首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Th1 cytokines promote monocyte differentiation into proatherogenic M1 macrophages, while Th2 cytokines lead to an "alternative" anti-inflammatory M2 macrophage phenotype. Here we show that in human atherosclerotic lesions, the expression of M2 markers and PPARgamma, a nuclear receptor controlling macrophage inflammation, correlate positively. Moreover, PPARgamma activation primes primary human monocytes into M2 differentiation, resulting in a more pronounced anti-inflammatory activity in M1 macrophages. However, PPARgamma activation does not influence M2 marker expression in resting or M1 macrophages, nor does PPARgamma agonist treatment influence the expression of M2 markers in atherosclerotic lesions, indicating that only native monocytes can be primed by PPARgamma activation to an enhanced M2 phenotype. Furthermore, PPARgamma activation significantly increases expression of the M2 marker MR in circulating peripheral blood mononuclear cells. These data demonstrate that PPARgamma activation skews human monocytes toward an anti-inflammatory M2 phenotype.  相似文献   

2.
15-Deoxy-Delta(12,14)-prostaglandin J(2) (dPGJ(2)) is a metabolite of prostaglandin D(2), that binds to peroxisome proliferator-activated receptor gamma (PPARgamma). PPARgamma and prostaglandin D(2) synthase, which is required for dPGJ(2) synthesis, are predominantly expressed in macrophages. In contrast, IL-10 and IL-12 produced by macrophages stimulate Th1 and Th2 immune response, respectively. This study investigated the effect of dPGJ(2) on IL-10 and IL-12 production by macrophages in response to lipopolysaccharide (LPS). Our data clearly demonstrated that dPGJ(2) inhibits LPS-induced IL-10 and IL-12 production by macrophages. A different agonist of PPARgamma, 13-hydroxyoctadecadienoic acid, similarly inhibited the production of IL-10 and IL-12 in response to LPS. Further, dPGJ(2) did not appear to act through the PGD(2) receptor. These results suggest that dPGJ(2) may inhibit LPS-induced IL-10 and IL-12 production by macrophages through PPARgamma.  相似文献   

3.
NO appears as an important determinant in auto and paracrine macrophage function. We hypothesized that NO switches monocyte/macrophage function from a pro- to an anti-inflammatory phenotype by activating anti-inflammatory properties of the peroxisome proliferator-activated receptor (PPAR)gamma. NO-releasing compounds (100 micro M S-nitrosoglutathione or 50 micro M spermine-NONOate) as well as inducible NO synthase induction provoked activation of PPARgamma. This was proven by EMSAs, with the notion that supershift analysis pointed to the involvement of PPARgamma. PCR analysis ruled out induction of PPARgamma mRNA as a result of NO supplementation. Reporter assays, with a construct containing a triple PPAR response element in front of a thymidine kinase minimal promoter driving the luciferase gene, were positive in response to NO delivery. DNA binding capacity as well as the transactivating capability of PPARgamma were attenuated by addition of the antioxidant N-acetyl-cysteine or in the presence of the NO scavenger 2-phenyl-4,4,5,6-tetramethyl-imidazoline-1-oxyl 3-oxide. Having established that NO but not lipophilic cyclic GMP analogs activated PPARgamma, we verified potential anti-inflammatory consequences. The oxidative burst of macrophages, evoked by phorbol ester, was attenuated in association with NO-elicited PPARgamma activation. A cause-effect relationship was demonstrated when PPAR response element decoy oligonucleotides, supplied in front of NO delivery, allowed to regain an oxidative response. PPARgamma-mediated down-regulation of p47 phagocyte oxidase, a component of the NAD(P)H oxidase system, was identified as one molecular mechanism causing inhibition of superoxide radical formation. We conclude that NO participates in controlling the pro- vs anti-inflammatory phenotype of macrophages by modulating PPARgamma.  相似文献   

4.
5.
6.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors expressed in macrophages where they control cholesterol homeostasis and inflammation. In an attempt to identify new PPARalpha and PPARgamma target genes in macrophages, a DNA array-based global gene expression profiling experiment was performed on human primary macrophages treated with specific PPARalpha and PPARgamma agonists. Surprisingly, AdipoR2, one of the two recently identified receptors for adiponectin, an adipocyte-specific secreted hormone with anti-diabetic and anti-atherogenic activities, was found to be induced by both PPARalpha and PPARgamma. AdipoR2 induction by PPARalpha and PPARgamma in primary and THP-1 macrophages was confirmed by Q-PCR analysis. Interestingly, treatment with a synthetic LXR agonist induced the expression of both AdipoR1 and AdipoR2. Furthermore, co-incubation with a PPARalpha ligand and adiponectin resulted in an additive effect on the reduction of macrophage cholesteryl ester content. Finally, AdipoR1 and AdipoR2 are both present in human atherosclerotic lesions. Moreover, AdipoR1 is more abundant than AdipoR2 in monocytes and its expression decreases upon differentiation into macrophages, whereas AdipoR2 remains constant. In conclusion, AdipoR1 and AdipoR2 are expressed in human atherosclerotic lesions and macrophages and can be modulated by PPAR and LXR ligands, thus identifying a mechanism of crosstalk between adiponectin and these nuclear receptor signaling pathways.  相似文献   

7.
8.
We recently demonstrated that in vitro peroxisome proliferator-activated receptor-gamma (PPARgamma) activation of mouse peritoneal macrophages by IL-13 or PPARgamma ligands promotes uptake and killing of Candida albicans through mannose receptor overexpression. In this study, we demonstrate that i.p. treatment of immunocompetent and immunodeficient (RAG-2(-/-)) mice with natural and synthetic PPARgamma-specific ligands or with IL-13 decreases C. albicans colonization of the gastrointestinal (GI) tract 8 days following oral infection with the yeast. We also showed that Candida GI infection triggers macrophage recruitment in cecum mucosa. These mucosal macrophages, as well as peritoneal macrophages, overexpress the mannose receptor after IL-13 and rosiglitazone treatments. The treatments promote macrophage activation against C. albicans as suggested by the increased ability of peritoneal macrophages to phagocyte C. albicans and to produce reactive oxygen intermediates after yeast challenge. These effects on C. albicans GI infection and on macrophage activation are suppressed by treatment of mice with GW9662, a selective PPARgamma antagonist, and are reduced in PPARgamma(+/-) mice. Overall, these data demonstrate that IL-13 or PPARgamma ligands attenuate C. albicans infection of the GI tract through PPARgamma activation and hence suggest that PPARgamma ligands may be of therapeutic value in esophageal and GI candidiasis in immunocompromised patients.  相似文献   

9.
10.
11.
Gene expression and activity of matrix-metalloproteinases (MMP)-2 and -9 in macrophages are reduced through peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent inhibition of NF-kappaB. Since conjugated linoleic acids (CLAs) are PPARgamma ligands and known to inhibit NF-kappaB via PPARgamma, we studied whether CLA isomers are capable of reducing gene expression and gelatinolytic activity of MMP-2 and -9 in PMA-differentiated THP-1 macrophages, which has not yet been investigated. Incubation of PMA-differentiated THP-1 cells with either c9t11-CLA, t10c12-CLA or linoleic acid (LA), as a reference fatty acid, resulted in a significant incorporation of the respective fatty acids into total cell lipids relative to control cells (P<.05). Treatment of PMA-differentiated THP-1 cells with 10 and 20 mumol/L troglitazone but not with 10 or 100 mumol/L c9t11-CLA, t10c12-CLA or LA reduced relative mRNA concentrations and activity of MMP-2 and MMP-9 compared to control cells (P<.05). DNA-binding activity of NF-kappaB and PPARgamma and mRNA expression of the NF-kappaB target gene cPLA(2) were not influenced by treatment with CLA. In contrast, treatment of PMA-differentiated THP-1 cells with troglitazone significantly increased transactivation of PPARgamma and decreased DNA-binding activity of NF-kappaB and relative mRNA concentration of cPLA(2) relative to control cells (P<.05). In conclusion, the present study revealed that CLA isomers, in contrast to troglitazone, did not reduce gene expression and activity of MMP-2 and -9 in PMA-differentiated THP-1 macrophages, which is probably explained by the observation that CLA isomers neither activated PPARgamma nor reduced DNA-binding activity of NF-kappaB. This suggests that CLA isomers are ineffective in MMP-associated extracellular matrix degradation which is thought to contribute to the progression and rupture of advanced atherosclerotic plaques.  相似文献   

12.
It has been reported that oxidized low density lipoprotein (Ox-LDL) can activate both peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma. However, the detailed mechanisms of Ox-LDL-induced PPARalpha and PPARgamma activation are not fully understood. In the present study, we investigated the effect of Ox-LDL on PPARalpha and PPARgamma activation in macrophages. Ox-LDL, but not LDL, induced PPARalpha and PPARgamma activation in a dose-dependent manner. Ox-LDL transiently induced cyclooxygenase-2 (COX-2) mRNA and protein expression, and COX-2 specific inhibition by NS-398 or meloxicam or small interference RNA of COX-2 suppressed Ox-LDL-induced PPARalpha and PPARgamma activation. Ox-LDL induced phosphorylation of ERK1/2 and p38 MAPK, and ERK1/2 specific inhibition abrogated Ox-LDL-induced COX-2 expression and PPARalpha and PPARgamma activation, whereas p38 MAPK-specific inhibition had no effect. Ox-LDL decreased the amounts of intracellular long chain fatty acids, such as arachidonic, linoleic, oleic, and docosahexaenoic acids. On the other hand, Ox-LDL increased intracellular 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) level through ERK1/2-dependent overexpression of COX-2. Moreover, 15d-PGJ(2) induced both PPARalpha and PPARgamma activation. Furthermore, COX-2 and 15d-PGJ(2) expression and PPAR activity were increased in atherosclerotic lesions of apoE-deficient mice. Finally, we investigated the involvement of PPARalpha and PPARgamma on Ox-LDL-induced mRNA expression of ATP-binding cassette transporter A1 and monocyte chemoattractant protein-1. Interestingly, specific inhibition of PPARalpha and PPARgamma suppressed Ox-LDL-induced ATP-binding cassette transporter A1 mRNA expression and enhanced Ox-LDL-induced monocyte chemoattractant protein-1 mRNA expression. In conclusion, Ox-LDL-induced increase in 15d-PGJ(2) level through ERK1/2-dependent COX-2 expression is one of the mechanisms of PPARalpha and PPARgamma activation in macrophages. These effects of Ox-LDL may control excess atherosclerotic progression.  相似文献   

13.
The PTEN tumor suppressor gene modulates several cellular functions, including cell migration, survival, and proliferation [1] by antagonizing phosphatidylinositol 3-kinase (PI 3-kinase)-mediated signaling cascades. Mechanisms by which the expression of PTEN is regulated are, however, unclear. The ligand-activated nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) [2] has been shown to regulate differentiation and/or cell growth in a number of cell types [3, 4, 5], which has led to the suggestion that PPARgamma, like PTEN [1, 6], could act as a tumor suppressor. PPARgamma has also been implicated in anti-inflammatory responses [7, 8], although downstream mediators of these effects are not well defined. Here, we show that the activation of PPARgamma by its selective ligand, rosiglitazone, upregulates PTEN expression in human macrophages, Caco2 colorectal cancer cells, and MCF7 breast cancer cells. This upregulation correlated with decreased PI 3-kinase activity as measured by reduced phosphorylation of protein kinase B. One consequence of this was that rosiglitazone treatment reduced the proliferation rate of Caco2 and MCF7 cells. Antisense-mediated disruption of PPARgamma expression prevented the upregulation of PTEN that normally accompanies monocyte differentiation and reduced the proportion of macrophages undergoing apoptosis, while electrophoretic mobility shift assays showed that PPARgamma is able to bind two response elements in the genomic sequence upstream of PTEN. Our results demonstrate a role for PPARgamma in regulating PI 3-kinase signaling by modulating PTEN expression in inflammatory and tumor-derived cells.  相似文献   

14.
The fate and phenotype of lesion macrophages is regulated by cellular oxidative stress. Thioredoxin-1 (Trx-1) plays a major role in the regulation of cellular redox balance, with resultant effects on gene expression and cellular responses including cell growth and death. Trx-1 activity is inhibited by interaction with vitamin D-upregulated protein-1 (VDUP-1). Peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed by human monocyte-derived macrophages (HMDM) and PPARgamma agonism has been reported to decrease expression of inflammatory genes and to promote apoptosis of these cells. To determine whether VDUP-1 may be involved in regulating the effects of PPARgamma agonists in macrophages, we investigated the effect of a synthetic PPARgamma agonist (GW929) on the expression of VDUP-1 in HMDM. GW929 concentration-dependently increased HMDM expression of VDUP-1 (mRNA and protein). Transfection of different fragments of the VDUP-1 promoter as well as gel shift analysis revealed the presence of functional PPARgamma response elements (PPRE) in the promoter. Under conditions in which PPAR agonism altered levels of VDUP-1, caspase-3 activity, and macrophage apoptosis were also elevated. The results suggest that PPARgamma activation stimulates apoptosis in human macrophages by altering the cellular redox balance via regulation of VDUP-1.  相似文献   

15.
Recently, we provided evidence that PKCalpha depletion in monocytes/macrophages contributes to cellular desensitization during sepsis. We demonstrate that peroxisome proliferator-activated receptor gamma (PPARgamma) agonists dose dependently block PKCalpha depletion in response to the diacylglycerol homologue PMA in RAW 264.7 and human monocyte-derived macrophages. In these cells, we observed PPARgamma-dependent inhibition of nuclear factor-kappaB (NF-kappaB) activation and TNF-alpha expression in response to PMA. Elucidating the underlying mechanism, we found PPARgamma1 expression not only in the nucleus but also in the cytoplasm. Activation of PPARgamma1 wild type, but not an agonist-binding mutant of PPARgamma1, attenuated PMA-mediated PKCalpha cytosol to membrane translocation. Coimmunoprecipitation assays pointed to a protein-protein interaction of PKCalpha and PPARgamma1, which was further substantiated using a mammalian two-hybrid system. Applying PPARgamma1 mutation and deletion constructs, we identified the hinge helix 1 domain of PPARgamma1 that is responsible for PKCalpha binding. Therefore, we conclude that PPARgamma1-dependent inhibition of PKCalpha translocation implies a new model of macrophage desensitization.  相似文献   

16.
17.
18.
Platelet activating factor (PAF) is a key molecule for inflammation. To examine a role of peroxisome proliferator-activated receptor gamma (PPARgamma) in inflammatory reactions of atherosclerosis, we investigated the effects of 15-deoxy-(Delta12,14)-Prostaglandin J2 (15d-PGJ2) and pioglitazone, PPARgamma ligands, on plasma PAF-acetylhydrolase (PAF-AH) expression in THP-1 macrophages. PAF-AH mRNA and protein were up-regulated by the PPARgamma ligands. Prostaglandin F2alpha (PGF2alpha), a PARgamma inhibitor, abrogated the up-regulation of PAF-AH mRNA by pioglitazone, suggesting that PPARgamma activation is involved in the induction of PAF-AH by pioglitazone. As PAF promotes the cell motility with cytoskeletal reorganization, we investigated the effect of pioglitazone on PAF-mediated morphological changes in THP-1 macrophages. In the absence of pioglitazone, PAF promoted the elongation of actin cytoskeleton, which was inhibited by pretreatment with pioglitazone. In contrast, pioglitazone was not able to inhibit the morphological changes induced by C-PAF, a non-hydrolyzable PAF agonist. Thus, it is suggested that PAF-induced morphological changes could be inhibited by pioglitazone through PAF-AH, which rapidly hydrolyzed PAF. These data propose that PPARgamma/PAF-AH pathway is a clinical target for the prevention against atherosclerosis.  相似文献   

19.
Efficient clearance of apoptotic cells (AC) by professional phagocytes is crucial for tissue homeostasis and resolution of inflammation. Macrophages respond to AC with an increase in antiinflammatory cytokine production but a diminished release of proinflammatory mediators. Mechanisms to explain attenuated proinflammatory cytokine formation remain elusive. We provide evidence that peroxisome proliferator-activated receptor gamma (PPARgamma) coordinates antiinflammatory responses following its activation by AC. Exposing murine RAW264.7 macrophages to AC before LPS stimulation reduced NF-kappaB transactivation and lowered target gene expression of, that is, TNF-alpha and IL-6 compared with controls. In macrophages overexpressing a dominant negative mutant of PPARgamma, NF-kappaB transactivation in response to LPS was restored, while macrophages from myeloid lineage-specific conditional PPARgamma knockout mice proved that PPARgamma transmitted an antiinflammatory response, which was delivered by AC. Expressing a PPARgamma-Delta aa32-250 deletion mutant, we observed no inhibition of NF-kappaB. Analyzing the PPARgamma domain structures within aa 32-250, we anticipated PPARgamma sumoylation in mediating the antiinflammatory effect in response to AC. Interfering with sumoylation of PPARgamma by mutating the predicted sumoylation site (K77R), or knockdown of the small ubiquitin-like modifier (SUMO) E3 ligase PIAS1 (protein inhibitor of activated STAT1), eliminated the ability of AC to suppress NF-kappaB. Chromatin immunoprecipitation analysis demonstrated that AC prevented the LPS-induced removal of nuclear receptor corepressor (NCoR) from the kappaB site within the TNF-alpha promoter. We conclude that AC induce PPARgamma sumoylation to attenuate the removal of NCoR, thereby blocking transactivation of NF-kappaB. This contributes to an antiinflammatory phenotype shift in macrophages responding to AC by lowering proinflammatory cytokine production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号