首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant protein production in Escherichia coli usually leads to accumulation of the product inside the cells. To capture the product, cells are harvested, resuspended, and lysed. However, in cases where the product is transported to the periplasm, selective disruption of the outer membrane leads to much purer crude extracts compared to complete cell lysis, as only 4–8% of the native E. coli host cell proteins are located in the periplasmic space. A variety of different strategies to enable selective release of the product from the periplasm is available. However, in most of these studies cells are harvested before they are resuspended in permeabilization agent and no differentiation between leakiness and lysis is made. Here, we tested and compared different strategies to trigger leakiness. In contrast to other studies, we performed these experiments during cultivation and quantified both leakiness and lysis. In summary, we recommend incubation with 350 mM TRIS at constant pH for several hours followed by a mild heat treatment up to 38°C to trigger leakiness with only minimal lysis. This study represents a comparative summary of different strategies to trigger E. coli leakiness and describes a solid basis for further experiments in this field.  相似文献   

2.
Different hosts have been used for recombinant protein production, ranging from simple bacteria, such as Escherichia coli and Bacillus subtilis, to more advanced eukaryotes as Saccharomyces cerevisiae and Pichia pastoris, to very complex insect and animal cells. All have their advantages and drawbacks and not one seems to be the perfect host for all purposes. In this review we compare the characteristics of all hosts used in commercial applications of recombinant protein production, both in the area of biopharmaceuticals and industrial enzymes. Although the bacterium E. coli remains a very often used organism, several drawbacks limit its possibility to be the first-choice host. Furthermore, we show what E. coli strains are typically used in high cell density cultivations and compare their genetic and physiological differences. In addition, we summarize the research efforts that have been done to improve yields of heterologous protein in E. coli, to reduce acetate formation, to secrete the recombinant protein into the periplasm or extracellular milieu, and to perform post-translational modifications. We conclude that great progress has been made in the incorporation of eukaryotic features into E. coli, which might allow the bacterium to regain its first-choice status, on the condition that these research efforts continue to gain momentum.  相似文献   

3.
Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab′ expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab′, DsbC had the most significant impact, increasing humanized Fab′ production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored “wild type” cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab′ induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab′ fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212–220, 2017  相似文献   

4.
A cultivation strategy combining the advantages of temperature-limited fed-batch and probing feeding control is presented. The technique was evaluated in fed-batch cultivations with E. coli BL21(DE3) producing xylanase in a 3 liter bioreactor. A 20% increase in cell mass was achieved and the usual decrease in specific enzyme activity normally observed during the late production phase was diminished with the new technique. The method was further tested by growing E. coli W3110 in a larger bioreactor (50 l). It is a suitable cultivation technique when the O2 transfer capacity of the reactor is reached and it is desired to continue to produce the recombinant protein.Revisions requested 13 April 2005; Revisions received 6 May 2005  相似文献   

5.
Robotic facilities that can perform advanced cultivations (e.g., fed-batch or continuous) in high throughput have drastically increased the speed and reliability of the bioprocess development pipeline. Still, developing reliable analytical technologies, that can cope with the throughput of the cultivation system, has proven to be very challenging. On the one hand, the analytical accuracy suffers from the low sampling volumes, and on the other hand, the number of samples that must be treated rapidly is very large. These issues have been a major limitation for the implementation of feedback control methods in miniaturized bioreactor systems, where observations of the process states are typically obtained after the experiment has finished. In this work, we implement a Sigma-Point Kalman Filter in a high throughput platform with 24 parallel experiments at the mL-scale to demonstrate its viability and added value in high throughput experiments. The filter exploits the information generated by the ammonia-based pH control to enable the continuous estimation of the biomass concentration, a critical state to monitor the specific rates of production and consumption in the process. The objective in the selected case study is to ensure that the selected specific substrate consumption rate is tightly controlled throughout the complete Escherichia coli cultivations for recombinant production of an antibody fragment.  相似文献   

6.
New secretion vectors containing the Bacillus sp. endoxylanase signal sequence were constructed for the secretory production of recombinant proteins in Escherichia coli. The E. coli alkaline phosphatase structural gene fused to the endoxylanase signal sequence was expressed from the trc promoter in various E. coli strains by induction with IPTG. Among those tested, E. coli HB101 showed the highest efficiency of secretion (up to 25.3% of total proteins). When cells were induced with 1 mM IPTG, most of the secreted alkaline phosphatase formed inclusion bodies in the periplasm. However, alkaline phosphatase could be produced as a soluble form without reduction of expression level by inducing with less (0.01 mM) IPTG, and greater than 90% of alkaline phosphatase could be recovered from the periplasm by the simple osmotic shock method. Fed-batch cultures were carried out to examine the possibility of secretory protein production at high cell density. Up to 5.2 g/l soluble alkaline phosphatase could be produced in the periplasm by the pH-stat fed-batch cultivation of E. coli HB101 harboring pTrcS1PhoA. These results demonstrate the possibility of efficient secretory production of recombinant proteins in E. coli by high cell density cultivation. Received: 8 September 1999 / Received revision: 3 January 2000 / Accepted 4 January 2000  相似文献   

7.
Extracellular accumulation of recombinant proteins in the culture medium of Escherichia coli is desirable but difficult to obtain. The inner or cytoplasmic membrane and the outer membrane of E. coli are two barriers for releasing recombinant proteins expressed in the cytoplasm into the culture medium. Even if recombinant proteins have been exported into the periplasm, a space between the outer membrane and the inner membrane, the outer membrane remains the last barrier for their extracellular release. However, when E. coli was cultured in a particular defined medium, recombinant proteins exported into the periplasm could diffuse into the culture medium automatically. If a nonionic detergent, Triton X-100, was added in the medium, recombinant proteins expressed in the cytoplasm could also be released into the culture medium. It was then that extracellular accumulation of recombinant proteins could be obtained by exporting them into the periplasm or releasing them from the cytoplasm with Triton X-100 addition. The tactics described herein provided simple and valuable methods for achieving extracellular production of recombinant proteins in E. coli.  相似文献   

8.
With the growing interest in continuous cultivation of Escherichia coli, secretion of product to the medium is not only a benefit, but a necessity in future bioprocessing. In this study, it is shown that induced decoupling of growth and heterologous gene expression in the E. coli X-press strain (derived from BL21(DE3)) facilitates extracellular recombinant protein production. The effect of the process parameters temperature and specific glucose consumption rate (qS) on growth, productivity, lysis and leakiness, is investigated, to find the parameter space allowing extracellular protein production. Two model proteins are used, Protein A (SpA) and a heavy-chain single-domain antibody (VHH), and performance is compared to the industrial standard strain BL21(DE3). It is shown that inducible growth repression in the X-press strain greatly mitigates the effect of metabolic burden under different process conditions. Furthermore, temperature and qS are used to control productivity and leakiness. In the X-press strain, extracellular SpA and VHH titer reach up to 349 and 19.6 mg g−1, respectively, comprising up to 90% of the total soluble product, while keeping cell lysis at a minimum. The findings demonstrate that the X-press strain constitutes a valuable host for extracellular production of recombinant protein with E. coli.  相似文献   

9.
The immobilization of recombinant cells by using the unstable 3,4-dihydroxyphenylacetate 2,3-dioxygenase was studied as a model. Dioxygenase activity and cell viability were compared in immobilized-cell systems and cells in suspension. Immobilization increased enzyme stability and the efficient degradation of 3,4-dihydroxyphenylacetate. The stability of the cloned enzyme and the viability of the immobilized recombinant cells were well maintained for at least 15 days. We used the strain Escherichia coli CC118-D in which the hpaB gene from Klebsiella pneumoniae, coding for the subunit of 3,4-dihydroxyphenylacetate 2,3-dioxygenase, was inserted into the chromosome. This study has demonstrated that the implementation of E. coli CC118-D in a pilot-scale bioreactor resulted in a 100% stabilization of dioxygenase activity, and could be a useful tool for bioremediation processes.  相似文献   

10.
利用哺乳动物细胞表达系统,稳定表达和纯化高生物学活性的人重组血管内皮生长因子 (VEGF165) 蛋白。将VEGF165克隆于表达载体pCDNA4.0,与T-GS载体共同转染CHO-S (中国仓鼠卵巢细胞) 细胞,MSX (Methionine sulphoximine) 加压筛选高表达细胞株,5 L发酵罐培养,细胞培养上清液通过三步纯化得到rhVEGF165蛋白,通过Western blotting、Biacore和人脐静脉内皮细胞增殖实验等对表达蛋白的特异性、亲和力及生物学活性等进行检测。所建立的细胞  相似文献   

11.
The hydrolase (Thermobifida fusca hydrolase; TfH) from T. fusca was produced in Escherichia coli as fusion protein using the OmpA leader sequence and a His6 tag. Productivity could be raised more than 100-fold. Both batch and fed-batch cultivations yield comparable cell specific productivities whereas volumetric productivities differ largely. In the fed-batch cultivations final rTfH concentrations of 0.5 g L−1 could be achieved. In batch cultivations the generated rTfH is translocated to the periplasm wherefrom it is completely released into the extracellular medium. In fed-batch runs most of the produced rTfH remains as soluble protein in the cytoplasm and only a fraction of about 35% is translocated to the periplasm. Migration of periplasmic proteins in the medium is obviously coupled with growth rate and this final transport step possibly plays an important role in product localization and efficacy of the Sec translocation process.  相似文献   

12.
A high content of yeast extract in complex media can cause auto-induction of phage T7 RNA polymerase and the consequent expression of recombinant protein in Escherichia coli BL21(DE3) during long-term cultivation. Our study demonstrated that the auto-induction of recombinant protein varied in different vectors harboring heterologous genes. Trx, GST, and their fusion proteins such as GST–human parathyroid hormone (hPTH), expressed by pET32a (+), were easily auto-induced by media containing a high content of yeast extract; however, rtPA was not easily auto-induced when using pET22b (+), although both pET systems were under the control of T7lac promoter. Furthermore, the auto-induction of GST–hPTH may start within 1–2 h after inoculation in bioreactors, which is a deficiency in the scale-up from shake flasks to bioreactors. Our results indicated that too much yeast extract in bioreactor cultivations may be responsible for the early auto-induction of target proteins and consequent loss of cell viability and plasmid instability. To achieve a satisfactory yield, host cells with both high cell viability and plasmid stability were necessary for the starter cultures in shake flasks and pre-induction cultures in bioreactors. This could be achieved simply by controlling the initial content of yeast extract and its subsequent supplementation.  相似文献   

13.
The production of recombinant proteins usually reduces cell fitness and the growth rate of producing cells. The growth disadvantage favors faster-growing non-producer mutants. Therefore, continuous bioprocessing is hardly feasible in Escherichia coli due to the high escape rate. The stability of E. coli expression systems under long-term production conditions and how metabolic load triggered by recombinant gene expression influences the characteristics of mutations are investigated. Iterated fed-batch-like microbioreactor cultivations are conducted under production conditions. The easy-to-produce green fluorescent protein (GFP) and a challenging antigen-binding fragment (Fab) are used as model proteins, and BL21(DE3) and BL21Q strains as expression hosts. In comparative whole-genome sequencing analyses, mutations that allowed cells to grow unhindered despite recombinant protein production are identified. A T7 RNA polymerase expression system is only conditionally suitable for long-term cultivation under production conditions. Mutations leading to non-producers occur in either the T7 RNA polymerase gene or the T7 promoter. The host RNA polymerase-based BL21Q expression system remains stable in the production of GFP in long-term cultivations. For the production of Fab, mutations in lacI of the BL21Q derivatives have positive effects on long-term stability. The results indicate that adaptive evolution carried out with genome-integrated E. coli expression systems in microtiter cultivations under industrial-relevant production conditions is an efficient strain development tool for production hosts.  相似文献   

14.
In order to release host cells from plasmid‐mediated increases in metabolic load and high gene dosages, we developed a plasmid‐free, T7‐based E. coli expression system in which the target gene is site‐specifically integrated into the genome of the host. With this system, plasmid‐loss, a source of instability for conventional expression systems, was eliminated. At the same time, system leakiness, a challenging problem with recombinant systems, was minimized. The efficiency of the T7 RNA polymerase compensates for low gene dosage and provides high rates of recombinant gene expression without fatal consequences to host metabolism. Relative to conventional pET systems, this system permits improved process stability and increases the host cell's capacity for recombinant gene expression, resulting in higher product yields. The stability of the plasmid‐free system was proven in chemostat cultivation for 40 generations in a non‐induced and for 10 generations in a fully induced state. For this reason plasmid‐free systems benefit the development of continuous production processes with E. coli. However, time and effort of the more complex cloning procedure have to be considered in relation to the advantages of plasmid‐free systems in upstream‐processing. Biotechnol. Bioeng. 2010. 105: 786–794. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Three popular expression host systems Escherichia coli, Pichia pastoris and Drosophila S2 were analyzed techno‐economically using HIV‐1 Nef protein as the model product. On scale of 100 mg protein, the labor costs corresponded to 52–83% of the manufacturing costs. When analyzing the cost impact of the different phases (strain/cell line construction, bioreactor production, and primary purification), we found that with the microbial host systems the strain construction phase was most significant generating 56% (E. coli) and 72% (P. pastoris) of the manufacturing costs, whereas with the Drosophila S2 system the cell line construction and bioreactor production phases were equally significant (46 and 47% of the total costs, respectively). With different titers and production goal of 100 mg of Nef protein, the costs of P. pastoris and Drosophila S2 systems were about two and four times higher than the respective costs of the E. coli system. When equal titers and bioreactor working volumes (10 L) were assumed for all three systems, the manufacturing costs of the bioreactor production of the P. pastoris and Drosophila S2 systems were about two and 2.5 times higher than the respective costs of the E. coli system. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
Induction of the wild type cholera toxin operon (ctxAB) from multicopy clones inEscherichia coliinhibited growth and resulted in low yields of cholera toxin (CT). We found that production of wild type CT or its B subunit (CT-B) as a periplasmic protein was toxic forE. coli,but by replacing the native signal sequences of both CT-A and CT-B with the signal sequence from the B subunit ofE. coliheat-labile enterotoxin LTIIb we succeeded for the first time in producing CT holotoxin in high yield inE. coli.Based on these findings, we designed and constructed versatile cloning vectors that use the LTIIb-B signal sequence to direct recombinant native proteins with high efficiency to the periplasm ofE. coli.We confirmed the usefulness of these vectors by producing two other secreted recombinant proteins. First, usingphoAfromE. coli,we demonstrated that alkaline phosphatase activity was 17-fold greater when the LTIIb-B signal sequence was used than when the native leader for alkaline phosphatase was used. Second, using thepspAgene that encodes pneumococcal surface protein A fromStreptococcus pneumoniae,we produced a 299-residue amino-terminal fragment of PspA inE. coliin large amounts as a soluble periplasmic protein and showed that it was immunoreactive in Western blots with antibodies against native PspA. The vectors described here will be useful for further studies on structure–function relationships and vaccine development with CT and PspA, and they should be valuable as general tools for delivery of other secretion-competent recombinant proteins to the periplasm inE. coli.  相似文献   

17.
We report on the implementation of proton transfer reaction‐mass spectrometry (PTR‐MS) technology for on‐line monitoring of volatile organic compounds (VOCs) in the off‐gas of bioreactors. The main part of the work was focused on the development of an interface between the bioreactor and an analyzer suitable for continuous sampling of VOCs emanating from the bioprocess. The permanently heated sampling line with an inert surface avoids condensation and interaction of volatiles during transfer to the PTR‐MS. The interface is equipped with a sterile sinter filter unit directly connected to the bioreactor headspace, a condensate trap, and a series of valves allowing for dilution of the headspace gas, in‐process calibration, and multiport operation. To assess the aptitude of the entire system, a case study was conducted comprising three identical cultivations with a recombinant E. coli strain, and the volatiles produced in the course of the experiments were monitored with the PTR‐MS. The high reproducibility of the measurements proved that the established sampling interface allows for reproducible transfer of volatiles from the headspace to the PTR‐MS analyzer. The set of volatile compounds monitored comprises metabolites of different pathways with diverse functions in cell physiology but also volatiles from the process matrix. The trends of individual compounds showed diverse patterns. The recorded signal levels covered a dynamic range of more than five orders of magnitude. It was possible to assign specific volatile compounds to distinctive events in the bioprocess. The presented results clearly show that PTR‐MS was successfully implemented as a powerful bioprocess‐monitoring tool and that access to volatiles emitted by the cells opens promising perspectives in terms of advanced process control. Biotechnol. Bioeng. 2012; 109: 3059–3069. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Microorganisms can complex and sequester heavy metals, rendering them promising living factories for nanoparticle production. Glutathione (GSH) is pivotal in cadmium sulfide (CdS) nanoparticle formation in yeasts and its synthesis necessitates two enzymes: γ‐glutamylcysteine synthetase (γ‐GCS) and glutathione synthetase (GS). Hereby, we constructed two recombinant E. coli ABLE C strains to over‐express either γ‐GCS or GS and found that γ‐GCS over‐expression resulted in inclusion body formation and impaired cell physiology, whereas GS over‐expression yielded abundant soluble proteins and barely impeded cell growth. Upon exposure of the recombinant cells to cadmium chloride and sodium sulfide, GS over‐expression augmented GSH synthesis and ameliorated CdS nanoparticles formation. The resultant CdS nanoparticles resembled those from the wild‐type cells in size (2–5 nm) and wurtzite structures, yet differed in dispersibility and elemental composition. The maximum particle yield attained in the recombinant E. coli was ≈2.5 times that attained in the wild‐type cells and considerably exceeded that achieved in yeasts. These data implicated the potential of genetic engineering approach to enhancing CdS nanoparticle biosynthesis in bacteria. Additionally, E. coli‐based biosynthesis offers a more energy‐efficient and eco‐friendly method as opposed to chemical processes requiring high temperature and toxic solvents. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

19.
TLHS1 is a class I low molecular weight heat-shock protein (LMW HSP) of tobacco (Nicotiana tabacum). For a functional study of TLHS1, a recombinant DNA coding for TLHS1 with a hexahistidine tag at the aminoterminus was constructed and expressed in Escherichia coli. An expressed fusion protein, H6TLHS1, was purified using a Ni2+ affinity column and a Sephacryl S400 HR column. A polyclonal antibody against H6TLHS1 was produced to follow the fate of H6TLHS1 in E. coli. The fusion protein in E. coli maintained its solubility at a temperature of up to 90°C and most of the proteins in the E. coli cell lysate with H6TLHS1 were prevented from thermally induced aggregation at up to 90°C. We compared the viability of E. coli cells expressing H6TLHS1 to the E. coli cells without H6TLHS1 at a temperature of 50°C. After 8 h of high temperature treatment, E. coli cells with H6TLHS1 survived about three thousand times more than the bacterial cells without H6TLHS1. These results showed that a plant class I LMW HSP, TLHS1, can protect proteins of E. coli from heat denaturation, which could lead to a higher survival rate of the bacterial cells at high temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号