首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  The aim of this study was to isolate a thermotolerant micro‐organism that produces polyhydroxyalkanoates (PHAs) composed of medium‐chain‐length (mcl) HA units from a biodiesel fuel (BDF) by‐product as a carbon source. Methods and Results:  We successfully isolated a thermotolerant micro‐organism, strain SG4502, capable to accumulate mcl‐PHA from a BDF by‐product as a carbon source at a cultivation temperature of 45°C. The strain could also produce mcl‐PHA from acetate, octanoate and dodecanoate as sole carbon sources at cultivation temperatures up to 55°C. Taxonomic studies and 16S rRNA gene sequence analysis revealed that strain SG4502 was phylogenetically affiliated with species of the genus Pseudomonas. This study is the first report of PHA synthesis by a thermotolerant Pseudomonas. Conclusions:  A novel thermotolerant bacterium capable to accumulate mcl‐PHA from a BDF by‐product was successfully isolated. Significance and Impact of the Study:  A major issue regarding industrial production of microbial PHAs is their much higher production cost compared with conventional petrochemical‐based plastic materials. Especially significant are the cost of a fermentative substrate and the running cost to maintain a temperature suitable for microbial growth. Thus, strain SG4502, isolated in this study, which assimilates BDF by‐product and produces PHA at high temperature, would be very useful for practical application in industry.  相似文献   

2.
Production of polyhydroxyalkanoates by Pseudomonas nitroreducens   总被引:3,自引:0,他引:3  
A strain coded AS 1.2343 was isolated from oil-contaminated soil in an oil-field in North China Tianjian City and it was identified as Pseudomonas nitroreducens. The strain demonstrated some unusual ability to synthesize polyhydroxybutyrate (PHB) homopolymer from medium-chain-length (mcl) fatty acids including hexanoate and octanoate. While polyhydroxyalkanoates (PHA) consisting of mcl hydroxyalkanoate (HA) monomers such as hydroxyoctanoate (HO) and hydroxydecanoate (HD) were the major compositions when butyrate, decanoate, lauric acid and tetradecanoic acid were used as substrates for the cell growth, respectively. PHA was accumulated up to 77% of the cell dry weight when growth was conducted in lauric acid, it appeared that the HA contents in the PHA would not be much affected by the changing of the lauric acid concentration. Varying the concentration ratio of butyrate to octanoate could change the composition of PHA accumulated by the strain. Yet PHB homopolymer was always the only polyester synthesized by the strain, regardless of the octanoate concentration change. Additionally, the ratio of carbon to nitrogen (C/N) in butyrate media was found to have effects on the PHA monomer content, as C/N increased from 2 to 100, content of HB decreased from 100% to 7%. PHA polyester synthesized by cells of Pseudomonas nitroreducens AS 1.2343 was a blend polymers consisting of acetone-insoluble HB and acetone-soluble mcl HA monomers.  相似文献   

3.
This work aims to shed light in the fabrication of poly(3‐hydroxybutyrate‐co‐44%‐4‐hydroxybutyrate)[P(3HB‐co‐44%4HB)]/chitosan‐based silver nanocomposite material using different contents of silver nanoparticle (SNP); 1–9 wt%. Two approaches were applied in the fabrication; namely solvent casting and chemical crosslinking via glutaraldehyde (GA). A detailed characterization was conducted in order to yield information regarding the nanocomposite material. X‐ray diffraction analysis exhibited the nature of the three components that exist in the nanocomposite films: P(3HB‐co‐4HB), chitosan, and SNP. In term of mechanical properties, tensile strength, and elongation at break were significantly improved up to 125% and 22%, respectively with the impregnation of the SNP. The melting temperature of the nanocomposite materials was increased whereas their thermal stability was slightly changed. Scanning electron microscopy images revealed that incorporation of 9 wt% of SNP caused agglomeration but the surface roughness of the material was significantly improved with the loading. Staphylococcus aureus and Escherichia coli were completely inhibited by the nanocomposite films with 7 and 9 wt% of SNP, respectively. On the other hand, degradation of the nanocomposite materials outweighed the degradation of the pure copolymer. These bioactive and biodegradable materials stand a good chance to serve the vast need of biomedical applications namely management and care of wound as wound dressing. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1469–1479, 2014  相似文献   

4.
Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix‐embedded cells. In the present study, we present a strategy to encase a bioprinted, cell‐containing, and soft scaffold with an electrospun mat. The electrospun poly(?‐caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicatein synthesizes polymeric biosilica by polycondensation of ortho‐silicate that is formed from prehydrolyzed TEOS. Biosilica provides a morphogenetically active matrix for the growth and mineralization of osteoblast‐related SaOS‐2 cells in vitro. Analysis of the microstructure of the 300–700 nm thick PCL/TEOS nanofibers, incubated with silicatein and prehydrolyzed TEOS, displayed biosilica deposits on the mats formed by the nanofibers. We conclude and propose that electrospun PCL nanofibers mats, coated with biosilica, may represent a morphogenetically active and protective cover for bioprinted cell/tissue‐like units with a suitable mechanical stability, even if the cells are embedded in a softer matrix.  相似文献   

5.
Reduced downstream costs, together with high purity recovery of polyhydroxyalkanoate (PHA), will accelerate the commercialization of high quality PHA‐based products. In this work, a process was designed for effective recovery of the copolymer poly(hydroxybutyrate‐co‐hydroxyhexanoate) (P(HB‐co‐HHx)) containing high levels of HHx (>15 mol%) from Ralstonia eutropha biomass using non‐halogenated solvents. Several non‐halogenated solvents (methyl isobutyl ketone, methyl ethyl ketone, and butyl acetate and ethyl acetate) were found to effectively dissolve the polymer. Isoamyl alcohol was found to be not suitable for extraction of polymer. All PHA extractions were performed from both dry and wet cells at volumes ranging from 2 mL to 3 L using a PHA to solvent ratio of 2% (w/v). Ethyl acetate showed both high recovery levels and high product purities (up to 99%) when using dry cells as starting material. Recovery from wet cells, however, eliminates a biomass drying step during the downstream process, potentially saving time and cost. When wet cells were used, methyl isobutyl ketone (MIBK) was shown to be the most favorable solvent for PHA recovery. Purities of up to 99% and total recovery yields of up to 84% from wet cells were reached. During polymer recovery with either MIBK or butyl acetate, fractionation of the extracted PHA occurred, based on the HHx content of the polymer. PHA with higher HHx content (17–30 mol%) remained completely in solution, while polymer with a lower HHx content (11–16 mol%) formed a gel‐like phase. All PHA in solution could be precipitated by addition of threefold volumes of n‐hexane or n‐heptane to unfiltered PHA solutions. Effective recycling of the solvents in this system is predicted due to the large differences in the boiling points between solvent and precipitant. Our findings show that two non‐halogenated solvents are good candidates to replace halogenated solvents like chloroform for recovery of high quality PHA. Biotechnol. Bioeng. 2013; 110: 461–470. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Highly selective and efficient enrichment of glycopeptides from complex biological samples is necessary. In this study, novel zwitterionic hydrophilic polydopamine‐coated magnetic graphene composites (magG/PDA/Au/l ‐Cys) were synthesized and applied to the enrichment of glycopeptides. The size, morphology, and composition of magG/PDA/Au/l ‐Cys composites were investigated by transmission electron microscopy, scanning electron microscopy, FT‐infrared spectroscopy, and X‐ray diffraction. The composites possessed a number of desirable characteristics, including good biocompatibility easy separation property and excellent hydrophilicity. By virtue of the features contributed by different ingredients, the prepared composites demonstrated superior performance for glycopeptide enrichment with high sensitivity (0.1 fmol), efficiency, selectivity (1:100), and repeatability (at least ten times). In addition, the composites were successfully applied to the enrichment of glycopeptides from human serum and 40 unique N‐glycosylation peptides from 31 different N‐linked glycoproteins were identified. The superior hydrophilic material is of great potential for the analysis of glycoproteins.  相似文献   

7.
Porous bone tissue engineering scaffolds were fabricated using both nano hydroxyapatite (nano HA) powder (20 nm average particle size) and micro HA powder (10 microm average particle size), resulting in sintered scaffolds of 59 vol% porosity and 8.6 +/- 1.9 microm average grain size and 72 vol% porosity and 588 +/- 55nm average grain size, respectively. Scanning electron microscopy was used to measure both the grain size and pore size. MC3T3-E1 osteoblast (OB) attachment and proliferation on both nano HA and micro HA porous scaffolds were quantified. As expected, OB cell number was greater on nano HA scaffolds compared with similarly processed micro HA scaffolds 5 days after seeding, while OB attachment did not appear greater on the nano HA scaffolds (p < 0.05).  相似文献   

8.
Aeromonas hydrophila CGMCC 0911 possessing type I polyhydroxyalkanoate (PHA) synthase (PhaC) produced only PHBHHx from lauric acid but not from glucose. Medium-chain-length (mcl) PHA was produced from lauric acid or glucose only when PhaC of A. hydrophila was inactivated, indicating the existence of another PHA synthase in the wild type. Using PCR cloning strategy, the potential PHA synthase gene (phaC mcl) was obtained from genomic DNA of the wild type and exhibited strong homology to type II PHA synthase genes of Pseudomonas strains. The phaC mcl gene was PCR subcloned into plasmid pBBR1MCS2 and expressed in a PHA-negative mutant of Pseudomonas putida. Recombinant P. putida synthesized mcl PHA from gluconate or octanoate. This result proved that wild type A. hydrophila possessed another type II PHA synthase, which was responsible for the synthesis of mcl PHA, besides type I PHA synthase.  相似文献   

9.
Planarian's strong regenerative ability is dependent on stem cells (called neoblasts) that are X‐ray‐sensitive and proliferative stem cells. In addition to neoblasts, another type of X‐ray‐sensitive cells was newly identified by recent research. Thus, planarian's X‐ray‐sensitive cells can be divided into at least two populations, Type 1 and Type 2, the latter corresponding to planarian's classically defined “neoblasts”. Here, we show that Type 1 cells were distributed in the outer region (OR) immediately underneath the muscle layer at all axial levels from head to tail, while the Type 2 cells were distributed in a more internal region (IR) of the mesenchymal space at the axial levels from neck to tail. To elucidate the biological significance of these two regions, we searched for genes expressed in differentiated cells that were locate close to these X‐ray‐sensitive cell populations in the mesenchymal space, and identified six genes mainly expressed in the OR or IR, named OR1, OR2, OR3, IR1, IR2 and IR3. The predicted amino acid sequences of these genes suggested that differentiated cells expressing OR1, OR3, IR1, or IR2 provide Type 1 and Type 2 cells with specific extracellular matrix (ECM) environments.  相似文献   

10.
The whole polyhydroxyalkanoate (PHA) synthesis gene locus of Pseudomonas stutzeri strain 1317 containing PHA synthase genes phaC1Ps, phaC2Ps and PHA depolymerase gene phaZPs was cloned using a PCR cloning strategy. The sequence analysis results of the phaC1Ps, phaC2Ps and phaZPs showed high homology to the corresponding pha loci of the known Pseudomonas strains, respectively. PhaC1Ps and PhaC2Ps were functionally expressed in recombinant Escherichia coli strains and their substrate specificity was compared. The results demonstrated that PhaC1Ps and PhaC2Ps from P. stutzeri 1317 had different substrate specificities when expressed in E. coli. In details, PhaC2Ps could incorporate both short-chain-length 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates (mcl 3HA) into PHA, while PhaC1Ps only favored mcl 3HA for polymerization.  相似文献   

11.
Bioguided fractionation of Xylopia sericea antiplasmodial dichloromethane leaves extract led to the isolation of (?)‐7‐oxo‐ent‐kaur‐16‐en‐19‐oic acid (C20H28O3) that was identified by a combination of 1D and 2D NMR experiments (COSY, HMBC, HSQC, HSQC‐TOCSY, HSQC‐NOESY and NOESY) and by X‐ray crystallography. A feature to be pointed out is its (4R) configuration that was inferred from the NOE experiments (HSQC‐NOESY and NOESY) and X‐ray crystallography. In vitro evaluation of this rare diterpene acid against the chloroquine‐resistant strain Plasmodium falciparum W2 by the PfLDH method showed it disclosed a low antiplasmodial activity and was not cytotoxic to HepG2 cells (CC50 862.6±6.7 μm ) by the MTT assay. The unequivocal NMR signals assignments, the X‐ray crystallographic structure, the assessment to the bioactivities and the occurrence this diterpene in X. sericea are reported here for the first time.  相似文献   

12.
The objective of this study was to investigate the hemocompatibility and cell responses to some novel poly(L-lactide) (PLA) composites containing surface modified hydroxyapatite particles for potential applications as a bone substitute material. The surface of hydroxyapatite (HA) particles was first grafted with L-lactic acid oligomers to form grafted HA (g-HA) particles. The g-HA particles were further blended with PLA to prepare g-HA/PLA composites. Our previous study has shown significant improvement in tensile properties of these materials due to the enhanced interfacial adhesion between the polymer matrix and HA particles. To further investigate the potential applications of these composites in bone repair and other orthopedic surgeries, a series of in vitro and in vivo experiments were conducted to examine the cell responses and hemocompatibility of the materials. In vitro experiments showed that the g-HA/PLA composites were well tolerated by the L-929 cells. Hemolysis of the composites was lower than that of pure PLA. Subcutaneous implantation demonstrated that the g-HA/PLA composites were more favorable than the control materials for soft tissue responses. The results suggested that the g-HA/PLA composites are promising and safe materials with potential applications in tissue engineering.  相似文献   

13.
Bdellovibrio bacteriovorus HD100 is an obligate predator that invades and grows within the periplasm of Gram‐negative bacteria, including mcl‐polyhydroxyalkanoate (PHA) producers such as Pseudomonas putida. We investigated the impact of prey PHA content on the predator fitness and the potential advantages for preying on a PHA producer. Using a new procedure to control P. putida KT2442 cell size we demonstrated that the number of Bdellovibrio progeny depends on the prey biomass and not on the viable prey cell number or PHA content. The presence of mcl‐PHA hydrolysed products in the culture supernatant after predation on P. putida KT42Z, a PHA producing strain lacking PhaZ depolymerase, confirmed the ability of Bdellovibrio to degrade the prey's PHA. Predator motility was higher when growing on PHA accumulating prey. External addition of PHA polymer (latex suspension) to Bdellovibrio preying on the PHA minus mutant P. putida KT42C1 restored predator movement, suggesting that PHA is a key prey component to sustain predator swimming speed. High velocities observed in Bdellovibrio preying on the PHA producing strain were correlated to high intracellular ATP levels of the predator. These effects brought Bdellovibrio fitness benefits as predation on PHA producers was more efficient than predation on non‐producing bacteria.  相似文献   

14.
Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida   总被引:1,自引:0,他引:1  
Pseudomonas putida KT2442 has been a well-studied producer of medium-chain-length (mcl) polyhydroxyalkanoate (PHA) copolymers containing C6 ~ C14 monomer units. A mutant was constructed from P. putida KT2442 by deleting its phaG gene encoding R-3-hydroxyacyl-ACP-CoA transacylase and several other β-oxidation related genes including fadB, fadA, fadB2x, and fadAx. This mutant termed P. putida KTHH03 synthesized mcl homopolymers including poly(3-hydroxyhexanoate) (PHHx) and poly(3-hydroxyheptanoate) (PHHp), together with a near homopolymer poly(3-hydroxyoctanoate-co-2 mol% 3-hydroxyhexanoate) (PHO*) in presence of hexanoate, heptanoate, and octanoate, respectively. When deleted with its mcl PHA synthase genes phaC1 and phaC2, the recombinant mutant termed P. putida KTHH08 harboring pZWJ4-31 containing PHA synthesis operon phaPCJ from Aeromonas hydrophila 4AK4 accumulated homopolymer poly(3-hydroxyvalerate) (PHV) when valerate was used as carbon source. The phaC deleted recombinant mutant termed P. putida KTHH06 harboring pBHH01 holding PHA synthase PhbC from Ralstonia eutropha produced homopolymers poly(3-hydroxybutyrate) (PHB) and poly(4-hydroxybutyrate) using γ-butyrolactone was added as precursor. All the homopolymers were physically characterized. Their weight average molecular weights ranged from 1.8 × 105 to 1.6 × 106, their thermal stability changed with side chain lengths. The derivatives of P. putida KT2442 have been developed into a platform for production of various PHA homopolymers.  相似文献   

15.
Aims: Polyhydroxyalkanoate (PHA) with enhanced physicochemical properties will be ideal for a wide range of practical applications. The incorporation of 3‐hydroxy‐4‐methylvalerate (3H4MV) into the polymer backbone is known to improve the overall properties of the resulting polymer. However, the most suitable micro‐organism and PHA synthase that can synthesize this monomer efficiently still remain unknown at present. Therefore, we evaluated the abilities of a locally isolated Chromobacterium sp. USM2 to produce PHA containing 3H4MV. Methods and Results: The ability of Chromobacterium sp. USM2 to synthesize poly(3‐hydroxybutyrate‐co‐3‐hydroxy‐4‐methylvalerate) [P(3HB‐co‐3H4MV)] was evaluated under different culture conditions. It was found that Chromobacterium sp. USM2 can synthesize P(3HB‐co‐3H4MV) when glucose and isocaproic acid were fed as carbon source. However, the highest molar fraction of 3H4MV, 22 mol% was detected in Chromobacterium sp. USM2 when isocaproic acid was provided as the sole carbon source. In addition, aeration was identified as a crucial factor in initiating the accumulation of high 3H4MV molar fractions. Conclusions: Chromobacterium sp. USM2 was able to synthesize broad comonomer compositional distribution of P(3HB‐co‐3H4MV). Significance and Impact of the Study: Compared with Cupriavidus necator and Burkholderia sp., Chromobacterium sp. USM2 was found to have better ability to bioconvert isocaproic acid to form 3H4MV unit.  相似文献   

16.
The success of bioprocess implementation relies on the ability to achieve high volumetric productivities and requires working with high‐cell‐density cultivations. Elevated atmospheric pressure might constitute a promising tool for enhancing the oxygen transfer rate (OTR), the major growth‐limiting factor for such cultivations. However, elevated pressure and its effects on the cellular environment also represent a potential source of stress for bacteria and may have negative effects on product formation. In order to determine whether elevated pressure can be applied for enhancing productivity in the case of medium‐chain‐length polyhydroxyalkanoate (mcl‐PHA) production by Pseudomonas putida KT2440, the impact of a pressure of 7 bar on the cell physiology was assessed. It was established that cell growth was not inhibited by this pressure if dissolved oxygen tension (DOT) and dissolved carbon dioxide tension (DCT) were kept below ~30 and ~90 mg L?1, respectively. Remarkably, a little increase of mcl‐PHA volumetric productivity was observed under elevated pressure. Furthermore, the effect of DCT, which can reach substantial levels during high‐cell‐density processes run under elevated pressure, was investigated on cell physiology. A negative effect on product formation could be dismissed since no significant reduction of mcl‐PHA content occurred up to a DCT of ~540 mg L?1. However, specific growth rate exhibited a significant decrease, indicating that successful high‐cell‐density processes under elevated pressure would be restricted to chemostats with low dilution rates and fed‐batches with a small growth rate imposed during the final part. This study revealed that elevated pressure is an adequate and efficient way to enhance OTR and mcl‐PHA productivity. We estimate that the oxygen provided to the culture broth under elevated pressure would be sufficient to triple mcl‐PHA productivity in our chemostat system from 3.4 (at 1 bar) to 11 g L?1 h?1 (at 3.2 bar). Biotechnol. Bioeng. 2012; 109:451–461. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
Separation of poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)] from bacterial cell matter is a critical step in the downstream process with respect to material quality and eco‐balance as P(3HB‐co‐4HB) is widely used for biomedical applications. Therefore, an efficient and eco‐based extraction of P(3HB‐co‐4HB) using a combination of NaOH and Lysol in digesting the non‐polymeric cell material (NPCM) digestion is developed. The NaOH and Lysol show synergistic influence on the copolymer extraction at a high purity and recovery of 97 and 98 wt% respectively. The optimized cell digestion method was found applicable to a vast batch of cells containing copolymers from various 4HB monomer compositions. At the largest extraction volume of 100 L, P(3HB‐co‐4HB) with a purity of 89 wt% was extracted with a maximum recovery of 90 wt%. The method developed has also eliminated the cell pretreatment step. The extraction method developed in this research has not only produced an economic and efficient copolymer recovery but has also retained the copolymer quality, in term of its molecular weight and thermal properties. It demonstrates a practical and promising downstream processing method in recovering the copolymer effectively from the bacterial biomass.  相似文献   

18.
A dysprosium‐zinc porphyrin, [DyZn(TPPS)H3O]n (1) (TPPS = tetra(4‐sulfonatophenyl)porphyrin), was prepared through solvothermal reactions and structurally characterized by single‐crystal X‐ray diffraction analyses. Complex 1 features a three‐dimensional (3‐D) porous open framework that is thermally stable up to 400 °C. Complex 1 displays a void space of 215 Å3, occupying 9.2% of the unit cell volume. The fluorescence spectra reveal that it shows an emission band in the red region. The fluorescence lifetime is 39 µsec and the quantum yield is 1.7%. The cyclic voltammetry (CV) measurement revealed one quasi‐reversible wave with E1/2 = 0.30 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A cementum protein 1‐derived peptide (CEMP1‐p1) consisting of 20 amino acids from the CEMP1's N‐terminus region: MGTSSTDSQQAGHRRCSTSN, and its role on the mineralization process in a cell‐free system, was characterized. CEMP1‐p1's physicochemical properties, crystal formation, and hydroxyapatite (HA) nucleation assays were performed. Crystals induced by CEMP1‐p1 were analyzed by scanning electron microscopy, Fourier‐transform infrared spectroscopy‐attenuated total reflectance (FTIR‐ATR), X‐ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and atomic force microscopy. The results indicate that CEMP1‐p1 lacks secondary structure, forms nanospheres that organize into three‐dimensional structures, possesses affinity to HA, and induces its nucleation. CEMP1‐p1 promotes the formation of spherical structures composed by densely packed prism‐like crystals, which revealed a Ca/P ratio of 1.56, corresponding to HA. FTIR‐ATR showed predominant spectrum peaks that correspond and are characteristic of HA and octacalcium phosphate (OCP). Analysis by XRD indicates that the crystals show planes with a preferential crystalline orientation for HA and for OCP. HRTEM showed interplanar distances that correspond to crystalline planes of HA and OCP. Crystals are composed by superimposed lamellae, which exhibit epitaxial growth, and each layer of the crystals is structured by nanocrystals. This study reveals that CEMP1‐p1 regulates HA crystal formation, somehow mimicking the in vivo process of mineralized tissues bioformation.  相似文献   

20.
One of the most important challenges in tissue engineering research is the development of biomimetic materials. In this present study, we have investigated the effect of the titanium dioxide (TiO2) nanoparticles on the properties of electrospun mats of poly (hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), to be used as scaffold. The morphology of electrospun fibers was observed by scanning electron microscopy (SEM). Both pure PHBV and nanocomposites fibers were smooth and uniform. However, there was an increase in fiber diameter with the increase of TiO2 concentration. Thermal properties of PHBV and nanocomposite mats were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC analysis showed that the crystallization temperature for PHBV shifts to higher temperature in the presence of the nanoparticles, indicating that TiO2 nanoparticles change the process of crystallization of PHBV due to heterogeneous nucleation effect. TGA showed that in the presence of the nanoparticles, the curves are shifted to lower temperatures indicating a decreasing in thermal stability of nanocomposites compared to pure PHBV. To produce scaffolds for tissue engineering, it is important to evaluate the biocompatibility of the material. Cytotoxicity assay showed that TiO2 nanoparticles were not cytotoxic for cells at the concentration used to synthesize the mats. The proliferation of cells on the mats was evaluated by the MTT assay. Results showed that the nanocomposite samples increased cell proliferation compared to the pure PHBV. These results indicate that continuous electrospun fibrous scaffolds may be a good substrate for tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号