首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
1,3-Propanediol (1,3-PD) can be used for the industrial synthesis of a variety of compounds, including polyesters, polyethers, and polyurethanes. 1,3-PD is generated from petrochemical and microbial sources. 1,3-Propanediol is a typical product of glycerol fermentation, while acetate, lactate, 2,3-butanediol, and ethanol also accumulate during the process. Substrate and product inhibition limit the final concentration of 1,3-propanediol in the fermentation broth. It is impossible to increase the yield of 1,3-propanediol by using the traditional whole-cell fermentation process. In this study, dhaD and dhaK, the genes for glycerol dehydrogenase and dihydroxyacetone kinase, respectively, were inactivated by homologous recombination in Klebsiella pneumoniae. The dhaD/dhaK double mutant (designated TC100), selected from 5,000 single or double cross homologous recombination mutants, was confirmed as a double cross by using polymerase chain reaction. Analysis of the cell-free supernatant with high-performance liquid chromatography revealed elimination of lactate and 2,3-butanediol, as well as ethanol accumulation in TC100, compared with the wild-type strain. Furthermore, 1,3-propanediol productivity was increased in the TC100 strain expressing glycerol dehydratase and 1,3-PDO dehydrogenase regulated by the arabinose PBAD promoter. The genetic engineering and medium formulation approaches used here should aid in the separation of 1,3-propanediol from lactate, 2,3-butanediol, and ethanol and lead to increased production of 1,3-propanediol in Klebsiella pneumoniae.  相似文献   

2.
The conversion of glycerol into high value products, such as hydrogen gas and 1,3‐propanediol (PD), was examined using anaerobic fermentation with heat‐treated mixed cultures. Glycerol fermentation produced 0.28 mol‐H2/mol‐glycerol (72 mL‐H2/g‐COD) and 0.69 mol‐PD/mol‐glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol‐H2/mol‐glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol‐H2/mol‐glycerol (43 mL H2/g‐COD) and 0.59 mol‐PD/mol‐glycerol. These are the highest yields yet reported for both hydrogen and 1,3‐propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3‐propanediol for maximum utilization of resources and minimization of waste. Biotechnol. Bioeng. 2009; 104: 1098–1106. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

4.
A new separation and purification process was developed for recovering 1,3‐propanediol (1,3‐PD) from crude glycerol‐based fermentation broth with high purity. The downstream process integrated chitosan flocculation, activated carbon decolorization, fixed bed cation exchange resin adsorption, and vacuum distillation. Breakthrough curves were measured considering the effect of sample concentration, flow rate, temperature, and resin stack height. Yoon–Nelson model was proposed to fit the fixed bed adsorption. The characteristic column parameters were calculated. Optimal condition for adsorption was 1,3‐PD, 30.0 g/L; flow rate, 1.00 mL/min; stacking height, 30.0 cm; and temperature, 298 K. Ethanol‐water (75%, 1 mL/min) was used as eluent to separate 1,3‐PD and glycerol with 95.3% 1,3‐PD elution rate. After vacuum distillation, the overall purity and yield of 1,3‐PD were 99.2% and 80.8% in the purification process, respectively. This is a simple and efficient downstream strategy for 1,3‐PD purification.  相似文献   

5.
以肺炎克雷伯氏杆菌(Klebsiella pneumoniae)为研究对象,应用原生质体紫外诱变技术提高其对甘油及1,3-丙二醇的耐受性,获得1,3-丙二醇高产菌.在原生质体制备过程中,运用滤膜去除酶解后细胞悬液中的正常菌体,简化菌体酶解过程,提高再生率及形成率.经过原生质体诱变后,以耐受高浓度甘油和1,3-丙二醇及高产酸能力为筛选方向,最终筛选到了3株高产菌株(Kp-1、Kp-4和Kp-5).在补料发酵实验中,上述诱变菌产1,3-丙二醇能力分别为70.24 、65.21和75.51 g/L,比野生菌株WT(55.78 g/L)分别提高了25.92%、16.91%和35.37%.  相似文献   

6.
1,3‐Propanediol (1,3‐PD) is widely used in cosmetics, foods, antifreezes, and polyester. A low‐cost cation exchange resin, 001×7 H‐form resin, was selected for 1,3‐PD adsorption obtained from microbial fermentation of crude glycerol. The thermodynamics and kinetics of adsorption were studied. To identify the characteristics of the adsorption process, the influence of 1,3‐PD concentration, temperature, and resin particle diameters was studied. The temperature dependence of the adsorption equilibrium in the range of 288 to 318 K was observed to satisfy the Langmuir isotherm well. The thermodynamic parameters, adsorption enthalpy, entropy, and Gibbs free energy, were determined as 36.2 kJ·moL?1, 160 mol?1·K?1, and ?11.2 kJ·moL?1, respectively, which indicated that the adsorption was spontaneous and endothermic. The adsorption kinetics was accurately represented by the shell progressive model and indicated that the particle diffusion was the rate‐limiting step. Based on the kinetic simulation, the rate constant of exchange (k0), order reaction (α), and the apparent activation energy reaction (Ea) were obtained as 3.11×10?3, 0.644, and 11.5 kJ·moL?1, respectively. This kinetic and thermodynamic analysis of 1,3‐PD recovery presented in this article is also applicable for the separation of other polyols by resin adsorption, which will promote value‐added utilization of glycerol.  相似文献   

7.
Metabolic role of 1,3-propanediol oxidoreductase (PDOR) in the production of 1,3-propanediol (1,3-PDO) with K. pneumonia was investigated by knocking out the coded gene dhaT. Fermentation with both the wide-type and mutant were studied in 5 l fermentor. A PDOR-deficient mutant K. pneumonia T1.9131 with 19% PDOR activity of the wild type was constructed. The cultures of the mutant indicated that PDOR inactivation had great effect on the other dha regulon enzymes: activity of glycerol dehydratase decreased by 70% while activity of glycerol dehydrogenase increased by 68%. Fed-batch fermentation showed that more metabolic flux of glycerol was directed to lactate and ethanol in the mutant. Lactate was identified as major metabolite and received an increase in the final concentration from 45 to 91 g l−1, while the concentration of 1,3-PDO production dropped from 94 to 36 g l−1. The results demonstrated PDOR was not indispensable in glycerol metabolism but was crucial in high 1,3-PDO productivity. It is postulated that a hypothetical oxidoreductase was expressed and replaced the function of PDOR. Blocking the pathway towards lactate and ethanol could be a plausible scheme to enhance 1,3-PDO productivity.  相似文献   

8.
Bioconversions in industrial processes are currently dominated by single‐strain approaches. With the growing complexity of tasks to be carried out, microbial consortia become increasingly advantageous and eventually may outperform single‐strain fermentations. Consortium approaches benefit from the combined metabolic capabilities of highly specialized strains and species, and the inherent division of labor reduces the metabolic burden for each strain while increasing product yields and reaction specificities. However, consortium‐based designs still suffer from a lack of available tools to control the behavior and performance of the individual subpopulations and of the entire consortium. Here, we propose to implement novel control elements for microbial consortia based on artificial cell–cell communication via fungal mating pheromones. Coupling to the desired output is mediated by pheromone‐responsive gene expression, thereby creating pheromone‐dependent communication channels between different subpopulations of the consortia. We highlight the benefits of artificial communication to specifically target individual subpopulations of microbial consortia and to control e.g. their metabolic profile or proliferation rate in a predefined and customized manner. Due to the steadily increasing knowledge of sexual cycles of industrially relevant fungi, a growing number of strains and species can be integrated into pheromone‐controlled sensor‐actor systems, exploiting their unique metabolic properties for microbial consortia approaches.  相似文献   

9.
The microbial production of 1,3-propanediol (1,3-PD) from glucose was studied in a two-stage fermentation process on a laboratory scale. In the first stage, glucose was converted to glycerol either by the osmotolerant yeast Pichia farinosa or by a recombinant Escherichia coli strain. In the second stage, glycerol in the broth from the first stage was converted to 1,3-PD by Klebsiella pneumoniae. The culture broth from P. farinosa was shown to contain toxic metabolites that strongly impair the growth of K. pneumoniae and the formation of 1,3-PD. Recombinant E. coli is more suitable than P. farinosa for producing glycerol in the first stage. The fermentation pattern from glycerol can be significantly altered by the presence of acetate, leading to a significant reduction of PD yield in the second stage. However, in the recombinant E. coli culture acetate formation can be prevented by fed-batch cultivation under limiting glucose supply, resulting in an effective production of 1,3-PD in the second stage with a productivity of 2.0 g l(-1) h(-1) and a high yield (0.53 g/g) close to that of glycerol fermentation in a synthetic medium. The overall 1,3-PD yield from glucose in the two stage-process with E. coli and K. pneumoniae reached 0.17 g/g.  相似文献   

10.
Clostridium pasteurianum produces industrially valuable chemicals such as n‐butanol and 1,3‐propanediol from fermentations of glycerol and glucose. Metabolic engineering for increased yields of selective compounds is not well established in this microorganism. In order to study carbon fluxes and to selectively increase butanol yields, we integrated the latest advances in genome editing to obtain an electrocompetent Clostridium pasteurianum strain for further engineering. Deletion of the glycerol dehydratase large subunit (dhaB) using an adapted S. pyogenes Type II CRISPR/Cas9 nickase system resulted in a 1,3‐propanediol‐deficient mutant producing butanol as the main product. Surprisingly, the mutant was able to grow on glycerol as the sole carbon source. In spite of reduced growth, butanol yields were highly increased. Metabolic flux analysis revealed an important role of the newly identified electron bifurcation pathway for crotonyl‐CoA to butyryl‐CoA conversion in the regulation of redox balance. Compared to the parental strain, the electron bifurcation pathway flux of the dhaB mutant increased from 8 to 46% of the overall flux from crotonyl‐CoA to butyryl‐CoA and butanol, indicating a new, 1,3‐propanediol‐independent pattern of glycerol fermentation in Clostridium pasteurianum.  相似文献   

11.
1,3-丙二醇(1,3-PD)是一种重要的化工原料,发酵法生产1,3-PD是一条新颖且具有潜在竞争力的生产途径。本研究在前期工作的基础上,将分别来源于大肠杆菌和肺炎克雷伯氏菌的基因片段yqhD和dhaB串联表达,构建重组表达载体pYX212-zeocin-pGAP-yqhD-pGAP-dhaB;并得到重组酿酒酵母(Saccharomyces cerevisiae)W303-1A/pYX212-zeocin-pGAP-yqhD-pGAP-dhaB。该重组菌和对照S.cerevisiae分别以葡萄糖为底物摇瓶发酵72h后,重组酿酒酵母发酵液中1,3-PD含量约为1.5g/L;而对照菌株不产1,3-PD。以上结果表明本研究在国内首次成功构建了直接以葡萄糖为底物发酵生产1,3-PD的酿酒酵母基因工程菌。为进一步将dhaB、yqhD基因导入其他以葡萄糖为底物高产甘油的酵母宿主中表达,获得以葡萄糖为底物一步法发酵高产1,3-丙二醇工程菌打下了坚实的基础。  相似文献   

12.
Aims: Saccharomyces cerevisiae is a safe micro‐organism used in fermentation industry. 1,3‐Propanediol is an important chemical widely used in polymer production, but its availability is being restricted owing to its expensively chemical synthesis. The aim of this study is to engineer a S. cerevisiae strain that can produce 1,3‐propanediol at low cost. Methods and Results: By using d ‐glucose as a feedstock, S. cerevisiae could produce glycerol, but not 1,3‐propanediol. In this study, we have cloned two genes yqhD and dhaB required for the production of 1,3‐propanediol from glycerol, and integrated them into the chromosome of S. cerevisiae W303‐1A by Agrobacterium tumefaciens‐mediated transformation. Both genes yqhD and dhaB functioned in the engineered S. cerevisiae and led to the production of 1,3‐propanediol from d ‐glucose. Conclusion: Saccharomyces cerevisiae can be engineered to produce 1,3‐propanediol from low‐cost feedstock d ‐glucose. Significance and Impact of the Study: To our knowledge, this is the first report on developing S. cerevisiae to produce 1,3‐propanediol by using A. tumefaciens‐mediated transformation. This study might lead to a safe and cost‐efficient method for industrial production of 1,3‐propanediol.  相似文献   

13.
Klebsiella pneumoniae HR526, a new isolated 1,3‐propanediol (1,3‐PD) producer, exhibited great productivity. However, the accumulation of lactate in the late‐exponential phase remained an obstacle of 1,3‐PD industrial scale production. Hereby, mutants lacking D ‐lactate pathway were constructed by knocking out the ldhA gene encoding fermentative D ‐lactate dehydrogenase (LDH) of HR526. The mutant K. pneumoniae LDH526 with the lowest LDH activity was studied in aerobic fed‐batch fermentation. In experiments using pure glycerol as feedstock, the 1,3‐PD concentrations, conversion, and productivity increased from 95.39 g L?1, 0.48 and 1.98 g L?1 h?1 to 102. 06 g L?1, 0.52 mol mol?1 and 2.13 g L?1 h?1, respectively. The diol (1,3‐PD and 2,3‐butanediol) conversion increased from 0.55 mol mol?1 to a maximum of 0.65 mol mol?1. Lactate would not accumulate until 1,3‐PD exceeded 84 g L?1, and the final lactate concentration decreased dramatically from more than 40 g L?1 to <3 g L?1. Enzymic measurements showed LDH activity decreased by 89–98% during fed‐batch fermentation, and other related enzyme activities were not affected. NADH/NAD+ enhanced more than 50% in the late‐exponential phase as the D ‐lactate pathway was cut off, which might be the main reason for the change of final metabolites concentrations. The ability to utilize crude glycerol from biodiesel process and great genetic stability demonstrated that K. pnemoniae LDH526 was valuable for 1,3‐PD industrial production. Biotechnol. Bioeng. 2009; 104: 965–972. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
The 1,3-propanediol (1,3-PD) synthesis operon (dha operon) was mainly composed of four genes: dhaB, dhaT, gdrA, and gdrB, which encoded glycerol dehydratase, 1,3-PD oxidoreductase and reactivating factor for glycerol dehydratase, respectively. In the present study, dha operon was cloned from 1,3-PD producing strain Klebsiella pneumoniae. Heterologous expression of cloned dha operon was carried out in Escherichia coli and Saccharomyces cerevisiae W303-1A, respectively. The results indicated that recombinant E. coli harboring the dha operon can produce 8–9 g/l 1,3-PD from glycerol while the 1,3-PD yield of recombinant strain W303-1A-dha could not be detected. In order to complete the 1,3-PD production from glucose, further, we also constructed the recombinant S. cerevisiae W303-1A-BT harboring plasmid pZ-BT. The 1,3-PD production and enzymatic activities of DhaB and DhaT were found in the engineered strain W303-1A-BT. Our results demonstrated that the recombinant S. cerevisiae strain W303-1A-BT that can produce 1,3-PD at low cost was constructed. This study might open a novel way to a safe and cost-efficient method for microbial production of 1,3-PD.  相似文献   

15.
The ability of bacterial strains to assimilate glycerol derived from biodiesel facilities to produce metabolic compounds of importance for the food, textile and chemical industry, such as 1,3‐propanediol (PD), 2,3‐butanediol (BD) and ethanol (EtOH), was assessed. The screening of 84 bacterial strains was performed using glycerol as carbon source. After initial trials, 12 strains were identified capable of consuming raw glycerol under anaerobic conditions, whereas 5 strains consumed glycerol under aerobiosis. A plethora of metabolic compounds was synthesized; in anaerobic batch‐bioreactor cultures PD in quantities up to 11.3 g/L was produced by Clostridium butyricum NRRL B‐23495, while the respective value was 10.1 g/L for a newly isolated Citrobacter freundii. Adaptation of Cl. butyricum at higher initial glycerol concentration resulted in a PDmax concentration of ~32 g/L. BD was produced by a new Enterobacter aerogenes isolate in shake‐flask experiments, under fully aerobic conditions, with a maximum concentration of ~22 g/L which was achieved at an initial glycerol quantity of 55 g/L. A new Klebsiella oxytoca isolate converted waste glycerol into mixtures of PD, BD and EtOH at various ratios. Finally, another new C. freundii isolate converted waste glycerol into EtOH in anaerobic batch‐bioreactor cultures with constant pH, achieving a final EtOH concentration of 14.5 g/L, a conversion yield of 0.45 g/g and a volumetric productivity of ~0.7 g/L/h. As a conclusion, the current study confirmed the utilization of biodiesel‐derived raw glycerol as an appropriate substrate for the production of PD, BD and EtOH by several newly isolated bacterial strains under different experimental conditions.  相似文献   

16.
发展可再生能源,尤其是生物能源,具有显著的能量收益和碳减排效益。随着石油等不可再生资源的减少,许多大宗传统石油化工产品正不断被使用可再生原料的生物制造产品替代。生物发酵法生产1,3-丙二醇(1,3-PDO)顺应了这一潮流,具有广阔的发展前景。提高微生物发酵竞争力,优化发酵法生产1,3-PDO水平,势必增加1,3-PDO的生产效益。对肺炎克雷伯氏菌(Klebsiella pneumoniae)发酵法进行1,3-PDO生产的代谢机理、菌株筛选和利用、发酵参数的选择和优化以及发酵工程策略的设计和监测等进行综述,为利用生物柴油副产物甘油生产有重要工业价值的1,3-PDO产品提供参考。  相似文献   

17.
Acidified glycerol pretreatment is very effective to deconstruct lignocellulosics for producing glucose. Co‐utilization of pretreated biomass and residual glycerol to bioproducts could reduce the costs associated with biomass wash and solvent recovery. In this study, a novel strain Rhodosporidium toruloides RP 15, isolated from sugarcane bagasse, was selected and tested for coconversion of pretreated biomass and residual glycerol to microbial oils. In the screening trails, Rh. toruloides RP 15 demonstrated the highest oil production capacity on glucose, xylose, and glycerol among the 10 strains. At the optimal C:N molar ratio of 140:1, this strain accumulated 56.7, 38.3, and 54.7% microbial oils based on dry cell biomass with 30 g/L glucose, xylose, and glycerol, respectively. Furthermore, sugarcane bagasse medium containing 32.6 g/L glucose from glycerol‐pretreated bagasse and 23.4 g/L glycerol from pretreatment hydrolysate were used to produce microbial oils by Rh. toruloides RP 15. Under the preliminary conditions without pH control, this strain produced 7.7 g/L oil with an oil content of 59.8%, which was comparable or better than those achieved with a synthetic medium. In addition, this strain also produced 3.5 mg/L carotenoid as a by‐product. It is expected that microbial oil production can be significantly improved through process optimization.  相似文献   

18.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

19.
The aim of this study was to optimize a biotechnological process for the production of 1,3-propanediol (1,3-PD) based on low-quality crude glycerol derived from biodiesel production. Clostridium butyricum AKR102a was used in fed-batch fermentations in 1-L and 200-L scale. The newly discovered strain is characterized by rapid growth, high product tolerance, and the ability to use crude glycerol at the lowest purity directly gained from a biodiesel plant side stream. Using pure glycerol, the strain AKR102 reached 93.7 g/L 1,3-PD with an overall productivity of 3.3 g/(L*h). With crude glycerol under the same conditions, 76.2 g/L 1,3-PD was produced with a productivity of 2.3 g/(L*h). These are among the best results published so far for natural producers. The scale up to 200 L was possible. Due to the simpler process design, only 61.5 g/L 1,3-PD could be reached with a productivity of 2.1 g/(L*h).  相似文献   

20.
1,3-Propanediol inhibition during glycerol fermentation to 1,3-propanediol by Clostridium butyricum CNCM 1211 has been studied. The initial concentration of the 1,3-propanediol affected the growth of the bacterium more than the glycerol fermentation. μ max was inversely proportional to the initial concentration of 1,3-propanediol (0–65 g l−1). For glycerol at 20 g l−1, the growth and fermentation were completely stopped at an initial 1,3-propanediol concentration of 65 g l−1. However, for an initial 1,3-propanediol concentration of 50 g l−1 and glycerol at 70 g l−1, the final concentration (initial and produced) of 1,3-propanediol reached 83.7 g l−1(1.1 M), with complete consumption of the glycerol. Therefore, during the fermentation, the strain tolerated a 1,3-propanediol concentration higher than the initial inhibitory concentration (65 g l−1). The addition of 1,2-propanediol or 2,3-butanediol (50 g l−1) in the presence of glycerol (50–100 g l−1), showed that 2-diols reduced the μ max in a similar way to 1,3-propanediol. The measurement of the osmotic pressure of glycerol solutions, diols and diol/glycerol mixtures did not indicate any differences between these compounds. The hypothesis of diol inhibition was discussed. Taking into account the strain tolerance of highly concentrated 1,3-propanediol during fermentation, the fermentation processes for optimising production were considered. Received: 15 November 1999 / Revision received: 1 February 2000 / Accepted: 4 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号