首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent to which phenotypic plasticity might mediate short-term responses to environmental change is controversial. Nonetheless, theoretical work has made the prediction that plasticity should be common, especially in predictably variable environments by comparison with those that are either stable or unpredictable. Here we examine these predictions by comparing the phenotypic plasticity of thermal tolerances (supercooling point (SCP), lower lethal temperature (LLT), upper lethal temperature (ULT)), following acclimation at either 0, 5, 10 or 15 degrees C, for seven days, of five, closely-related ameronothroid mite species. These species occupy marine and terrestrial habitats, which differ in their predictability, on sub-Antarctic Marion Island. All of the species showed some evidence of pre-freeze mortality (SCPs -9 to -23 degrees C; LLTs -3 to -15 degrees C), though methodological effects might have contributed to the difference between the SCPs and LLTs, and the species are therefore considered moderately chill tolerant. ULTs varied between 36 degrees C and 41 degrees C. Acclimation effects on SCP and LLT were typically stronger in the marine than in the terrestrial species, in keeping with the prediction of strong acclimation responses in species from predictably variable environments, but weaker responses in species from unpredictable environments. The converse was found for ULT. These findings demonstrate that acclimation responses vary among traits in the same species. Moreover, they suggest that there is merit in assessing the predictability of changes in high and low environmental temperatures separately.  相似文献   

2.
Much of the work on the responses of terrestrial arthropods to high and low temperatures has been done on model organisms such as Drosophila . However, considerable variation in thermotolerance is partitioned at the family level and above, raising questions about the broader applicability of this work to other taxa. Here we investigate resistance to high and low temperatures, following different temperature treatments, in ten species and 31 populations of weevils found on sub-Antarctic Heard Island and Marion Island, which have substantially different climates. In these weevils there is considerable interspecific and among-population variation in critical thermal minimum (CTmin) and critical thermal maximum (CTmax), but most of this variation in critical limits can be ascribed to phenotypic plasticity. We find no relationship between CTmin and CTmax at the species level, and this is true also of populations and of responses to the temperature treatments. In general, plastic (acclimation) changes in CTmin are larger than those in CTmax. Our data therefore provide support for the idea that resistance to heat and to cold are decoupled in terrestrial arthropods. Furthermore, our results suggest that investigations of physiological limits to species borders should incorporate the effects of phenotypic plasticity on physiological capabilities.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78, 401–414.  相似文献   

3.
The objective of this study was to evaluate the variability of physiological performances of Castanea sativa Mill. in relation to drought tolerance, among and within European populations coming from contrasting environmental conditions. Forty-eight open-pollinated families from a stratified sample (temperature/precipitation) of six naturalized populations from Spain, Italy and Greece were grown for one growth period under two temperature regimes (25 and 32 degrees C), in combination with two watering regimes in growth chambers. Complementary to growth traits analysed in a previous study, carbon isotope discrimination (Delta), a complex physiological trait involved in acclimation and adaptive processes, was studied. anova indicated significant Delta variability for C. sativa populations across Europe and, thereby, variation in adaptedness to drought. The European pattern of Delta variability matches the previously reported one for the centre of origin of C. sativa (Ponto-Caucasian region). This suggests that common mechanisms of drought adaptedness, involving both genetic and physiological determinants, give C. sativa the capacity to colonize a wide range of site conditions. The highest Delta values, indicating the lowest water-use efficiency (WUE), were found within each treatment for populations originating from Mediterranean drought-prone sites. These populations also had the highest phenotypic plasticity of Delta. Significant among-family genetic variation in Delta was found. The heritability based on the joint anova was estimated at 0.31 +/- 0.07. The estimates of the coefficients for the additive variance varied in the range 2.6-4.0%, suggesting possibilities for selection on WUE and adaptedness to drought. The genetic correlations between Delta and growth traits were generally strong and negative, especially in the two high temperature treatments.  相似文献   

4.
Although phenotypic plasticity of morphological and physiological traits in response to drought could be adaptive, there have been relatively few tests of plasticity variation or of adaptive plasticity in drought-coping traits across populations with different moisture availabilities. We measured floral size, vegetative size, and physiological traits in four field populations of Leptosiphon androsaceus (Polemoniaceae) that were distributed across a rainfall gradient in California, USA. Measurements were made over 5 years that varied in precipitation. We also conducted a growth chamber experiment in which half-sibs from three populations were divided equally among a well-watered and a drought treatment. We tested for selection on traits in each of the watering treatments, and evaluated whether traits exhibited plasticity. In the field, plant traits exhibited substantial variation across populations and years. Flower size, leaf size, and water-use efficiency (WUE) were generally higher for populations that received greater average rainfall. However, in dry years, we observed a decrease in flower and leaf size, but an increase in WUE across the populations. In the growth chamber experiment, leaf and physiological traits exhibited plasticity, with smaller leaves and higher WUE found in the drought, as compared to the well-watered treatment. Only specific leaf area exhibited differentiation in plasticity among populations. Although there was no observed plasticity in floral size, selection favored smaller flowers in the drought treatment and larger flowers in the well-watered treatment. Our results suggest that moisture availability has led to trait variation in L. androsaceus via a combination of selection and phenotypic plasticity.  相似文献   

5.
The evolution of phenotypic plasticity of plant traits may be constrained by costs and limits. However, the precise constraints are still unclear for many traits under different ecological contexts. In a glasshouse experiment, we grew ramets of 12 genotypes of a clonal plant Hydrocotyle vulgaris under the control (full light and no flood), shade and flood conditions and tested the potential costs and limits of plasticity in 13 morphological and physiological traits in response to light availability and flood variation. In particular, we used multiple regression and correlation analyses to evaluate potential plasticity costs, developmental instability costs and developmental range limits of each trait. We detected significant costs of plasticity in specific petiole length and specific leaf area in response to shade under the full light condition and developmental range limits in specific internode length and intercellular CO2 concentration in response to light availability variation. However, we did not observe significant costs or limits of plasticity in any of the 13 traits in response to flood variation. Our results suggest that the evolution of phenotypic plasticity in plant traits can be constrained by costs and limits, but such constraints may be infrequent and differ under different environmental contexts.  相似文献   

6.
During May 1997 thermal tolerance, supercooling point (SCP), low and high temperature survival, and desiccation resistance were examined in field-fresh Embryonopsis halticella Eaton larvae from Marion Island. SCPs were also examined in acclimated larvae, larvae starved for seven days, larvae within their leaf mines, and in larvae exposed to ice crystals. Field-fresh larvae had a critical minimum temperature (CT(Min)) and critical maximum temperature (CT(Max)) of 0 degrees C and 39.7 degrees C, respectively. Mean SCP of field-fresh caterpillars was -20.5 degrees C and this did not change with starvation. Field-fresh larvae did not survive freezing and their lower lethal temperatures (70% mortality below -21 degrees C) and survival of exposure to constant low temperatures (100% mortality after 12hrs at -19 degrees C) indicated that they are moderately chill tolerant. SCP frequency distributions were unimodal for field-fresh larvae, but became bimodal at higher acclimation temperatures. Contact with ice-crystals caused an increase in SCP (-6.5 degrees C), but contact with the host plant had less of an effect at higher subzero temperatures. It appears that the remarkable desiccation resistance of the larvae is selected for by the absence of a boundary layer surrounding their host plant, caused by constant high winds. This suggests that the low SCPs of E. halticella larvae may have evolved as a consequence of pronounced desiccation resistance.  相似文献   

7.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

8.
Despite numerous releases for biological control purposes during more than 20 years in Europe, Harmonia axyridis failed to become established until the beginning of the 21st century. Its status as invasive alien species is now widely recognised. Theory suggests that invasive populations should evolve toward greater phenotypic plasticity because they encounter differing environments during the invasion process. On the contrary, populations used for biological control have been maintained under artificial rearing conditions for many generations; they are hence expected to become specialised on a narrow range of environments and show lower phenotypic plasticity. Here we compared phenotypic traits and the extent of adaptive phenotypic plasticity in two invasive populations and two populations commercialized for biological control by (i) measuring six phenotypic traits related to fitness (eggs hatching rate, larval survival rate, development time, sex ratio, fecundity over 6 weeks and survival time of starving adults) at three temperatures (18, 24 and 30°C), (ii) recording the survival rate and quiescence aggregation behaviour when exposed to low temperatures (5, 10 and 15°C), and (iii) studying the cannibalistic behaviour of populations in the absence of food. Invasive and biocontrol populations displayed significantly different responses to temperature variation for a composite fitness index computed from the traits measured at 18, 24 and 30°C, but not for any of those traits considered independently. The plasticity measured on the same fitness index was higher in the two invasive populations, but this difference was not statistically significant. On the other hand, invasive populations displayed significantly higher survival and higher phenotypic plasticity when entering into quiescence at low temperatures. In addition, one invasive population displayed a singular cannibalistic behaviour. Our results hence only partly support the expectation of increased adaptive phenotypic plasticity of European invasive populations of H. axyridis, and stress the importance of the choice of the environmental parameters to be manipulated for assessing phenotypic plasticity variation among populations.  相似文献   

9.
Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long‐standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade‐off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti‐nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade‐off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.  相似文献   

10.
A long-standing question in ecology is whether phenotypic plasticity, rather than selection per se, is responsible for phenotypic variation among populations. Plasticity can increase or decrease variation, but most previous studies have been limited to single populations, single traits and a small number of environments assessed using univariate reaction norms. Here, examining two genetically distinct populations of Daphnia pulex with different predation histories, we quantified predator-induced plasticity among 11 traits along a fine-scale gradient of predation risk by a predator (Chaoborus) common to both populations. We test the hypothesis that plasticity can be responsible for convergence in phenotypes among different populations by experimentally characterizing multivariate reaction norms with phenotypic trajectory analysis (PTA). Univariate analyses showed that all genotypes increased age and size at maturity, and invested in defensive spikes (neckteeth), but failed to quantitatively describe whole-organism response. In contrast, PTA quantified and qualified the phenotypic strategy the organism mobilized against the selection pressure. We demonstrate, at the whole-organism level, that the two populations occupy different areas of phenotypic space in the absence of predation but converge in phenotypic space as predation threat increases.  相似文献   

11.
Abstract Both genetic differentiation and phenotypic plasticity might be expected to affect the location of geographic range limits. Co‐gradient variation (CoGV), plasticity that is congruent with genetic differentiation, may enhance performance at range margins, whereas its opposite, counter‐gradient variation (CnGV) may hinder performance. Here we report findings of reciprocal transplant experiments intended to tease apart the roles of differentiation and plasticity in producing phenotypic variation across a geographic border between two plant subspecies. Clarkia xantiana ssp. xantiana and C. xantiana ssp. parviflora are California‐endemic annuals that replace each other along a west‐east gradient of declining precipitation. We analyzed variation in floral traits, phenological traits, and vegetative morphological and developmental traits by sowing seeds of 18 populations (six of ssp. xantiana and 12 of ssp. parviflora) at three sites (one in each subspecies' exclusive range and one in the subspecies' contact zone), in two growing seasons (an exceptionally wet El Niño winter and a much drier La Niña winter). Significant genetic differences between subspecies appeared in 11 of 12 traits, and differences were of the same sign as in nature. These findings are consistent with the hypothesis that selection is responsible for subspecies differences. Geographic variation within subspecies over part of the spatial gradient mirrored between‐subspecies differences present at a larger scale. All traits showed significant plasticity in response to spatial and temporal environmental variation. Plasticity patterns ranged from spatial and temporal CoGV (e.g., in node of first flower), to spatial CnGV (e.g., in flowering time), to patterns that were neither CoGV nor CnGV (the majority of traits). Instances of CoGV may reflect adaptive plasticity and may serve to increase performance under year‐to‐year environmental variation and at sites near the subspecies border. However, the presence of spatial CnGV in some critical traits suggests that subspecies ranges may also be constrained by patterns of plasticity.  相似文献   

12.
Noel F  Machon N  Porcher E 《Annals of botany》2007,99(6):1203-1212
BACKGROUND AND AIMS: Although conservation biology has long focused on population dynamics and genetics, phenotypic plasticity is likely to play a significant role in population viability. Here, an investigation is made into the relative contribution of genetic diversity and phenotypic plasticity to the phenotypic variation in natural populations of Ranunculus nodiflorus, a rare annual plant inhabiting temporary puddles in the Fontainebleau forest (Paris region, France) and exhibiting metapopulation dynamics. METHODS: The genetic diversity and phenotypic plasticity of quantitative traits (morphological and fitness components) were measured in five populations, using a combination of field measurements, common garden experiments and genotyping at microsatellite loci. KEY RESULTS: It is shown that populations exhibit almost undetectable genetic diversity at molecular markers, and that the variation in quantitative traits observed among populations is due to a high level of phenotypic plasticity. Despite the lack of genetic diversity, the natural population of R. nodiflorus exhibits large population sizes and does not appear threatened by extinction; this may be attributable to large phenotypic plasticity, enabling the production of numerous seeds under a wide range of environmental conditions. CONCLUSIONS: Efficient conservation of the populations can only be based on habitat management, to favour the maintenance of microenvironmental variation and the resulting strong phenotypic plasticity. In contrast, classical actions aiming to improve genetic diversity are useless in the present case.  相似文献   

13.
The relative contribution of adaptation and phenotypic plasticity can vary between core and edge populations, with implications for invasive success. We investigated the spread of the invasive yellow monkeyflower, Erythranthe gutatta in New Zealand, where it is spreading from lowland agricultural land into high-elevation conservation areas. We investigated the extent of phenotypic variation among clones from across the South Island, looked for adaptation and compared degrees of plasticity among lowland core versus montane range-edge populations. We grew 34 clones and measured their vegetative and floral traits in two common gardens, one in the core range at 9 m a.s.l. and one near the range-edge at 560 m a.s.l. Observed trait variation was explained by a combination of genotypic diversity (as identified through common gardens) and high phenotypic plasticity. We found a subtle signature of local adaptation to lowland habitats but all clones were plastic and able to survive and reproduce in both gardens. In the range-edge garden, above-ground biomass was on average almost double and stolon length almost half that of the same clone in the core garden. Clones from low-elevation sites showed higher plasticity on average than those from higher elevation sites. The highest performing clones in the core garden were also top performers in the range-edge garden. These results suggest some highly fit general-purpose genotypes, possibly pre-adapted to New Zealand montane conditions, best explains the spread of E. gutatta from lowland to higher elevation areas.  相似文献   

14.
Abstract Geographic divergence in phenotypic traits between long‐isolated populations likely has a genetic basis, but can phenotypic plasticity generate such divergence rapidly in the initial stages of isolation? Australian tiger snakes (Notechis scutatus, Elapidae) provide a classic model system for the evolution of body size: mean adult sizes are relatively invariant in mainland populations, but many offshore islands have dwarf or giant populations. Previous work has shown a genetic basis to this divergence in long‐isolated islands (>10 000 years), but what of the initial stages of this process? Human translocation of mainland snakes to Carnac Island 90 years ago gives us a unique opportunity to assess the proximate reasons for the giant size of Carnac Island animals compared with mainland conspecifics. Our data suggest a major role for phenotypic plasticity. Feeding trials on captive snakes from both island and mainland populations showed a strong link between food intake and growth rates, similar in the two populations. Snakes given abundant food grew much larger than we have ever recorded in the wild, demonstrating that observed mean body sizes are driven by food availability rather than genetic limits to growth. In combination with earlier work showing genetic divergence in growth rates in snakes from long‐isolated islands, our data suggest that geographical divergence in mean adult body sizes in this system initially is driven by a rapid shift due to phenotypic plasticity, with the divergence later canalized by a gradual accumulation of genetic differentiation.  相似文献   

15.
The goal of our work was to understand the role of a novel thermal environment in shaping the phenotypic expression of thermogenic capacity and organ size. To examine this we compared two populations of the South American rodent Phyllotis darwini from different altitudes (Andean and valley populations), taking advantage of the fact that this genus originated at high altitude in the Andean plateau. DNA mitochondrial analysis showed that the two populations were separated and then experienced different thermal regimens for at least the last 450,000 yr. We expected the two populations of P. darwini to present more metabolic and organ size similarities if phylogenetic inertia had been an important factor. In this sense, phylogenetic inertia means that the valley population would retain evolutionary adaptations of high altitude: a greater phenotypic flexibility in both physiological and morphological traits. In general, our results indicate that the actual thermogenic capacities (magnitude and flexibility) of the valley population are a consequence of phylogenetic inertia. On the other hand, results for organ size (magnitude and flexibility) could suggest that this population would have adapted to the less seasonal central valley.  相似文献   

16.
Thermal trait variation is of fundamental importance to forecasting the impacts of environmental change on lizard diversity. Here, we review the literature for patterns of variation in traits of upper and lower sub-lethal temperature limits, temperature preference and active body temperature in the field, in relation to space, time and phylogeny. Through time, we focus on the direction and magnitude of trait change within days, among seasons and as a consequence of acclimation. Across space, we examine altitudinal and latitudinal patterns, incorporating inter-specific analyses at regional and global scales. This synthesis highlights the consistency or lack thereof, of thermal trait responses, the relative magnitude of change among traits and several knowledge gaps identified in the relationships examined. We suggest that physiological information is becoming essential for forecasting environmental change sensitivity of lizards by providing estimates of plasticity and evolutionary scope.  相似文献   

17.
18.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

19.
Both plasticity and genetic differentiation can contribute to phenotypic differences between populations. Using data on non‐fitness traits from reciprocal transplant studies, we show that approximately 60% of traits exhibit co‐gradient variation whereby genetic differences and plasticity‐induced differences between populations are the same sign. In these cases, plasticity is about twice as important as genetic differentiation in explaining phenotypic divergence. In contrast to fitness traits, the amount of genotype by environment interaction is small. Of the 40% of traits that exhibit counter‐gradient variation the majority seem to be hyperplastic whereby non‐native individuals express phenotypes that exceed those of native individuals. In about 20% of cases plasticity causes non‐native phenotypes to diverge from the native phenotype to a greater extent than if plasticity was absent, consistent with maladaptive plasticity. The degree to which genetic differentiation versus plasticity can explain phenotypic divergence varies a lot between species, but our proxies for motility and migration explain little of this variation.  相似文献   

20.
Plant populations may show differentiation in phenotypic plasticity, and theory predicts that greater levels of environmental heterogeneity should select for higher magnitudes of phenotypic plasticity. We evaluated phenotypic responses to reduced soil moisture in plants of Convolvulus chilensis grown in a greenhouse from seeds collected in three natural populations that differ in environmental heterogeneity (precipitation regime). Among several morphological and ecophysiological traits evaluated, only four traits showed differentiation among populations in plasticity to soil moisture: leaf area, leaf shape, leaf area ratio (LAR), and foliar trichome density. In all of these traits plasticity to drought was greatest in plants from the population with the highest interannual variation in precipitation. We further tested the adaptive nature of these plastic responses by evaluating the relationship between phenotypic traits and total biomass, as a proxy for plant fitness, in the low water environment. Foliar trichome density appears to be the only trait that shows adaptive patterns of plasticity to drought. Plants from populations showing plasticity had higher trichome density when growing in soils with reduced moisture, and foliar trichome density was positively associated with total biomass. Co-ordinating editor: F. Stuefer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号