Arabidopsis mutants, such as sav2/tub4 P287L , display a variety of growth defects, including short and twisting hypocotyls in dark and shade. Both microtubule organization and dynamics are altered in sav2. Here, we have identified a suppressor of sav2 (sus2), which surprisingly contains a missense mutation in another β tubulin gene, TUB6. The mutation results in a L246F substitution in TUB6. It locates at the interface of αβ-intradimer. This mutation partially suppressed the swirling microtubule arrangement in sav2 hypocotyl cells, leading to the partial rescue of sav2 phenotypes. As the mutant behaves as a semi-dominant mutation and the CFP-labeled tub6L246F can incorporate into microtubules, we propose that the incorporation of tub6L246F interferes with the normal function of microtubules. tub6 L246F single mutant is hypersensitive to drugs disrupting microtubule dynamics, such as colchicine, suggesting the mutation may affect microtubule dynamics. Moreover, we found the colchicine hypersensitivity of tub6L246F can be suppressed by tub4P287L, while tub6L246F interferes with the rescuing effect of EB1 on sav2. As P287 locates around M-loop, which is involved in interactions between microtubule protofilaments, we propose that altered interactions at αβ-intradimer interface may affect microtubule dynamics through M-loop mediated interactions between microtubule protofilaments.  相似文献   

7.
Despite the paraquat-resistant mutants that have been reported in plants, this study identified a novel A. thaliana mutant (pqr2) from an XVE inducible activation library based on its resistance to 2 μM paraquat. The pqr2 mutant exhibited a termination mutation in the exon of AT1G31830/PAR1/PQR2, encoded a polyamine uptake transporter AtPUT2/PAR1/PQR2. The PQR2 mutation could largely reduce superoxide accumulation and cell death in the pqr2 plants under paraquat treatment. Moreover, compared with wild type, the pqr2 mutant exhibited much reduced tolerance to putrescine, a classic polyamine compound, which confirmed that PQR2 encoded a defective polyamine transporter. Notably, co-treated with ABA and paraquat, both pqr2 mutant and wild type exhibited a lethal phenotype from seed germination, but the wild type like pqr2 mutant, could remain paraquat-resistance while co-treated with high dosage of Na2WO4, an ABA synthesis inhibitor. Gene expression analysis suggested that ABA signaling should widely regulate paraquat-responsive genes distinctively in wild type and pqr2 mutant. Hence, this study has for the first time reported about ABA negative effect on paraquat-resistance in A. thaliana, providing insight into the ABA signaling involved in the oxidative stress responses induced by paraquat in plants.  相似文献   

8.
Stomata open in response to blue light under a background of red light. The plant hormone abscisic acid (ABA) inhibits blue light-dependent stomatal opening, an effect essential for promoting stomatal closure in the daytime to prevent water loss. However, the mechanisms and molecular targets of this inhibition in the blue light signaling pathway remain unknown. Here, we report that phosphatidic acid (PA), a phospholipid second messenger produced by ABA in guard cells, inhibits protein phosphatase 1 (PP1), a positive regulator of blue light signaling, and PA plays a role in stimulating stomatal closure in Vicia faba. Biochemical analysis revealed that PA directly inhibited the phosphatase activity of the catalytic subunit of V. faba PP1 (PP1c) in vitro. PA inhibited blue light-dependent stomatal opening but did not affect red light- or fusicoccin-induced stomatal opening. PA also inhibited blue light-dependent H+ pumping and phosphorylation of the plasma membrane H+-ATPase. However, PA did not inhibit the autophosphorylation of phototropins, blue light receptors for stomatal opening. Furthermore, 1-butanol, a selective inhibitor of phospholipase D, which produces PA via hydrolysis of phospholipids, diminished the ABA-induced inhibition of blue light-dependent stomatal opening and H+ pumping. We also show that hydrogen peroxide and nitric oxide, which are intermediates in ABA signaling, inhibited the blue light responses of stomata and that 1-butanol diminished these inhibitions. From these results, we conclude that PA inhibits blue light signaling in guard cells by PP1c inhibition, accelerating stomatal closure, and that PP1 is a cross talk point between blue light and ABA signaling pathways in guard cells.Stomatal guard cells in the epidermis of aerial plants regulate gas exchange between leaves and the atmosphere, allowing the uptake of CO2 for photosynthesis and the loss of water by transpiration. Guard cells integrate a wide variety of stimuli such as light, humidity, temperature, CO2, and plant hormones to prevent excessive water loss and optimize plant growth under changing environmental conditions (Vavasseur and Raghavendra, 2005; Shimazaki et al., 2007). Among them, blue light and abscisic acid (ABA) represent key factors that promote stomatal opening and closure, respectively (Assmann and Shimazaki, 1999; Hetherington, 2001; Schroeder et al., 2001; Roelfsema and Hedrich, 2005). Blue light induces H+ pumping by activation of the plasma membrane H+-ATPase, which causes membrane hyperpolarization and drives K+ uptake into guard cells via inward-rectifying K+ channels (Assmann et al., 1985; Shimazaki et al., 1986; Schroeder et al., 1987). By contrast, ABA activates the anion channels, thereby causing membrane depolarization and promoting K+ efflux from guard cells via outward-rectifying K+ channels (Schroeder et al., 1987). There is cross talk between the opening and closure systems, and ABA inhibits blue light-induced activation of the H+-ATPase (Shimazaki et al., 1986; Goh et al., 1996; Roelfsema et al., 1998). Such inhibition of H+-ATPase by ABA is crucial to maintain the plasma membrane depolarization and supports efficient stomatal closure of open stomata. For example, when H+-ATPase is kept in the active state, as was found in the open stomata2 mutants, plants lost the stomatal closure response to ABA, which brought about the wilty phenotype even under well-watered conditions (Merlot et al., 2002, 2007). Although the regulation of the stomatal opening system by ABA is important for plant survival, the mechanism by which ABA inhibits the activation of H+-ATPase by blue light is largely unknown.Blue light is required for the activation of phototropins, plant-specific Ser/Thr autophosphorylating kinases, and the activated phototropins transmit the signal to the plasma membrane H+-ATPase for its activation (Kinoshita et al., 2001; Christie, 2007). Activation of the H+-ATPase is caused by the phosphorylation of a Thr residue in the C terminus with subsequent binding of a 14-3-3 protein to the Thr residue (Kinoshita and Shimazaki, 1999; Emi et al., 2001). Since phototropins are Ser/Thr protein kinases, it might be possible that phototropins directly phosphorylate the H+-ATPase. However, this has been shown not to be the case. Recently, we demonstrated that protein phosphatase 1 (PP1), a major member of the PPP family of Ser/Thr protein phosphatases, mediates the signaling between phototropins and H+-ATPase in guard cells (Takemiya et al., 2006). Therefore, ABA is likely to inhibit the signaling molecule(s), including phototropins, PP1, H+-ATPase, and other unidentified components.In guard cells, ABA induces the production of phosphatidic acid (PA), and PA has been implicated in stimulating stomatal closure and inhibiting light-induced stomatal opening (Jacob et al., 1999; Zhang et al., 2004a; Mishra et al., 2006). PA has also been shown to interact with the catalytic subunit of human PP1 (PP1c) and decreases its phosphatase activity (Kishikawa et al., 1999; Jones and Hannun, 2002). It is thus conceivable that PA also functions as an inhibitor of plant PP1c and suppresses the blue light signaling of guard cells.In this study, we investigated the effect of PA on blue light responses of stomata from Vicia faba. We found that PA inhibited the phosphatase activity of PP1c in vitro, suppressed blue light-dependent H+ pumping and phosphorylation of H+-ATPase, and did not affect the autophosphorylation of phototropins in guard cells.  相似文献   

9.
Abscisic acid (ABA) is the most important stress hormone in the regulation of plant adaptation to drought. Owing to the chemical instability and rapid catabolism of ABA, ABA mimic 1 (AM1) is frequently applied to enhance drought resistance in plants, but the molecular mechanisms governed by AM1 on improving drought resistance in Brassica napus are not entirely understood. To investigate the effect of AM1 on drought resistance at the physiological and molecular levels, exogenous ABA and AM1 were applied to the leaves of two B. napus genotypes (Q2 and Qinyou 8) given progressive drought stress. The results showed that the leaves of 50 µM ABA- and AM1-treated plants shared over 60% differential expressed genes and 90% of the enriched functional pathways in Qinyou 8 under drought. AM1 affected the expression of the genes involved in ABA signaling; they down-regulated pyrabactin resistance/PYR1-like (PYR/PYLs), up-regulated type 2C protein phosphatases (PP2Cs), partially up-regulated sucrose non-fermenting 1-related protein kinase 2s (SnRK2s), and down-regulated ABA-responsive element (ABRE)-binding protein/ABRE-binding factors (AREB/ABFs). Additionally, AM1 treatment repressed the expression of photosynthesis-related genes, those mainly associated with the light reaction process. Moreover, AM1 decreased the stomatal conductance, the net photosynthetic rate, and the transpiration rate, but increased the relative water content in leaves and increased survival rates of two genotypes under drought stress. Our findings suggest that AM1 has a potential to improve drought resistance in B. napus by triggering molecular and physiological responses to reduce water loss and impair growth, leading to increased survival rates.  相似文献   

10.
Phosphoprotein phosphatase 2A (PP2A) plays a crucial role in cellular processes via reversible dephosphorylation of proteins. The activity of this enzyme depends on its subunits. There is little information about mRNA expression of each subunit and the relationship between these gene expressions and the growth patterns under stress conditions and hormones. Here, mRNA expression of subunit A3 of PP2A and its relationship with growth patterns under different levels of drought stress and abscisic acid (ABA) concentration were analyzed in Arabidopsis thaliana. The mRNA expression profiles showed different levels of the up- and down-regulation of PP2AA3 in roots and shoots of A. thaliana under drought conditions and ABA treatments. The results demonstrated that the regulation of PP2AA3 expression under the mentioned conditions could indirectly modulate growth patterns such that seedlings grown under severe drought stress and those grown under 4 µM ABA had the maximum number of lateral roots and the shortest primary roots. In contrast, the minimum number of lateral roots and the longest primary roots were observed under mild drought stress and 0.5 µM ABA. Differences in PP2AA3 mRNA expression showed that mechanisms involved in the regulation of this gene under drought conditions would probably be different from those that regulate the PP2AA3 expression under ABA. Co-expression of PP2AA3 with each of PIN1-4,7 (PP2A activity targets) depends on the organ type and different levels of drought stress and ABA concentration. Furthermore, fluctuations in the PP2AA3 expression proved that this gene cannot be suitable as a reference gene although PP2AA3 is widely used as a reference gene.  相似文献   

11.
We isolated a mutant from Vicia faba L. cv. House Ryousai. Itwilts easily under strong light and high temperature conditions,suggesting that its stomatal movement may be disturbed. We determinedresponses of mutant guard cells to some environmental stimuli.Mutant guard cells demonstrated an impaired ability to respondto ABA in 0.1 mM CaCl2 and stomata did not close in thepresence of up to 1 mM ABA, whereas wild-type stomata closedwhen exposed to 10 µM ABA. Elevating external Ca2+caused a similar degree of stomatal closure in the wild typeand the mutant. A high concentration of CO2 (700 µlliter–1) induced stomatal closure in the wild type, butnot in the mutant. On the basis of these results, we proposethe working hypothesis that the mutation occurs in the regiondownstream of CO2 and ABA sensing and in the region upstreamof Ca2+ elevation. The mutant is named fia (fava bean impairedin ABA-induced stomatal closure). 3 Corresponding author: E-mail, smoiwai{at}agri.kagoshima-u.ac.jp;Fax, +81-99-285-8556.  相似文献   

12.
Short-chain peptides play important roles in plant development and responses to abiotic and biotic stresses. Here, we characterized a gene of unknown function termed OsDT11, which encodes an 88 amino acid short-chain peptide and belongs to the cysteine-rich peptide family. It was found that the expression of OsDT11 can be activated by polyethylene glycol (PEG) treatment. Compared with wild-type lines, the OsDT11-overexpression lines displayed dramatically enhanced tolerance to drought and had reduced water loss, reduced stomatal density, and an increased the concentration of abscisic acid (ABA). The suppression of OsDT11 expression resulted in an increased sensitivity to drought compared to wild-type expression. Several drought-related genes, including genes encoding abscisic acid (ABA) signaling markers, were also strongly induced in the OsDT11-overexpressing lines. Moreover, the expression of OsDT11 was repressed in ABA-insensitive mutant Osbzip23 and Os2H16 RNAi lines. These results suggest that OsDT11-mediated drought tolerance may be dependent on the ABA signaling pathway.  相似文献   

13.

Background

Plant phospholipase D (PLD), which can hydrolyze membrane phospholipids to produce phosphatidic acid (PA), a secondary signaling molecule, has been proposed to function in diverse plant stress responses. Both PLD and PA play key roles in plant growth, development, and cellular processes. PLD was suggested to mediate the regulation of stomatal movements by abscisic acid (ABA) as a response to water deficit. In this research, we characterized the roles of the cucumber phospholipase D alpha gene (CsPLDα, GenBank accession number EF363796) in the growth and tolerance of transgenic tobacco (Nicotiana tabacum) to drought stress.

Results

The CsPLDα overexpression in tobacco lines correlated with the ABA synthesis and metabolism, regulated the rapid stomatal closure in drought stress, and reduced the water loss. The NtNCED1 expression levels in the transgenic lines and wild type (WT) were sharply up-regulated after 16?days of drought stress compared with those before treatment, and the expression level in the transgenic lines was significantly higher than that in the WT. The NtAOG expression level evidently improved after 8 and 16?days compared with that at 0?day of treatment and was significantly lower in the transgenic lines than in the WT. The ABA content in the transgenic lines was significantly higher than that in the WT. The CsPLDα overexpression could increase the osmolyte content and reduce the ion leakage. The proline, soluble sugar, and soluble protein contents significantly increased. By contrast, the electrolytic leakage and malondialdehyde accumulation in leaves significantly decreased. The shoot and root fresh and dry weights of the overexpression lines significantly increased. These results indicated that a significant correlation between CsPLDα overexpression and improved resistance to water deficit.

Conclusions

The plants with overexpressed CsPLDα exhibited lower water loss, higher leaf relative water content, and heavier fresh and dry matter accumulation than the WT. We proposed that CsPLDα was involved in the ABA-dependent pathway in mediating the stomatal closure and preventing the elevation of intracellular solute potential.
  相似文献   

14.
15.
16.
Casein kinase II (CK2), an evolutionarily well-conserved Ser/Thr kinase, plays critical roles in all higher organisms including plants. CKB1 is a regulatory subunit beta of CK2. In this study, homozygous T-DNA mutants (ckb1-1 and ckb1-2) and over-expression plants (35S:CKB1-1, 35S:CKB1-2) of Arabidopsis thaliana were studied to understand the role of CKB1 in abiotic stress and gibberellic acid (GA) signaling. Histochemical staining showed that although CKB1 was expressed in all organs, it had a relatively higher expression in conducting tissues. The ckb1 mutants showed reduced sensitivity to abscisic acid (ABA) during seed germination and seedling growth. The increased stomatal aperture, leaf water loss and proline accumulation were observed in ckb1 mutants. In contrast, the ckb1 mutant had increased sensitivity to polyaluminum chloride during seed germination and hypocotyl elongation. We obtained opposite results in over-expression plants. The expression levels of a number of genes in the ABA and GA regulatory network had changed. This study demonstrates that CKB1 is an ABA signaling-related gene, which subsequently influences GA metabolism, and may play a positive role in ABA signaling.  相似文献   

17.
The objectives of this study were to investigate stomatal regulation in maize seedlings during progressive soil drying and to determine the impact of stomatal movement on photosynthetic activity. In well-watered and drought-stressed plants, leaf water potential (Ψ leaf), relative water content (RWC), stomatal conductance (g s), photosynthesis, chlorophyll fluorescence, leaf instantaneous water use efficiency (iWUEleaf), and abscisic acid (ABA) and zeatin-riboside (ZR) accumulation were measured. Results showed that g s decreased significantly with progressive drought and stomatal limitations were responsible for inhibiting photosynthesis in the initial stages of short-term drought. However, after 5 days of withholding water, non-stomatal limitations, such as damage to the PSII reaction center, became the main limiting factor. Stomatal behavior was correlated with changes in both hydraulic and chemical signals; however, changes in ABA and ZR occurred prior to any change in leaf water status. ABA in leaf and root tissue increased progressively during soil drying, and further analysis found that leaf ABA was negatively correlated with g s (R 2 = 0.907, p < 0.05). In contrast, leaf and root ZR decreased gradually. ZR in leaf tissue was positively correlated with g s (R 2 = 0.859, p < 0.05). These results indicate that ABA could induce stomatal closure, and ZR works antagonistically against ABA in stomatal behavior. In addition, the ABA/ZR ratio also had a strong correlation with g s, suggesting that the combined chemical signal (the interaction between ABA and cytokinin) plays a role in coordinating stomatal behavior. In addition, Ψ leaf and RWC decreased significantly after only 3 days of drought stress, also affecting stomatal behavior.  相似文献   

18.
19.
20.
Trichoderma species are widespread phytostimulant fungi that act through biocontrol of root pathogens, modulation of root architecture, and improving plant adaptation to biotic and abiotic stress. With the major challenge to better understand the contribution of Trichoderma symbionts to plant adaptation to climate changes and confer stress tolerance, we investigated the potential of Trichoderma virens and Trichoderma atroviride in modulating stomatal aperture and plant transpiration. Arabidopsis wild-type (WT) seedlings and ABA-insensitive mutants, abi1-1 and abi2-1, were co-cultivated with either T. virens or T. atroviride, and stomatal aperture and water loss were determined in leaves. Arabidopsis WT seedlings inoculated with these fungal species showed both decreased stomatal aperture and reduced water loss when compared with uninoculated seedlings. This effect was absent in abi1-1 and abi2-1 mutants. T. virens and T. atroviride induced the abscisic acid (ABA) inducible marker abi4:uidA and produced ABA under standard or saline growth conditions. These results show a novel facet of Trichoderma-produced metabolites in stomatic aperture and water-use efficiency of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号