首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a previous work, it was shown that in cells after a decrease of cellular glutathione content, toxic zinc effects, such as protein synthesis inhibition or GSSG (glutathione, oxidized form) increases, were enhanced. In this study, zinc toxicity was determined by detection of methionine incorporation as a parameter of protein synthesis and GSSG increase in various lung cell lines (A549, L2, 11Lu, 16Lu), dependent on enhanced GSSG reductase activities and changed glutathione contents. After pretreatment of cells with dl-buthionine-[R,S]-sulfoximine (BSO) for 72 h, cellular glutathione contents were decreased to 15–40% and GSSG reductase activity was increased to 120–135% in a concentration-dependent manner. In BSO pretreated cells, the IC50 values of zinc for methionine incorporation inhibition were unchanged as compared to cells not pretreated. The GSSG increase in BSO pretreated cells by zinc was enhanced in L2, 11Lu, and 16Lu cells, whereas in A549 cells, the GSSG increase by zinc was enhanced only after pretreatment with the highest BSO concentration. Inhibition of GSSG reductase in alveolar epithelial cells was observed at lower zinc concentrations than needed for methionine incorporation inhibition, whereas in fibroblastlike cells, inhibition of GSSG reductase occurred at markedly higher zinc concentrations as compared to methionine incorporation inhibition. These results demonstrate that GSSG reductase is an important factor in cellular zinc susceptibility. We conclude that reduction of GSSG is reduced in zinc-exposed cells. Therefore, protection of GSH oxidation by various antioxidants as well as enhancement of GSH content are expected to be mechanisms of diminishing toxic cellular effects after exposure to zinc.  相似文献   

2.
While multiple changes are frequently found to be associated with cisplatin resistance in a variety of tumor cell lines, a cause-effect relationship of these alterations with the resistant phenotype has not been established. In order to identify the resistance-relevant determinants, a series of cisplatinresistant sublines with different degrees of resistance to cisplatin was developed in a human ovarian carcinoma cell line (O-129). Three derived resistant cell lines displayed 2.1-fold (O-129/DDP4, low), 4.1-fold (O-129/DDP8, moderate) and 6.3-fold (O-129/DDP16, high) resistance, respectively, to cisplatin, compared with the sensitive parental line O-129. While the activity of poly(ADP-ribose) polymerase, an enzyme proposed to be involved in DNA repair, was elevated in all three resistant lines, a significant karyotypic change was observed only in the high-resistance line with the karyotype alteration from near diploidy to heteroploidy. The moderate (4.1-fold) and high (6.3-fold) DDP resistance was associated with a slow proliferation rate in drug-free medium, but cellular glutathione level was highly correlated with DDP sensitivity in all four cell lines. Taken together, the present studies establish that while many changes at cellular level can occur with development of cisplatin resistance, only elevation of intracellular glutathione concentration appears to be related to the resistance phenotype in these human ovarian cancer cells.Abbreviations DDP cisplatin - FBS fetal bovine serum - GSH glutathione - IC50 drug concentration required to result in 50% growth inhibition - PARP poly(ADP-ribose) polymerase  相似文献   

3.
Reduced toxicity of high zinc exposure was observed after pretreatment of various lung cells with nonlethal zinc concentrations. This effect became significant when various parameters of cytotoxicity were assessed (e.g., inhibition of protein synthesis, depletion of reduced glutathione [GSH], increase of oxidized glutathione [GSSG], release of lactate dehydrogenase [LDH]). Similar protective effects by zinc have already been shown by several investigators for a variety of toxicity studies dealing with cadmium, in vitro and in vivo. Zinc-induced toxicity has been linked to glutathione metabolism and cellular GSH contents. Activity of glutathione reductase (GR) and rates of glutathione synthesis were identified as determinants of zinc (cyto)toxicity. However, these variables were virtually unaffected in our adapted cells. Consequently, another variable appears to be crucial for modulating cellular suscepticibility in zinc pretreated cells. Protection in our cells was achieved by pretreatment with 80–120 μmol/L zinc chloride for 24–72 h, roughly 10-fold more zinc in the medium than is normally found in human plasma. Protection was not observed when the cells were concomitantly exposed to cycloheximide, an inhibitor of protein synthesis, or actinomycin D, an inhibitor of RNA synthesis, but it was found in the presence of amanitin, an inhibitor of mRNA synthesis. It is therefore concluded that the altered zinc tolerance of pretreated cells is not attributable to the induction of metallothionein.  相似文献   

4.
The effect of glutathione depletion on cellular toxicity of cadmium was investigated in a subpopulation (T27) of human lung carcinoma A549 cells with coordinately high glutathione levels and Cd++-resistance. Cellular glutathione levels were depleted by exposing the cells to diethyl maleate or buthionine sulfoximine. Depletion was dose-dependent. Exposure of the cells to 0.5 mM diethyl maleate for 4 hours or to 10 mM buthionine sulfoximine for 8 hours eliminated the threshold for Cd++ cytotoxic effect and deccreased the LD50S. Cells that were pretreated with 0.5 mM diethyl maleate or 10 mM buthionine sulfoximine and then exposed to these same concentrations of diethyl maleate or buthionine sulfoximine during the subsequent assay for colony forming efficiency produced no colonies, reflecting an enhanced sensitivity to these agents at low cell density. Diethyl maleate was found to be more cytotoxic than buthionine sulfoximine. Synergistic cytotoxic effects were observed in the response of diethyl maleate pretreated cells exposed to Cd++. Thus the results demostrated that depletion of most cellular glutathione in A549-T27 cells prior to Cd++ exposure sensitizes them to the agent's cytotoxic effects. Glutathione thus may be involved in modulating the early cellular Cd++ cytotoxic response. Comparison of reduced glutathione levels and of Cd++ cytotoxic responses in buthionine sulfoximine-treated A549-T27 cells with those levels in other, untreated normal and tumor-derived cells suggests that the higher level of glutathione in A549-T27 is not the sole determinant of its higher level of Cd++ resistance.Abbreviations BSO DL-buthionine-(R,S)-sulfoximine - DEM diethyl maleate - DMSO dimethyl sulfoxide - GSH reduced glutathione - MT metallothionein  相似文献   

5.
During the last decade, the unbound glutathione content of cultured adherent cells has become a very important biological marker for many pharmacological and toxicologicalin vitro studies with regard to the protective role of the tripeptide in its reduced form (GSH). However, the literature does not provide extensive information on the influence of sample preparation on cellular GSH and thiol analyses. Using the fibroblast-like V79 cell line as model, we undertook a comparative study of the efficiency of different procedures reported in the literature with respect to GSH recovery. Depending on the preanalytical step, up to 10-fold discrepancies could be observed in the recovery of intracellular GSH. Different parameters that must be controlled in order to maximize GSH recovery are discussed. The optimal strategy consisted in rapid perchloric acid deproteinization performed directly in the dish, which was extremely valuable for preparing GSH samples from adherent cells, and especially from cells expressing elevated -glutamyl transferase activity.Abbreviations EDTA ethylenediaminetetraacetic acid - GGT -glytamyl transferase (EC 2.3.2.2) - GSH reduced glutathione - HPLC high-performance liquid chromatography - PA perchloric acid - PBS Dulbecco's phosphate-buffered saline  相似文献   

6.
Fumonisin B1 (FB1) causes equine leukoencephalomalacia, porcine pulmonary edema, and liver tumors and chronic nephritis in rats. To investigate mechanisms by which FB1 induces toxicity, effects of FB1 on cellular glutathione (GSH) redox status and GSH depletion on FB1 toxicity in pig kidney (LLC-PK1) cells were studied. Treatment of LLC-PK1 cells with 50 μM FB1 for 24 hours significantly decreased cellular GSH contents from 56 ± 3.2 to 42.7 ± 4.4 nmol/mg protein (p < 0.05) and increased the activities of glutathione reductase (GR) from 25.7 ± 2.4 to 35.7 ± 5.0 μmol NADPH/mg protein (p < 0.05). The activities of glutathione peroxidase (GSHpx), catalase, and Cu,Zn-superoxide dismutase (SOD) were not changed by this treatment. Treatment of LLC-PK1 cells for 12 hours with 0.1. mM buthionine sulfoximine (BSO), a selective inhibitor of the enzyme γ-glutamylcysteine synthetase that catalyzes the rate-limiting reaction in de novo GSH synthesis, decreased cellular GSH levels to about 20% of that found in the control cells. The cells pretreated with 0.1 mM BSO for 12 hours were significantly sensitized to the FB1 cytotoxicity as determined by a long-term survival assay (p < 0.05). The results demonstrate that FB1 changes GSH redox cycle status in LLC-PK1 cells, and GSH may play a role in cytoprotection against FB1 toxicity. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
Several mechanisms have been implicated in pathological neuronal death including zinc neurotoxicity, calcium excitotoxicity and oxidative injury. Glutathione (GSH) serves to provide reducing equivalents for the maintenance of oxidant homeostasis, and also plays roles in intracellular and intercellular signaling in the brain. We investigated the role of GSH homeostasis in the neurotoxic action of zinc using both mixed cortical cultures containing neurons and glia, and cortical neurons prepared from 1-day-old rats. Zinc caused neuronal cell death in a concentration-dependent manner. In parallel, a high concentration of zinc depleted GSH, in a time-dependent manner, preceding the onset of neuronal damage. Depletion of GSH by diethylmaleate injured neurons and exacerbated zinc-induced death. In contrast, replenishment of GSH attenuated zinc neurotoxicity. The thiol-containing compounds N-acetylcysteine and GSH chemically chelated zinc leading to decreases in the influx of zinc, the fall in GSH level and neuronal death. Interestingly, the glycolytic substrate pyruvate, but not lactate, chelated zinc concentration dependently and prevented its toxicity. On the other hand, pyrrolidine dithiocarbamate, serving as a zinc chaperon, enhanced its entry and toxicity. The results suggest that zinc non-enzymatically depleted GSH, an intrinsic factor for neuron survival, leading to activation of the cellular death signal and eventually neuronal death.  相似文献   

8.
9.
Three factorial experiments were conducted to determine if high dietary fluoride (F) would inhibit selenite toxicity in rats. Initially, three levels of selenite (0.05, 3, and 5 mg/kg diet) were matched against three levels of F (2, 75, and 150 mg/kg diet). Fluoride failed to prevent the depressive effect of selenite on 8-wk food intake and body wt gain. Selenium (Se) concentration of plasma and kidney and enzymatic activity of whole blood glutathione peroxidase (GSH-Px) were also unaffected by F. Liver Se concentration, however, was slightly (12%) but significantly (p<0.025) reduced when the highest F and Se levels were combined. Fluoride (150 mg/kg) appeared to reduce liver selenite toxicity (5 mg/kg). Therefore, further study focused on liver histology with treatments that eliminated the middle levels of selenite and F. Fluoride prevented the hepatic necrosis seen in selenite-toxic rats. Similar histological lesions were not observed for kidney or heart. Fluoride partially (26%) but significantly (p<0.025) reduced thiobarbituric-reactive substances in selenite-toxic rats, but there was no F effect on intracellular distribution of liver Se, glutathione levels in liver and kidney, or on liver xanthine oxidase activity. Overall, the protective effect of F on selenite toxicity appears to be confined to liver pathology. The exact mechanism for this effect, however, remains unclear. Oregon Agricultural Experiment Station Technical Paper No. 9728.  相似文献   

10.
Some effects of nickel toxicity on rye grass   总被引:3,自引:0,他引:3  
Summary Rye grass (Lolium perenne, cv.S-23) was grown for 4 weeks in a non-calcareous Seaton loam soil with varying amounts of Ni as NiSO4. The purpose of this investigation was to study the Ni toxicity and the relationship of Ni with other essential elements. Nickel depressed shoot yield at all levels except at the lowest levelviz 30 g Ni/g soil. Nickel concentration of 50 g/g in shoots did not reduce the dry matter production in rye grass although slight chlorosis did appear at this level. The Ni and Fe concentration of the shoots increased and that of Mn and Zn decreased with increasing rates of Ni application. Uptake of Mn and Zn decreased at all level of Ni. But Fe uptake showed a slight increase at the first two levels and a profound depression at the subsequent levels. The pattern of Ni uptake is different, being highest at the middle level and decreasing on both sides which showed that the increase of Ni concentration of shoots is not proportional to the reduction in the yield. The Ni–Fe ratio rather than Ni and Fe concentration in plants has shown better relationship with the toxic effects of Ni. The implications of Ni phytotoxicity are discussed with particular reference to serpentine soils.The work is a part of Ph.D. Thesis submitted to the University of Aberdeen, U.K.  相似文献   

11.
Increased production of reactive oxygen species (ROS) by the mitochondrion has been implicated in the pathogenesis of numerous liver diseases. However, the exact sites of ROS production within liver mitochondria and the electron transport chain are still uncertain. To determine the sites of ROS generation in liver mitochondria we evaluated the ability of a variety of mitochondrial respiratory inhibitors to alter the steady state levels of ROS generated within the intact hepatocyte and in isolated mitochondria. Treatment with myxothiazol alone at concentrations that significantly inhibit respiration dramatically increased the steady-state levels of ROS in hepatocytes. Similar results were also observed in isolated mitochondria oxidizing succinate. Coincubation with antimycin or rotenone had no effect on myxothiazol-induced ROS levels. Myxothiazol stimulation of ROS was mitochondrial in origin as demonstrated by the colocalization of MitoTracker Red and dichlorofluorescein staining using confocal microscopy. Furthermore, diphenyliodonium, an inhibitor that blocks electron flow through the flavin mononucleotide of mitochondrial complex I and other flavoenzymes, significantly attenuated the myxothiazol-induced increase in hepatocyte ROS levels. Together, these data suggest that in addition to the ubiquinone-cytochrome bc(1) complex of complex III, several of the flavin-containing enzymes or iron-sulfur centers within the mitochondrial electron transport chain should also be considered sites of superoxide generation in liver mitochondria.  相似文献   

12.
Differentiation of mesenchymal stem cells (MSCs) to hepatocytes‐like cells is associated with alteration in the level of reactive oxygen species (ROS) and antioxidant defense system. Here, we report the role of glutathione in the functions of hepatocytes derived from MSCs. The stem cells undergoing differentiation were treated with glutathione modifiers [buthionine sulfoxide (BSO) or N‐acetyl cysteine (NAC)], and hepatocytes were collected on day 14 of differentiation and analysed for their biological and metabolic functions. Differentiation process has been performed in presence of glutathione modifiers viz. BSO and NAC. Depending on the level of cellular glutathione, the proliferation rate of MSCs was affected. Glutathione depletion by BSO resulted in increased levels of albumin and ROS in hepatocytes. Whereas, albumin and ROS were inhibited in cells treated with glutathione precursor (NAC). The metabolic function of hepatocytes was elevated in BSO‐treated cells as judged by increased urea, transferrin, albumin, alanine transaminase and aspartate transaminase secretions in the media. However, the metabolic activity of the hepatocytes was inhibited when glutathione was increased by NAC. We conclude that the efficiency of metabolic function of hepatocytes is inversely related to the levels of cellular glutathione. These data may suggest a novel role of glutathione in regulation of metabolic function of hepatocytes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Rats injected with interleukin-1 (10 g) and tumor necrosis factor (10 g) and then exposed continuously to hyperoxia (> 99% O2, 1 atm) survived longer, had increased lung reduced/oxidized glutathione ratios, smaller pleural effusions, less pulmonary hypertension and improv+++ed arterial blood gases. The percentage of animals surviving for 72 hours in hyperoxia increased from 8% to 94%. Although relatively small increases in glutathione redox cycle enzymes occurred four and sixteen hours following cytokine injection, dramatic increases in all major antioxidant enzymes including superoxide dismutase, glucose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, and catalase had occurred following 72 hours of exposure to hyperoxia. The protective effect of IL-1 + TNF against lethal pulmonary O2 toxicity could be partially inhibited by pre-injection of lysine acetylsalicylate or, less effectively, of ibuprofen.Recent studies have suggested that both IL-1 and TNF can induce manganese (mitochondrial) superoxide dismutase mRNA and protein synthesis in a variety of cell types. Preliminary studies suggest that IL-1 alone, in ample dosage, can provide protection against lethal pulmonary O2 toxicity. Future studies should be directed toward identification of acute phase changes in lung antioxidant enzymes, surfactant proteins and/or lipid components, enzymes needed for synthesis of surfactant phospholipids, and/or other protective proteins. Additional work also needs to be done in identifying the lung cell types in which early enzyme induction occurs. These studies should provide a better understanding of mechanisms whereby protection against pulmonary O2 toxicity can occur. An understanding of the molecular mechanisms inducing protective proteins should lead to more precise pharmacologic control of these processes.  相似文献   

14.
Renal cellular concentration of glutathione (GSH) increases after exposure to a subtoxic dose of inorganic mercury (Hg2+). In the present study, we tested the hypothesis that the increase in renal cellular concentration of GSH after exposure to a subtoxic dose of Hg2+ (0.5 μmol HgCl2/kg body wt) is due to induction of GSH synthesis. Rats were treated in vivo with HgCl2, and renal proximal tubular (PT) and distal tubular (DT) cells were isolated 24 hours later. PT cells were studied as the presumed target site for Hg2+, and DT cells were investigated as a nontarget cell population. γ-Glutamylcysteine synthetase activity increased after exposure to Hg2+ in PT cells when expressed on a per cell basis. Increases in activities of glutathione disulfide (GSSG) reductase, GSH peroxidase, and several enzymes involved in cellular energetics occurred after exposure to Hg2+. Many of these increases were observed in both PT and DT cells, indicating that the responses to Hg2+ were not restricted to the PT cells. These results are consistent with the hypothesis that in vivo exposure to a subtoxic dose of Hg2+ is also associated with induction of GSH synthesis and other key cellular enzymes. Early changes in GSH metabolism associated with exposure to Hg2+ appear to occur both in the primary target cell population and in more distal nephron sites. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Glutamate treatment depletes hippocampal HT22 cells of glutathione, which renders the cells incapable to reduce reactive oxygen species and ultimately cumulates in cell death by oxidative stress. HT22 cells resistant to glutamate displayed increased phosphorylation of cAMP-response-element binding (CREB) and decreased ERK1/2 suggestive of differences in signal transmission. We investigated the amount of candidate G-protein-coupled receptors involved in this resistance and found an increase in mRNA for receptors activated by the vasoactive intestinal peptide VIP (VPAC2, 12.6-fold) and glutamate like the metabotropic glutamate receptor mGlu1 (5.3-fold). Treating cells with VIP and glutamate led to the same changes in protein phosphorylation observed in resistant cells and induced the proto-oncogene Bcl-2. Bcl-2 overexpression protected by increasing the amount of intracellular glutathione and Bcl-2 knockdown by small interfering RNAs (siRNA) increased glutamate susceptibility of resistant cells. Other receptors upregulated in this paradigm might represent useful targets in the treatment of neurological diseases associated with oxidative stress.  相似文献   

16.
The yeasts of patients with oral cancer has been studied before and during Xr-therapy. Gram and PAS smears revealed an increase of yeast-like structures, during treatment, from 56% to 66% of the cases. Before radiotherapy oral yeasts were isolated from 56% of the patients with cancer represented by Candida albicans (30%); C. tropicalis (12%); C. glabrata and C. krusei (4%), besides six other different species (2%). During radiotherapy yeasts were isolated in 72% of the cases, as follow: C. albicans (36%); C. tropicalis (16%); Rhodotorula rubra (6%); C. kefyr; C. krusei and Pichia farinosa (4%), besides other nine species (2%). C. albicans serotype A represented 93% of the isolated samples, before treatment and 88,8% during Xr-therapy.  相似文献   

17.
Glutamate treatment depletes hippocampal HT22 cells of glutathione, which renders the cells incapable to reduce reactive oxygen species and ultimately cumulates in cell death by oxidative stress. HT22 cells resistant to glutamate displayed increased phosphorylation of cAMP-response-element binding (CREB) and decreased ERK1/2 suggestive of differences in signal transmission. We investigated the amount of candidate G-protein-coupled receptors involved in this resistance and found an increase in mRNA for receptors activated by the vasoactive intestinal peptide VIP (VPAC2, 12.6-fold) and glutamate like the metabotropic glutamate receptor mGlu1 (5.3-fold). Treating cells with VIP and glutamate led to the same changes in protein phosphorylation observed in resistant cells and induced the proto-oncogene Bcl-2. Bcl-2 overexpression protected by increasing the amount of intracellular glutathione and Bcl-2 knockdown by small interfering RNAs (siRNA) increased glutamate susceptibility of resistant cells. Other receptors upregulated in this paradigm might represent useful targets in the treatment of neurological diseases associated with oxidative stress.  相似文献   

18.
The enzyme activities of the superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione reductase (GR) and thiobarbituric acid reactive substances (TBARS) content were measured in tissue extracts of the liver, kidney and lung of sheep in a nonpolluted control area (C), a polluted area pasture (PP) and those from polluted areas but fed in the laboratory with an experimental emission supplement diet (EEF). Compared with the control SOD, activity was significantly increased (1.75 times) only in the liver of the PP group. In the EEF group there was a tendency toward lower activities in all organs. The Cu,Zn-SOD isoenzymes pattern analyzed by isoelectrofocusing was different in the organs of the animals exposed to pollutants when compared with those of the controls. In the liver, two new isoenzymes with pI 5.30 and 5.70 were found in the PP group and an additional isoenzyme with pI 5.10 in the EEF group. The kidney isoenzymes with pl 5.30 and 5.40 were inhibited in the EEF group. In the lung, two new isoenzymes appeared with pl 5.30 and 5.40 in the PP group and two new isoenzymes with pI 6.10 and 6.50 in the EEF group. GSHPx activity was inhibited in the liver and kidney of the sheep exposed to pollutants. GR activity was significantly changed only in the liver. The activity in the PP group was 2.30 and 2.10 times higher than in the C and EEF groups, respectively. TBARS content was increased in the liver and kidney of the EEF group compared with the control.  相似文献   

19.
Experiments were conducted to determine whether the increased glutathione S-transferase (GSH-T) activity associated with selenium (Se) deficiency is necessarily related to losses in the activity of Se-dependent glutathione peroxidase (SeGSHpx) in chicks. Nutritional Se status was altered in two ways: by treatment with an antagonist of Se utilization, aurothioglucose (AuTG), and by feeding diets containing excess Se. Chicks given AuTG (10–30 mg AU/kg, sc) had growth rates and hepatic GSH concentrations that were comparable to those of saline-treated controls; however, their plasma GSH levels exceeded those of either Se-deficient (6-fold) or-adequate (3-fold) saline-treated chicks. Hepatic SeGSHpx activities of AuTG-treated chicks were hals those of controls under conditions of Se-adequacy; however, this effect was not detected when Se was deficient. Hepatic GSH-TCDNB (assayed with 1-chloro-2,4-dinitrobenzene) activities of AuTG-treated chicks were significantly greater than those of controls when Se was deficient (i.e., when SeGSHpx activity was 12% of the Se-adequate level); however, deprivation of Se did not affect GSH-TCDNB activity in the absence of AuTG. chicks fed excess Se (6–20 ppm as Na2SeO3) in diets containing either low (2 IU/kg) or adequate (100 IU/kg) VE, showed hepatic GSH-TCDNB activities and GSH concentrations greater than those of Se-adequate (0.2 ppm Se) chicks by 100% and 40%, respectively. That increased hepatic GSH-TCDNB activity can occur because of either AuTG or excess Se status under conditions wherein SeGSHpx activity is not affected indicates that the transferase response is not directly related to changes in the peroxidase.  相似文献   

20.
The blood reduced glutathione (GSH)/GSH disulfide (GSSG) ratio is an index of the oxidant/antioxidant balance of the whole body. Nevertheless, data indicating GSH and GSSG physiological levels are still widely divergent, especially those on GSSG, probably due to its low concentration. Standardization in methodological protocols and sample manipulation could help to minimize these discrepancies. Therefore, we have investigated how plasma reduced GSH, which is rapidly oxidized after blood withdrawal, could alter the blood GSSG measurement if the sample is not suitably processed. We have observed that an increase in plasma GSH concentration, due to red blood cell hemolysis, is responsible for a significant overestimation of blood GSSG level. Our results show that, before performing blood GSSG determination, thiols have to be rapidly blocked, to avoid possible pitfalls in GSSG measurement, in particular when hemolysis is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号