首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Treatments with high-voltage electrical discharges (HVED) and high-pressure homogenization (HPH) were studied and compared for the release of ionic components, carbohydrates, proteins, and pigments from microalgae Parachlorella kessleri (P. kessleri). Suspensions (1% w/w) of microalgae were treated by HVED (40 kV/cm, 1–8 ms) or by HPH (400–1200 bar, 1–10 passes). Particle-size distribution (PSD) and microscopic analyses were used to detect the disruption and damage of cells. HVED were very effective for the extraction of ionic cell components and carbohydrates (421 mg/L after 8 ms of the treatment). However, HVED were ineffective for pigments and protein extraction. The concentration of proteins extracted by HVED was just 750 mg/L and did not exceed 15% of the total quantity of proteins. HPH permitted an effective release overall of intracellular compounds from P. kessleri microalgae including a large quantity of proteins, whose release (at 1200 bar) was 4.9 times higher than that obtained by HVED. Consequently, HVED can be used at the first step of the overall extraction process for the selective recovery of low-molecular-weight components. HPH can be then used at the second step for the recovery of remaining cell compounds.

  相似文献   

2.
We demonstrated a comprehensive approach for development of axenic cultures of microalgae from environmental samples. A combination of ultrasonication, fluorescence‐activated cell sorting (FACS), and micropicking was used to isolate axenic cultures of Chlorella vulgaris Beyerinck (Beijerinck) and Chlorella sorokiniana Shihira & R.W. Krauss from swine wastewater, and Scenedesmus sp. YC001 from an open pond. Ultrasonication dispersed microorganisms attached to microalgae and reduced the bacterial population by 70%, and when followed by cell sorting yielded 99.5% pure microalgal strains. The strains were rendered axenic by the novel method of micropicking and were tested for purity in both solid and liquid media under different trophic states. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene confirmed the absence of unculturable bacteria, whereas fluorescence microscopy and scanning electron microscopy (SEM) further confirmed the axenicity. This is the most comprehensive approach developed to date for obtaining axenic microalgal strains without the use of antibiotics and repetitive subculturing.  相似文献   

3.
以硅藻金色奥杜藻(Odontella aurita)为实验材料,利用高效液相色谱法分析了其色素组成与含量,采取超临界CO2萃取技术研究了从干藻粉内提取岩藻黄素的条件。结果表明,该藻主要含有岩藻黄素、硅甲藻黄素、β-胡萝卜素、硅藻黄素等类胡萝卜素以及叶绿素a和叶绿素c1,其中岩藻黄素为该藻含量最高的类胡萝卜素。色素的萃取率与压强、温度、夹带剂含量以及萃取时间呈正相关,夹带剂含量对萃取率影响最大,CO2流速的影响最小;与有机溶剂法相比,超临界CO2萃取岩藻黄素效率略低,而更利于岩藻黄素的选择性萃取及分离提纯;岩藻黄素的SFE-CO2适宜条件为压强400 bar、温度50℃、CO2流速0.2 L/min、夹带剂比例10%、萃取时间2~3 h。  相似文献   

4.
Identification of cost‐effective cell disruption methods to facilitate lipid extraction from microalgae represents a crucial step in identifying promising biofuel‐producing species. Various cell disruption methods including autoclaving, microwave, osmotic shock, and pasteurization were tested in the microalgae Chlorococcum sp. MCC30, Botryococcus sp. MCC31, Botryococcus sp. MCC32, and Chlorella sorokiniana MIC‐G5. Lipid content (on dry weight basis) from the four cultures on day 7 ranged from 11.15 to 48.33%, and on day 14 from 11.42 to 44.26%. Among the methods tested, enhanced lipid extraction was achieved through osmotic shock (15% NaCl) for Botryococcus sp. MCC32, microwave (6 min) for Botryococcus sp. MCC31, osmotic shock (5% NaCl) for Chlorella sorokiniana MIC‐G5 and microwave (2 min) for Chlorococcum sp. MCC30. The highest palmitate (16:0) contents (25.64% and 34.20%) were recorded with osmotic shock (15% NaCl) treatment for Botryococcus sp. MCC32 and microwave (6 min) for Botryococcus sp. MCC31, respectively. Two strains, along with their respective cell disruption methods, were identified as promising oil blends or nutraceuticals due to their high unsaturated fatty acid (UFA) content: Botryococcus sp. MCC31 (37.6% oleic acid content; 39.37% UFA) after autoclaving and Botryococcus sp. MCC32 after osmotic shock of 15% NaCl treatment (19.95% oleic acid content; 38.17% UFA).  相似文献   

5.
A laboratory‐made continuous flow lipid extraction system (CFLES) was devised to extract lipids from microalgae Nannochloropsis sp., a potential feedstock for biodiesel fuel, with a focus to assess the workable temperatures and pressures for future industrial applications. Using conventional solvents, the CFLES recovered 100% of the lipids extracted with conventional Soxhlet extraction. The optimum temperature and pressure were found to be 100 °C and 50 psi, respectively; conditions significantly lower than those normally used in pressurized liquid extractions requiring specialized equipment. Approximately 87% of the extracted oil was successfully transesterified into biodiesel fuel (fatty acid methyl esters). Preliminary calculations based on the tested lab‐scale system indicated savings in energy, solvent consumption, and extraction time as 96%, 80%, and more than 90%, respectively, as compared to Soxhlet extraction. However, the true cost savings can only be assessed at scaled up level. Energy efficiency of CFLES was calculated as 48.9%. Residual water (~70%) in the biomass had no effect on the extraction performance of CFLES, which is expected to help the process economics at scaled up application. The effect of temperature and pressure on the fatty acids profile of Nannochloropsis sp. is also discussed. Based on the existing literature, the authors believe that a pressurized liquid extraction system with continuous solvent flow has not been reported for lipid extraction from Nannochloropsis sp.  相似文献   

6.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

7.
In this study, shear‐induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler–Euler two fluid models were coupled via Ansys‐CFX‐15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s?1 is a promising method of pre‐concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160–174, 2018  相似文献   

8.
Chlorophylls and carotenoids can be extracted from microalgae using various solvents. However, there is lack of studies regarding the comparison of extraction yield of these pigments from wet and dry microalgal biomass using different combination of cell disruption methods. Therefore, in this work, we have investigated the comparison of the extraction yield of chlorophylls and carotenoids from the wet and heat-dried microalgal biomass (isolated Chlorella thermophila) using ethanol. Extraction parameters such as homogenisation time, homogenisation speed, solvent temperature, solid-solvent ratio, boiling time and microwave time have been optimised. Chlorophyll extraction yield was observed to be 2.7 fold higher from wet biomass than dry biomass while carotenoid yield was 6.7 fold higher. Highest chlorophyll yield (∼60 mg/g-dry biomass) was observed at 6 min of homogenisation time, 10,000 rpm, solid solvent ratio of 1 mg/mL and 58 °C of solvent temperature from wet biomass with extraction efficiency of ∼94 %. Highest carotenoid yield was noticed following the same conditions of chlorophyll extraction except 4 °C of solvent temperature. The modelling of the extraction process was performed using artificial neural network (ANN) which may be useful for the scale-up of the extraction process at the industrial level.  相似文献   

9.
Biological pre‐treatment seems to be promising being an eco‐friendly process, with no inhibitor generated during the process. The potential for elephant grass pre‐treatment with white degradation fungi Pleurotus ostreatus, Agaricus blazei, Lentinula edodes, Pleurotus citrinopileatus, and Pleurotus djamor, in isolated or mixed cultures of these strains, was evaluated. The highest activities of enzymes involved in the degradation of lignocellulosic biomass (laccases, endoglucanases, xylanases, and β‐glucosidases) were observed for A. blazei, L. edodes and the combination of P. ostreatus and A. blazei. In the enzymatic hydrolysis, there was greater release of reducing sugars in the pre‐treated elephant grass samples by A. blazei during 10 days (338.91 ± 7.39 mg g?1 of biomass). For this sample, higher lignin reductions, 24.81 and 57.45%, after 15 and 35 days of incubation, respectively, were also verified. These data indicate the potential of macromycetes such as A. blazei to perform biological pre‐treatments. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:42–50, 2018  相似文献   

10.
Three strains of the freshwater microalgae used for wastewater treatment, Chlorella vulgaris and Chlorella sorokiniana co-immobilized separately in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense Cd, resulted in significant changes in microalgal-population size, cell size, cell cytology, pigment, lipid content, and the variety of fatty acids produced in comparison with microalgae immobilized in alginate without the bacterium. Cells of C. vulgaris UTEX 2714 did not change in size, but the population size within the beads significantly increased. On the other hand, C. vulgaris UTEX 395 cells grew 62% larger, but their numbers did not increase. The population of C. sorokiniana UTEX 1602 increased, but not their cell size. The content of pigments chlorophyll a and b, lutein, and violoaxanthin increased in all microalgal species. The lipid content also significantly increased in all three strains, and the number of different fatty acids in the microalgae increased from four to eight. This study indicates that the microalgae-growth-promoting bacterium induced significant changes in the metabolism of the microalgae.  相似文献   

11.
Microalgae have the ability to grow rapidly, synthesize and accumulate large amounts (approximately 20-50% of dry weight) of lipids. A successful and economically viable algae based oil industry depends on the selection of appropriate algal strains. In this study ten species of microalgae were prospected to determine their suitability for oil production: Chaetoceros gracilis, Chaetoceros mulleri, Chlorella vulgaris, Dunaliella sp., Isochrysis sp., Nannochloropsis oculata, Tetraselmis sp., Tetraselmis chui, Tetraselmis tetrathele and Thalassiosira weissflogii. The study was carried out in 3 L glass flasks subjected to constant aeration and controlled artificial illumination and temperature at two different salinities. After harvesting, the extraction of oil was carried out using the Bligh and Dyer method assisted by ultrasound. Results showed that C. gracilis presented the highest oil content and that C. vulgaris presented the highest oil production.  相似文献   

12.
Microalgae are product of sustainable development owing to its ability to treat variety of wastewater effluents and thus produced biomass can serve as value added product for various commercial applications. This paper deals with the cultivation of microalgae species namely Chlorella pyrenoidosa and Scenedesmus abundans in rice mill effluent (i.e., paddy soaked water) for nutrient removal. In order to investigate the nutrient removal capability, microalgae are subjected to cultivation in both raw and autoclaved samples. The maximum phosphate removal by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 98.3% and 97.6%, respectively, whereas, the removal of ammoniacal nitrogen by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 92% and 90.3%, respectively. The growth (measured in terms of chlorophyll content) of Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 3.88 mg/l and 5.55 mg/l, respectively. The results indicate the suitability of microalgae cultivation in rice mill effluent treatment for nutrient removal.  相似文献   

13.
Chlorella pyrenoidosa is a unicellular green algae and has been a popular foodstuff worldwide. However, no reports on the antitumor peptides from such a microalgae are available in the literature. In this study, using low‐temperature high‐pressure extraction, enzymatic hydrolysis, ion exchange, and gel filtration chromatography, we separated a polypeptide that exhibited inhibitory activity on human liver cancer HepG2 cells, and named the polypeptide CPAP (C. pyrenoidosa antitumor polypeptide). Furthermore, the micro‐ and nanoencapsulation of CPAP were investigated by using two methods: complex coacervation and ionotropic gelation. The in vitro release tests revealed that CPAP was well preserved against gastric enzymatic degradation after micro/nanoencapsulation and the slowly controlled release in the intestine could be potentially achieved. These results suggest that CPAP may be a useful ingredient in food, nutraceutical, and pharmaceutical applications. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:681–687, 2013  相似文献   

14.
Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate‐mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate‐amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate‐contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES‐2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85–90%), which is very suitable for bio‐alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES‐2168 has a high potential to serve as a feedstock for subsequent biofuels conversion.  相似文献   

15.
Aims: To compare effective cell disruption methods for lipid extraction from fresh water microalgae. Methods and Results: Chlorella sp., Nostoc sp. and Tolypothrix sp. were isolated from fresh water ponds in and around Gandhigram, Dindigul District, Tamilnadu, India, and used for lipid extraction. Different methods, including autoclaving, bead beating, microwave, sonication and a 10% NaCl solution treatments, were tested to identify the most effective cell disruption method. The total lipids from three microalgal species were extracted using a mixture of chloroform and methanol. Fatty acid composition was detected by gas chromatography (GC). Nostoc sp. and Tolypothrix sp. showed higher oleic acid content of 13·27 mg g?1 dw and 17·75 mg g?1 dw, respectively, whereas Chlorella sp. had high linoleic acid content of 17·61 mg g?1 dw when the cells were disrupted using the sonication method. Conclusions: Finally, the sonication method was found to be the most applicable and efficient method of lipid extraction from microalgae. The highest lipid content was extracted from Chlorella sp. Significance and Impact of the Study: In biodiesel production from microalgae, lipid extraction is a crucial step and important as cell disruption comes in this step. Therefore, the appropriate cell disruption method and device is a key to increase the lipid extraction efficiency.  相似文献   

16.
Kim BH  Ramanan R  Cho DH  Choi GG  La HJ  Ahn CY  Oh HM  Kim HS 《PloS one》2012,7(5):e37770
This study deals with an effective nucleic acids extraction method from various strains of Botryococcus braunii which possesses an extensive extracellular matrix. A method combining freeze/thaw and bead-beating with heterogeneous diameter of silica/zirconia beads was optimized to isolate DNA and RNA from microalgae, especially from B. braunii. Eukaryotic Microalgal Nucleic Acids Extraction (EMNE) method developed in this study showed at least 300 times higher DNA yield in all strains of B. braunii with high integrity and 50 times reduced working volume compared to commercially available DNA extraction kits. High quality RNA was also extracted using this method and more than two times the yield compared to existing methods. Real-time experiments confirmed the quality and quantity of the input DNA and RNA extracted using EMNE method. The method was also applied to other eukaryotic microalgae, such as diatoms, Chlamydomonas sp., Chlorella sp., and Scenedesmus sp. resulting in higher efficiencies. Cost-effectiveness analysis of DNA extraction by various methods revealed that EMNE method was superior to commercial kits and other reported methods by >15%. This method would immensely contribute to area of microalgal genomics.  相似文献   

17.
Biofuel production by microalgae has the advantage of higher biomass productivity over land crops. The selection of potential microalgae depends on the growth in outdoor mass cultivation during different seasons, which can be predicted by a mathematical model. Here, freshwater green algae were isolated from a local water body in Pilani, Rajasthan, India (geographical coordinates: 28°22′N 75°36′E) and characterized by microscopy and ribosomal RNA analysis. The strain was submitted to the Indian Agricultural Research Institute's microbial culture collection (IARI, India) and identified as Desmodesmus sp. MCC34. This strain, along with a fresh water green algae (Chlorella minutissima), two marine green algae species (Dunaliella salina and Dunaliella tertiolecta) and two nitrogen fixing cyanobacteria (Nostoc muscorum and Anabaena doliolum), were screened for lipid productivity and growth kinetics under culture room and raceway pond conditions. Desmodesmus sp. MCC34 showed the highest specific growth rate (0.26 day?1), biomass production (1.9 g L?1) and lipid productivity (103 mg L?1 day?1). The optimal temperature and saturating light intensity for maximal growth of Desmodesmus sp. MCC34 were 35 °C and 75 μmol m?2 s?1 with molar extinction coefficient of 0.22 m2 g?1, respectively. Desmodesmus sp. MCC34 was then subjected to outdoor cultivation in a 20‐m long raceway pond for 18 days during March and November 2013. The areal biomass productivity and volumetric biomass productivity were 13946.23 kg ha?1 year?1 and 56.94 mg L1day?1 during the month of March, decreasing to 6262.28 kg ha?1 year?1 and 25.57 mg L1day?1 during the month of November. A mathematical model was constructed to explain the relationship between biomass production and growth parameters such as temperature, light intensity and nutrient concentration. The productivity values predicted with the proposed model correspond well with the experimental data, suggesting the validity of the model.  相似文献   

18.
Microalgae are discussed as an alternative source for the production of biofuels. The lipid content compared to cultivation time of used species is the main reason for any choice of a special strain. This paper reviews more analytical data of 38 screened microalgae strains. After the cultivation period, total content of lipids was analysed. The extracted fatty acids were quantified as fatty acid methyl esters by GC analysis. The amino acids were analysed by HPLC. Chlorella sp., Chlorella saccharophila, Chlorella minutissima and Chlorella vulgaris were identified as species with the highest productivity of fatty acids relevant to transesterification reactions. The components were mainly linoleic acid, palmitic acid and oleic acid. To increase productivity of highly saturated fatty acids, cultivation parameters light intensity and temperature were varied. In this manner, the ideal conditions for biodiesel production were defined in this publication.  相似文献   

19.
五种淡水微藻的适宜培养温度和光照强度   总被引:3,自引:0,他引:3  
从淡水中分离得到绿球藻(Chlorococcum sp.)SHOU-F3、纤维藻(Ankistrodesmus sp.)SHOU-F33、小球藻(Chlorella sp.)SHOU-F46、空星藻(Coelastrum sphaericum)SHOU-F10和栅藻(Scenedesmus sp.)SHOU-FX,分别在光照培养箱中研究了温度、光照强度对5种微藻增殖的影响,并分析了5种微藻的细胞组成。结果表明:绿球藻SHOU-F3、纤维藻SHOU-F33、小球藻SHOU-F46、空星藻SHOU-F10和栅藻SHOU-FX的最适生长温度分别为29.8、23.5、31.4、34.4和24.7℃;最适光照强度分别为16、119、42、82和106μmol·m-2·s-1;在适宜培养条件下,绿球藻SHOU-F3的色素、蛋白以及总糖的百分含量最高,纤维藻SHOU-F33的脂肪百分含量最高。  相似文献   

20.
Microalgae biomass has been consumed as animal feed, fish feed and in human diet due to its high nutritional value. In this experiment, microalgae specie of Chlorella Vulgaris FSP‐E was utilized for protein extraction via simple sugaring‐out assisted liquid biphasic electric flotation system. The external electric force provided to the two‐phase system assists in disruption of rigid microalgae cell wall and releases the contents of microalgae cell. This experiment manipulates various parameters to optimize the set‐up. The liquid biphasic electric flotation set‐up is compared with a control liquid biphasic flotation experiment without the electric field supply. The optimized separation efficiency of the liquid biphasic electric flotation system was 73.999 ± 0.739% and protein recovery of 69.665 ± 0.862% compared with liquid biphasic flotation, the separation efficiency was 61.584 ± 0.360% and protein recovery was 48.779 ± 0.480%. The separation efficiency and protein recovery for 5 × time scaled‐up system was observed at 52.871 ± 1.236% and 73.294 ± 0.701%. The integration of simultaneous cell‐disruption and protein extraction ensures high yield of protein from microalgae. This integrated method for protein extraction from microalgae demonstrated its potential and further research can lead this technology to commercialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号