共查询到20条相似文献,搜索用时 0 毫秒
1.
Distribution of filipin-sterol complexes on cultured muscle cells: cell- substratum contact areas associated with acetylcholine receptor clusters 总被引:1,自引:5,他引:1
下载免费PDF全文

《The Journal of cell biology》1983,96(2):363-372
Specialized areas within broad, close, cell-substratum contacts seen with reflection interference contrast microscopy in cultures of Xenopus embryonic muscle cells were studied. These areas usually contained a distinct pattern of light and dark spots suggesting that the closeness of apposition between the membrane and the substratum was irregular. They coincided with areas containing acetylcholine receptor clusters identified by fluorescence labeled alpha-bungarotoxin. Freeze-fracture of the cells confirmed these observations. The membrane in these areas was highly convoluted and contained aggregates of large P-face intramembrane particles (probably representing acetylcholine receptors). If cells were fixed and then treated with the sterol- specific antibiotic filipin before fracturing, the pattern of filipin- sterol complex distribution closely followed the pattern of cell- substratum contact. Filipin-sterol complexes were in low density in the regions where the membrane contained clustered intramembrane particles. These membrane regions were away from the substratum (bright white areas in reflection interference contrast; depressions of the P-face in freeze-fracture). Filipin-sterol complexes were also in reduced density where the membrane was very close to the substratum (dark areas in reflection interference contrast; bulges of the P-face in freeze- fracture). These areas were not associated with clustered acetylcholine receptors (aggregated particles). This result suggests that filipin treatment causes little or no artefact in either acetylcholine receptor distribution or membrane topography of fixed cells and that the distribution of filipin-sterol complexes may closely parallel the microheterogeneity of membranes that exist in living cells. 相似文献
2.
Association of the postsynaptic 43K protein with newly formed acetylcholine receptor clusters in cultured muscle cells 总被引:2,自引:23,他引:2
下载免费PDF全文

The postsynaptic membrane from Torpedo electric organ contains, in addition to the acetylcholine receptor (AChR), a major peripheral membrane protein of approximately 43,000 mol wt (43K protein). Previous studies have shown that this protein is closely associated with AChR and may be involved in anchoring receptors to the postsynaptic membrane. In this study, binding sites for monoclonal antibodies (mabs) to the 43K protein have been compared to the distribution of AChR in Xenopus laevis muscle cells in culture. In double label immunofluorescence experiments, clusters of AChR that occur spontaneously on these cells were stained with anti-43K mabs. Newly formed receptor clusters induced with positive polypeptide-coated latex beads were also stained with anti-43K mabs as early as 12 h after the application of the beads. Exact correspondence in the distribution of the anti-43K protein binding sites and the AChR was found in both types of clusters. These results suggest that the 43K protein becomes associated with AChR clusters during a period of active postsynaptic membrane differentiation. Thus, this protein may participate in the clustering process. 相似文献
3.
Sciatin: a myotrophic protein increases the number of acetylcholine receptors and receptor clusters in cultured skeletal muscle 总被引:8,自引:0,他引:8
Factors present in neural extracts or in media conditioned by neurons have been shown by others to increase both the number of acetylcholine receptors (AChRs) and the number of receptor clusters in cultures of embryonic skeletal muscle. We have recently shown that the glycoprotein, sciatin, exerts trophic effects on developing muscle in vitro. In the present study, we investigated the effect of sciatin on AChRs in aneural cultures of chick skeletal muscle. Sciatin caused a significant increase in the number of AChRs/dish as measured by binding of 125I-α-bungarotoxin (α-Btx) and in acetylcholinesterase (AChE) activity/dish in differentiating muscle cells. The increase in AChRs elicited by sciatin was due solely to increased receptor synthesis and incorporation. The rate of AChR synthesis in sciatin-treated cultures was as much as five times the control rate and was significantly reduced by cycloheximide (10 μM). AChR degradation was unaffected by the myotrophic protein. Although the number of AChRs/dish was increased by sciatin during myogenesis, AChR specific activity, expressed as picomoles 125I-α-Btx bound/mg cell protein, was only transiently increased by the myotrophic protein. This contrasted with AChE specific activity in sciatin-treated cultures which remained elevated throughout differentiation. Autoradiographs of 125I-α-Btx-labeled cultures showed that sciatin caused an increase in the number and size of AChR “hot spots” and maintained the integrity of these AChR clusters in aneural muscle cultures for up to 5 weeks. At this time control cultures had completely degenerated. The mechanism by which sciatin enhanced the synthesis of AChRs appeared to be distinct from that of tetrodotoxin (TTX), an agent which abolishes muscle activity. However, like theophylline, sciatin might evoke increased synthesis of AChRs via regulation of cyclic AMP since the myotrophic protein increased cAMP both in cells and in conditioned medium. The results of this study suggest that sciatin may be related to the diffusible factor(s) from motor neurons described by others which has trophic effects on AChRs. Furthermore, we suggest that this myotrophic protein may be responsible for the clustering of AChRs and maintenance of receptor clusters at neuromuscular junctions in developing avian muscle. 相似文献
4.
Organization of acetylcholine receptor clusters in cultured rat myotubes is calcium dependent
下载免费PDF全文

The effect of extracellular Ca2+ concentration and myasthenic globulin on the distribution and appearance of acetylcholine receptor (AChR) clusters on rat myotubes was studied with tetramethyl-rhodamine-labeled alpha BTX. Low Ca2+ medium (2.5 X 10(-5) M) caused a time-dependent loss of AChR clusters, and a concomitant increase in small punctate areas of fluorescence. High Ca2+ concentrations (1.5 X 10(-2) M) increased the size of AChR clusters without altering AChR synthesis. These changes were not observed with other divalent ions. In the presence of myasthenic globulin, the rate of AChR turnover increases, and AChR clusters are rapidly dispersed. High Ca2+ concentration partially protects the AChR clusters from dispersal and decreases the rate of receptor turnover. 相似文献
5.
W A Catterall 《The Journal of biological chemistry》1975,250(5):1776-1781
Activation of the acetylcholine receptors of cultured muscle cells by carbamylcholine increases the rate of passive 22-Na+ uptake into the muscle cells up to 20-fold. The Na+ transport activity of the receptor desensitizes during exposure to carbamylcholine. The rate and extent of desensitization is reduced by lowering the assay temperature from 36 degrees to 2 degrees, allowing accurate measurements of initial rates of Na+ transport by the receptor. Activation of the receptor by carbamylcholine and acetylcholine is significantly cooperative (Hill coefficients of 1.4 to 2.0). Inhibition by D-tubocurarine is not cooperative. The carbamylcholine-induced Na+ transport activity of the receptor is inhibited 50% by 4 muM D-tubocurarine, 100 muM atropine, or 1.6 nM diiodo-alpha-bungarotoxin but is not affected by tetrodotoxin. The initial rate of Na+ transport by the receptor is temperature-independent between 2 degrees and 36 degrees. Receptor Na+ transport is saturable by Na+ at 2 degrees with an apparent Km of 150 plus and minus 20 mM. Saturation by Na+ not observed at 36 degrees at the concentrations tested. Saturation by Na+ is observed at 2 degrees both under conditions of net Na+ influx and under conditions of isotopic exchange at equilibrium. The receptor does not catalyze obligatory exchange diffusion at a detectable rate. Comparison of binding of [125-I]diiodo-alpha-bungarotoxin with rates of Na+ transport indicates a turnover number of 2 times 10-7 ions per min per receptor. These results are discussed in terms of the mechanism of Na+ transport by the receptor. 相似文献
6.
Isolation of acetylcholine receptor clusters in substrate-associated material from cultured rat myotubes using saponin
下载免费PDF全文

R J Bloch 《The Journal of cell biology》1984,99(3):984-993
After exposure of rat myotube cultures to saponin, less than 1% of the cellular protein was found to remain associated with the tissue culture substrate. This substrate-associated material contained approximately 10% of the acetylcholine receptors (AChRs) and greater than 80% of the large, ventral AChR clusters present in the original culture. The domain structure evident in intact cells was maintained in AChR clusters after isolation using saponin. However, vinculin, present at the clusters of intact cells, was absent from isolated clusters. Dodecyl sulfate PAGE showed that substrate-associated material enriched in AChR clusters contained a distinctive set of polypeptides, the major ones electrophoresing with apparent molecular weights of 43,000 and 49,000. Saponin extraction of cultures of established cell lines also yielded substrate-associated material with characteristics particular to the cell type. 相似文献
7.
We have used the microtubule-stabilizing drug taxol to examine the relationship between microtubules and the appearance and cell surface distribution of acetylcholine receptors (AChRs) in primary cultures of chick embryonic muscle cells. Taxol at a 5-microM concentration induced the large scale polymerization of tubulin in muscle cells that was most obvious as intermittent bundles of microtubules along the myotube. Prominent bundles of microtubules were also clearly visible in the fibroblasts. This concentration of taxol had no significant effect on the incorporation rate, increased synthesis induced by brain extract or the total cell surface number of AChRs measured over a 24-h period. Thus, excess polymerization of microtubules does not affect the movement of receptors to the cell surface. However, when cell surface AChR distribution was examined using rhodamine-conjugated alpha-bungarotoxin, taxol treatment of myotubes was shown to induce the aggregation of receptors. If receptors were labeled before taxol addition, aggregation of these prelabeled receptors was also seen, a result indicating that taxol can induce the movement of receptors already in the membrane. We believe this evidence further implicates microtubules as being involved in the movement of these cell surface receptors in the plane of the myotube membrane. 相似文献
8.
A role of tyrosine phosphorylation in the formation of acetylcholine receptor clusters induced by electric fields in cultured Xenopus muscle cells 总被引:1,自引:3,他引:1
下载免费PDF全文

《The Journal of cell biology》1993,120(1):197-204
During the development of the neuromuscular junction, acetylcholine receptors (AChRs) become clustered in the postsynaptic membrane in response to innervation. In vitro, several non-neuronal stimuli can also induce the formation of AChR clusters. DC electric field (E field) is one of them. When cultured Xenopus muscle cells are exposed to an E field of 5-10 V/cm, AChRs become clustered along the cathode-facing edge of the cells within 2 h. Recent studies have suggested the involvement of tyrosine kinase activation in the action of several AChR clustering stimuli, including nerve, polymer beads, and agrin. We thus examined the role of tyrosine phosphorylation in E field-induced AChR clustering. An antibody against phosphotyrosine (PY) was used to examine the localization of PY-containing proteins in E field-treated muscle cells. We found that anti-PY staining was colocalized with AChR clusters along the cathodal edge of the cells. In fact, cathodal PY staining could be detected before the first appearance of AChR clusters. When cultures were subjected to E fields in the presence of a tyrosine kinase inhibitor, tyrphostin RG-50864, cathodal AChR clustering was abolished with a half maximal inhibitory dosage of 50 microM. An inactive form of tyrphostin (RG-50862) had no effect on the field-induced clustering. These data suggest that the activation of tyrosine kinases is an essential step in E field-induced AChR clustering. Thus, the actions of several disparate stimuli for AChR clustering seem to converge to a common signal transduction mechanism based on tyrosine phosphorylation at the molecular level. 相似文献
9.
Cytoplasmic components of acetylcholine receptor clusters of cultured rat myotubes: the 58-kD protein
下载免费PDF全文

R J Bloch W G Resneck A O'Neill J Strong D W Pumplin 《The Journal of cell biology》1991,115(2):435-446
A 58-kD protein, identified in extracts of postsynaptic membrane from Torpedo electric organ, is enriched at sites where acetylcholine receptors (AChR) are concentrated in vertebrate muscle (Froehner, S. C., A. A. Murnane, M. Tobler, H. B. Peng, and R. Sealock. 1987. J. Cell Biol. 104:1633-1646). We have studied the 58-kD protein in AChR clusters isolated from cultured rat myotubes. Using immunofluorescence microscopy we show that the 58-kD protein is highly enriched at AChR clusters, but is also present in regions of the myotube membrane lacking AChR. Within clusters, the 58-kD protein codistributes with AChR, and is absent from adjacent membrane domains involved in myotube-substrate contact. Semiquantitative fluorescence measurements suggest that molecules of the 58-kD protein and AChR are present in approximately equal numbers. Differential extraction of peripheral membrane proteins from isolated AChR clusters suggests that the 58-kD protein is more tightly bound to cluster membrane than is actin or spectrin, but less tightly bound than the receptor-associated 43-kD protein. When AChR clusters are disrupted either in intact cells or after isolation, the 58-kD protein still codistributes with AChR. Clusters visualized by electron microscopy after immunogold labeling and quick-freeze, deep-etch replication show that, within AChR clusters, the 58-kD protein is sharply confined to AChR-rich domains, where it is present in a network of filaments lying on the cytoplasmic surface of the membrane. Additional actin filaments overlie, and are attached to, this network. Our results suggest that within AChR domains of clusters, the 58-kD protein lies between AChR and the receptor-associated 43-kD protein, and the membrane-skeletal proteins, beta-spectrin, and actin. 相似文献
10.
Tyrosine phosphorylation and acetylcholine receptor cluster formation in cultured Xenopus muscle cells 总被引:1,自引:4,他引:1
下载免费PDF全文

《The Journal of cell biology》1993,120(1):185-195
Aggregation of the nicotinic acetylcholine receptor (AChR) at sites of nerve-muscle contact is one of the earliest events to occur during the development of the neuromuscular junction. The stimulus presented to the muscle by nerve and the mechanisms underlying postsynaptic differentiation are not known. The purpose of this study was to examine the distribution of phosphotyrosine (PY)-containing proteins in cultured Xenopus muscle cells in response to AChR clustering stimuli. Results demonstrated a distinct accumulation of PY at AChR clusters induced by several stimuli, including nerve, the culture substratum, and polystyrene microbeads. AChR microclusters formed by external cross- linking did not show PY colocalization, implying that the accumulation of PY in response to clustering stimuli was not due to the aggregation of basally phosphorylated AChRs. A semi-quantitative determination of the time course for development of PY labeling at bead contacts revealed early PY accumulation within 15 min of contact before significant AChR aggregation. At later stages (within 15 h), the AChR signal came to approximate the PY signal. We have reported the inhibition of bead-induced AChR clustering in response to beads by a tyrphostin tyrosine kinase inhibitor (RG50864) (Peng, H. B., L. P. Baker, and Q. Chen. 1991. Neuron. 6:237-246). RG50864 also inhibited PY accumulation at bead contacts, providing evidence for tyrosine kinase activation in response to the bead stimulus. These results suggest that tyrosine phosphorylation may play an important role in the generative stages of cluster formation, and may involve protein(s) other than or in addition to AChRs. 相似文献
11.
12.
Phosphorylation and assembly of nicotinic acetylcholine receptor subunits in cultured chick muscle cells 总被引:4,自引:0,他引:4
A F Ross M Rapuano J H Schmidt J M Prives 《The Journal of biological chemistry》1987,262(30):14640-14647
The assembly of the nicotinic acetylcholine receptor (AChR), an oligomeric cell surface protein, was studied in cultured muscle cells. To measure this process, the incorporation of metabolically labeled alpha-subunit into oligomeric AChR was monitored in pulse-chase experiments, either by the shift of this subunit from the unassembled (5 S) to the assembled (9 S) position in sucrose density gradients, or by its coprecipitation with antisera specific for the delta-subunit. We have found that AChR assembly is initiated 15-30 min after subunit biosynthesis and is completed within the next 60 min. The alpha-subunit is not overproduced, as all detectable pulse-labeled alpha-subunit can be chased into the oligomeric complex, suggesting that AChR assembly in this system is an efficient process. The rate of AChR assembly is decreased by metabolic inhibitors and by monensin, an ionophore that impairs the Golgi apparatus. We have observed that the gamma- and delta-subunits of AChR are phosphorylated in vivo. The delta-subunit is more highly phosphorylated in the unassembled than in the assembled state, indicating that its phosphorylation precedes assembly and that its dephosphorylation is concomitant with AChR assembly. These findings suggest that subunit assembly occurs in the Golgi apparatus and that phosphorylation/dephosphorylation mechanisms play a role in the control of AChR subunit assembly. 相似文献
13.
Agrin-related molecules are concentrated at acetylcholine receptor clusters in normal and aneural developing muscle 总被引:1,自引:5,他引:1
下载免费PDF全文

Agrin induces the clustering of acetylcholine receptors (AchRs) and other postsynaptic components on the surface of cultured muscle cells. Molecules closely related if not identical to agrin are highly concentrated in the synaptic basal lamina, a structure known to play a key part in orchestrating synapse regeneration. Agrin or agrin-related molecules are thus likely to play a role in directing the differentiation of the postsynaptic apparatus at the regenerating neuromuscular junction. The present studies are aimed at understanding the role of agrin at developing synapses. We have used anti-agrin monoclonal antibodies combined with alpha-bungarotoxin labeling to establish the localization and time of appearance of agrin-related molecules in muscles of the chick hindlimb. Agrinlike immunoreactivity was observed in premuscle masses from as early as stage 23. AchR clusters were first detected late in stage 25, coincident with the entry of axons into the limb. At this and all subsequent stages examined, greater than 95% of the AchR clusters colocalized with agrin-related molecules. This colocalization was also observed in unpermeabilized whole mount preparations, indicating that the agrin-related molecules were disposed on the external surface of the cells. Agrin-related molecules were also detected in regions of low AchR density on the muscle cell surface. To examine the role of innervation in the expression of agrin-related molecules, aneural limbs were generated by two methods. Examination of these limbs revealed that agrin-related molecules were expressed in the aneural muscle and they colocalized with AchR clusters. Thus, in developing muscle, agrin or a closely related molecule (a) is expressed before AchR clusters are detected; (b) is colocalized with the earliest AchR clusters formed; and (c) can be expressed in muscle and at sites of high AchR density independently of innervation. These results indicate that agrin or a related molecule is likely to play a role in synapse development and suggest that the muscle cell may be at least one source of this molecule. 相似文献
14.
15.
R M Alvarado-Mallart 《Tissue & cell》1972,4(2):327-339
An electron microscopic analysis of the internal rectus muscle of the eye of the pigeon permitted identification of three types of muscle fibers: the first type shows the features previously described in vertebrate twitch fibers. The second type has very scarce sarcoplasmic reticulum at the A-band, their myofibrils fuse together at this level; the Z-line is large and the M-line is not present; the thick filaments are more abundant per unit area than in the first type of fibers, their hexagonal array is slightly disrupted and the fibers appear more opaque than the other two fiber types. The third type of fibers has bundles of myofibrils incompletely surrounded by sarcoplasmic reticulum at the A-band; the Z-line is large; the M-line is present and the hexagonal array of the thick filaments is maintained. 相似文献
16.
F M Hansen-Smith 《Developmental biology》1986,118(1):129-140
When the sternohyoid muscle from the rat is grafted, the original muscle fibers, including the membranes at the neuromuscular junction, degenerate irreversibly. New muscle fibers regenerate inside of the basal laminae remaining from the original muscle fibers. In this study rhodamine-alpha-bungarotoxin and electron microscopy have been used to demonstrate that acetylcholine receptor (AchR) clusters and synaptic folds are restored to the regenerating myotubes even when innervation to the grafts is prevented. The AchR clusters and synaptic folds colocalized with acetylcholinesterase that persisted at the original synaptic basal lamina. The AchR clusters were not restored if the original innervation band was removed from the muscle at the time of grafting. Lengths of the AchR clusters were measured in animals ranging in weight from 50 to 700 g. The lengths of clusters in the grafts were proportional to the lengths of those in the preoperative controls, suggesting that quantitative morphogenetic information persists through the period of degeneration and regeneration. However, the distribution of the AchRs within the clusters differed slightly from controls. Extrajunctional AchR clusters were present initially, but later disappeared. The sizes of these clusters were unrelated to the sizes of the junctional AchR clusters. This study demonstrates that morphogenetic cues persist within the region of the original motor and plate, possibly associated with the synaptic basal lamina. 相似文献
17.
18.
19.
J Rosenbluth 《The Journal of cell biology》1969,42(3):817-825
The dyads of Ascaris body muscle cells consist of flattened intracellular cisternae applied to the sarcolemma at the cell surface and along the length of T-tubules. In specimens prepared by conventional methods (glutaraldehyde fixation, osmium tetroxide postfixation, double staining of sections with uranyl acetate and lead hydroxide), both the sarcolemma and the limiting membrane of the cisterna exhibit unit membrane structure and the space between them is occupied by a layer of peg-shaped densities which is referred to as the subsarcolemmal lamina. The lumen of the cisterna contains a serrated layer of dense material referred to as the intracisternal lamina. In specimens fixed in glutaraldehyde, dehydrated, and then postfixed in phosphotungstic acid, with no exposure to osmium tetroxide or heavy metal stains, the membranous components of the dyads appear only as negative images, but the subsarcolemmal and intracisternal laminae still appear dense. Except for the lack of density in membranes and in glycogen deposits, the picture produced by the latter method is very much like that of tissue prepared by conventional methods. 相似文献
20.
The lipid bilayer of acetylcholine receptor clusters of cultured rat myotubes is organized into morphologically distinct domains 总被引:1,自引:0,他引:1
We have studied the composition and organization of the lipid bilayer at the large, substrate-associated clusters of acetylcholine receptors (AChR) that form in cultured rat myotubes. These clusters have a characteristic morphology consisting of alternating linear domains of AChR-rich and AChR-poor membrane, the latter involved in attaching the myotube to the substrate. We partially purified AChR clusters by extracting cultured rat myotubes with the cholesterol-specific detergent, saponin. The lipid bilayer of the cluster preparation was analyzed biochemically and the substructure of the bilayers was studied morphologically using the fluorescent probes, dansyl polymyxin B, and 3,3'-di(C12H25 and C18H37) indocarbocyanine iodide (C12- and C18-diI). Our results demonstrate that preparations of AChR clusters have a lipid composition biochemically similar to that of the surrounding plasma membrane. Morphologically, however, the lipid bilayer appears to be arranged into domains that resemble the interdigitating pattern seen for the AChR. This distinctive lipid organization is not due to the use of saponin to purify clusters, as we obtained similar results with clusters isolated by physically shearing myotube cultures. The domain-like organization of the bilayer at clusters is disrupted by treatments that disperse AChR clusters in intact myotubes or that remove peripheral membrane proteins from isolated clusters. This suggests that such proteins may contribute to the organization of the bilayer. Two additional factors may also contribute to the organization of the bilayer: physical constraints imposed by sites of substrate attachment and, to a lesser extent, "boundary" lipid associated with AChR. 相似文献