首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveOnly a small fraction of coronary artery disease (CAD) heritability has been explained by common variants identified to date. Interactions between genes of importance to cardiovascular regulation may account for some of the missing heritability of CAD. This study aimed to investigate the role of gene-gene interactions in common variants in candidate cardiovascular genes in CAD.ConclusionsModerately large additive interactions between common SNPs in genes relevant to cardiovascular disease do not appear to play a major role in genetic predisposition to CAD. The role of genetic interactions amongst less common SNPs and with medium and small magnitude effects remain to be investigated.  相似文献   

2.
Coronary artery disease(CAD) is a complex human disease, involving multiple genes and their nonlinear interactions, which often act in a modular fashion. Genome-wide single nucleotide polymorphism(SNP) profiling provides an effective technique to unravel these underlying genetic interplays or their functional involvements for CAD. This study aimed to identify the susceptible pathways and modules for CAD based on SNP omics. First, the Wellcome Trust Case Control Consortium(WTCCC) SNP datasets of CAD and control samples were used to assess the jointeffect of multiple genetic variants at the pathway level, using logistic kernel machine regression model. Then, an expanded genetic network was constructed by integrating statistical gene–gene interactions involved in these susceptible pathways with their protein–protein interaction(PPI)knowledge. Finally, risk functional modules were identified by decomposition of the network. Of 276 KEGG pathways analyzed, 6 pathways were found to have a significant effect on CAD. Other than glycerolipid metabolism, glycosaminoglycan biosynthesis, and cardiac muscle contraction pathways, three pathways related to other diseases were also revealed, including Alzheimer's disease, non-alcoholic fatty liver disease, and Huntington's disease. A genetic epistatic network of 95 genes was further constructed using the abovementioned integrative approach. Of 10 functional modules derived from the network, 6 have been annotated to phospholipase C activity and cell adhesion molecule binding, which also have known functional involvement in Alzheimer's disease.These findings indicate an overlap of the underlying molecular mechanisms between CAD and Alzheimer's disease, thus providing new insights into the molecular basis for CAD and its molecular relationships with other diseases.  相似文献   

3.
Coronary artery disease (CAD) mortality and morbidity is present in the European continent in a four-fold gradient across populations, from the South (Spain and France) with the lowest CAD mortality, towards the North (Finland and UK). This observed gradient has not been fully explained by classical or single genetic risk factors, resulting in some cases in the so called Southern European or Mediterranean paradox. Here we approached population genetic risk estimates using genetic risk scores (GRS) constructed with single nucleotide polymorphisms (SNP) from nitric oxide synthases (NOS) genes. These SNPs appeared to be associated with myocardial infarction (MI) in 2165 cases and 2153 controls. The GRSs were computed in 34 general European populations. Although the contribution of these GRS was lower than 1% between cases and controls, the mean GRS per population was positively correlated with coronary incidence explaining 65–85% of the variation among populations (67% in women and 86% in men). This large contribution to CAD incidence variation among populations might be a result of colinearity with several other common genetic and environmental factors. These results are not consistent with the cardiovascular Mediterranean paradox for genetics and support a CAD genetic architecture mainly based on combinations of common genetic polymorphisms. Population genetic risk scores is a promising approach in public health interventions to develop lifestyle programs and prevent intermediate risk factors in certain subpopulations with specific genetic predisposition.  相似文献   

4.
It is hoped that an understanding of the genetic basis of Parkinson's disease (PD) will lead to an appreciation of the molecular pathogenesis of disease, which in turn will highlight potential points of therapeutic intervention. It is also hoped that such an understanding will allow identification of individuals at risk for disease prior to the onset of motor symptoms. A large amount of work has already been performed in the identification of genetic risk factors for PD and some of this work, particularly those efforts that focus on genes implicated in monogenic forms of PD, have been successful, although hard won. A new era of gene discovery has begun, with the application of genome wide association studies; these promise to facilitate the identification of common genetic risk loci for complex genetic diseases. This is the first of several high throughput technologies that promise to shed light on the (likely) myriad genetic factors involved in this complex, late-onset neurodegenerative disorder.  相似文献   

5.
Coronary artery disease (CAD) is one of the major cardiovascular diseases affecting the global human population. This disease has been proved to be the major cause of death in both the developed and developing countries. Lifestyle, environmental factors, and genetic factors pose as risk factors for the development of cardiovascular disease. The prevalence of risk factors among healthy individuals elucidates the probable occurrence of CAD in near future. Genome-wide association studies have suggested the association of chromosome 9p21.3 in the premature onset of CAD. The risk factors of CAD include diabetes mellitus, hypertension, smoking, hyperlipidemia, obesity, homocystinuria, and psychosocial stress. The eradication and management of CAD has been established through extensive studies and trials. Antiplatelet agents, nitrates, β-blockers, calcium antagonists, and ranolazine are some of the few therapeutic agents used for the relief of symptomatic angina associated with CAD.  相似文献   

6.
The overall goal of this review is to highlight the power of zebrafish as a model system for studying complex diseases which involve multiple genetic loci. We are interested in identifying and characterizing genes implicated in the blinding condition of glaucoma. Glaucoma is a complex disease that often involves multiple genetic loci. Most disease causing and modifying genes for glaucoma remain unidentified. However, several genes that regulate various aspects of ocular development have been shown to associate with glaucoma. With zebrafish, forward and reverse genetic approaches can be combined in order to identify critical genetic interactions required for normal and pathological events in the development and maintenance of the eye.  相似文献   

7.
Because of their high prevalence, cases of coronary artery disease (CAD) and myocardial infarction (MI) are frequently found when asking for a patient’s family history. It is common knowledge that a positive familial history constitutes a risk factor for CAD in its own right, in addition to smoking, increased alcohol intake, diabetes, obesity, hypertension, and hyperlipidemia. Nevertheless, for correct risk assessment it is crucial to accurately distinguish between sporadic and true familial cases of CAD and MI. Familial disposition is present when at least one male first-grade relative under the age of 55 or one female first-grade relative under the age of 65 has/had been diagnosed with myocardial infarction or significant coronary artery disease. In the review presented here, we compile the relevant epidemiological and genetic studies that constitute the scientific basis of this risk assessment. Furthermore, a short overview of the state of the art of genetic CAD/MI research is given.  相似文献   

8.
The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions.  相似文献   

9.
10.
Melanoma is the most aggressive and deadliest form of skin cancer. A detailed knowledge of the cellular, molecular, and genetic events underlying melanoma progression is highly relevant to diagnosis, prognosis and risk stratification, and the development of new therapies. In the last decade, zebrafish have emerged as a valuable model system for the study of melanoma. Pathway conservation, coupled with the availability of robust genetic, transgenic, and chemical tools, has made the zebrafish a powerful model for identifying novel disease genes, visualizing cancer initiation, interrogating tumor–microenvironment interactions, and discovering new therapeutics that regulate melanocyte and melanoma development. In this review, we will give an overview of these studies, and highlight recent advancements that will help unravel melanoma pathogenesis and impact human disease.  相似文献   

11.
Pathway-based analysis approach has exploded in use during the last several years. It is successful in recognizing additional biological insight of disease and finding groupings of risk genes that represent disease developing processes. Therefore, shared pathways, with pleiotropic effects, are important for understanding similar pathogenesis and indicating the common genetic origin of certain diseases. Here, we present a pathway analysis to reveal the potential disease associations between RA and three potential RA-related autoimmune diseases: psoriasis, diabetes mellitus, type 1 (T1D) and systemic lupus erythematosus (SLE). First, a comprehensive knowledge mining of public databases is performed to discover risk genes associated with RA, T1D, SLE and psoriasis; then by enrichment test of these genes, disease-related risk pathways are detected to recognize the pathways common for RA and three other diseases. Finally, the underlying disease associations are evaluated with the association rules mining method. In total, we identify multiple RA risk pathways with significant pleiotropic effects, the most unsurprising of which are the immunology related pathways. Meanwhile for the first time we highlight the involvement of the viral myocarditis pathway related to cardiovascular disease (CVD) in autoimmune diseases such as RA, psoriasis, T1D and SLE. Further Association rule mining results validate the strong association between RA and T1D and RA and SLE. It is clear that pleiotropy is a common property of pathways associated with disease traits. We provide novel pathway associations among RA and three autoimmune diseases. These results ascertain that there are shared genetic risk profiles that predispose individuals to autoimmune diseases.  相似文献   

12.
Atherosclerosis is a progressive disease that starts early in life and is manifested clinically as coronary artery disease (CAD), cerebrovascular disease, or peripheral artery disease. CAD remains the leading cause of morbidity and mortality in Western society despite the great advances made in understanding its underlying pathophysiology. The key risk factors associated with CAD include hypercholesterolemia, hypertension, poor diet, obesity, age, male gender, smoking, and physical inactivity. Genetics also play an important role that may interact with environmental factors, including diet, nutritional status, and physiological parameters. Furthermore, certain chronic inflammatory conditions also predispose to the development of CAD. The spiraling increase in obesity rates worldwide has made it more pertinent than ever before to understand the metabolic perturbations that link over nutrition to enhanced cardiovascular risk. Great breakthroughs have been made at the pharmacological level to manage CAD; statins and aspirin have revolutionized treatment of CAD and prolonged lifespan. Nonetheless, lifestyle intervention prior to clinical presentation of CAD symptoms would negate/delay the need for chronic pharmacotherapy in at-risk individuals which in turn would relieve healthcare systems of a costly burden. Throughout this review, we debate the relative impact of nutrition versus genetics in driving CAD. We will investigate how overnutrition affects adipose tissue biology and drives IR and will discuss the subsequent implications for the cardiovascular system. Furthermore, we will discuss how lifestyle interventions including diet modification and weight loss can improve both IR and metabolic dyslipidemia that is associated with obesity. We will conclude by delving into the concept that nutritional status interacts with genetic susceptibility, such that perhaps a more personalized nutrition approach may be more effective in determining diet-related risk as well as response to nutritional interventions.  相似文献   

13.
Until recently, the underlying genetic mechanisms for coronary artery disease (CAD) have been largely unknown, with just a list of genes identified accounting for very little of the disease in the population. Hence, a systematic dissection of the sophisticated interplays between these individual disease genes and their functional involvements becomes essential. Here, we presented a novel knowledge-based approach to identify the functional modules for CAD. First, we selected 266 disease genes in CADgene database as the initial seed genes, and used PPI knowledge as a guide to expand these genes into a CAD-specific gene network. Then, we used Newman's algorithm to decompose the primary network into 14 compact modules with high modularity. By analysis of these modules, we further identified 114 hub genes, all either directly or indirectly associated with CAD. Finally, by functional analysis of these modules, we revealed several novel pathogenic mechanisms for CAD (for examples, some yet rarely concerned like peptide YY receptor activity, Fc gamma R-mediated phagocytosis and actin cytoskeleton regulation etc.).  相似文献   

14.
DNA polymorphisms at the endothelium constitutive nitric oxide synthase gene (NOS3) have been linked to the risk of developing coronary artery disease (CAD). In vitro, a polymorphism in the 5' region of the NOS3 gene (-786 T/C) influences promoter activity. This polymorphism has been associated with coronary spasms among Japanese. The genetic variation at the angiotensin-converting enzyme (ACE) is associated with plasma ACE activities and has also been linked with susceptibility to cardiovascular disease. Our objective was to determine if DNA polymorphisms in the NOS3 and ACE genes were associated with early CAD. We analyzed the -786 T/C polymorphism in the 5' flanking region and the 27-bp repeat polymorphism in NOS3 intron 4, as well as the ACE-I/D polymorphism. A total of 170 male smokers (CAD patients) younger than 50 years and 300 male smokers (healthy controls) were genotyped. Frequencies were compared by the chi(2) test, and odds ratios (ORs) and their 95% confidence intervals (CI) were also calculated. Only the -786 T/C polymorphism in the 5' flanking region of the NOS3 gene was significantly associated with early CAD in our population. The frequency of the CC genotype was significantly increased (P = 0.039) in patients compared to controls (OR = 1.67; 95% CI = 1.01, 2.72). We found a synergistic effect between the NOS3-CC and the ACE-DD genotypes in the risk of developing early CAD. The frequency of CC + DD was significantly increased among patients (P = 0.002). Thus, those with a NOS3-CC and an ACE-DD genotype would have a significantly increased risk of suffering an early episode of coronary artery disease (OR = 2.82; 95% CI = 1.40, 5.70). Although based on a limited number of patients, our work suggests that individuals who are NOS3-CC + ACE-DD are at a higher risk for early CAD, probably as a consequence of increased endothelial dysfunction.  相似文献   

15.
Coronary artery disease (CAD) is based on the atherosclerosis of coronary artery and may manifest with myocardial infarction or angina pectoris. Although it is widely accepted that genetic factors are linked to CAD and several disease-related genes have been reported, only a few could be replicated suggesting that there might be some other CAD-related genes. To identify novel susceptibility loci for CAD, we used microsatellite markers in the screening and found six different candidate CAD loci. Subsequent single nucleotide polymorphism (SNP) association studies revealed an association between CAD and megakaryoblastic leukemia factor-1 gene (MKL1). The association with a promoter SNP of MKL1, ?184C > T, was found in a Japanese population and the association was replicated in another Japanese population and a Korean population. Functional analysis of the MKL1 promoter SNP suggested that the higher MKL1 expression was associated with CAD. These findings suggest that MKL1 is involved in the pathogenesis of CAD.  相似文献   

16.
Coronary artery disease (CAD) is a multifactorial process that appears to be caused by the interaction of environmental risk factors with multiple predisposing genes. Genetic research on CAD has traditionally focused on investigation aimed at identifying disease-susceptibility genes. Recent evidence suggests that somatically acquired DNA mutations may also contribute significantly to the pathogenesis of the disease, underlining the similarity between atherosclerotic and carcinogenic processes. The generation of oxidative stress has been emphasized as an important cause of DNA damage in atherosclerosis. This review highlights some of the major atherogenic risk factors as likely mediators in the oxidative modification of DNA. It also examines the hypothesis that an increase in oxidative stress may derive from "oxidatively" damaged mitochondria. Accordingly, further research in this field should be given high priority, since increased somatic DNA damage could be an important pathogenic factor and an additional prognostic predictor, as well as a potential target for therapeutic strategies in coronary artery disease.  相似文献   

17.
Combined molecular and epidemiological studies are advancing our understanding of the genetic basis of multifactorial diseases. Several of the results obtained during the past year highlight methodological issues associated with these approaches. For example, the affected sib-pair method has been applied successfully to detect linkage between the angiotensinogen gene and susceptibility to hypertension, and a large multi-centre epidemiological study has demonstrated association of a polymorphism of the angiotensin-converting enzyme gene with increased risk of myocardial infarction. The study of Mendelian forms of multifactorial diseases has also led to many new results. These include the characterization of mutations in the glucokinase gene in maturity onset diabetes of the young, localization to chromosome 2 of a gene involved in familial colon cancer, and localization to chromosome 19 of a gene responsible for hemiplegic migraine. New insights have been provided into the genetics of multifactorial disorders such as diabetes and hypertension through the study of animal models. Localization of susceptibility loci in such models has recently led to the identification of new candidate genes that may be implicated in disease.  相似文献   

18.
Recent genome-wide association studies (GWAS) have identified 35 loci that significantly associate with coronary artery disease (CAD) susceptibility. The majority of the genes represented in these loci have not previously been studied in the context of atherosclerosis. To characterize the roles of these candidate genes in the vessel wall, we determined their expression levels in endothelial, smooth muscle, and macrophage cells isolated from healthy, prelesioned, and lesioned mouse aortas. We also performed expression quantitative locus (eQTL) mapping of these genes in human endothelial cells under control and proatherogenic conditions. Of the 57 genes studied, 31 were differentially expressed in one or more cell types in disease state in mice, and the expression levels of 8 were significantly associated with the CAD SNPs in human cells, 7 of which were also differentially expressed in mice. By integrating human and mouse results, we predict that PPAP2B, GALNT4, MAPKAPK5, TCTN1, SRR, SNF8, and ICAM1 play a causal role in the susceptibility to atherosclerosis through a role in the vasculature. Additionally, we highlight the genetic complexity of a subset of CAD loci through the differential expression of multiple candidate genes per locus and the involvement of genes that lie outside linkage disequilibrium blocks.  相似文献   

19.
PURPOSE OF REVIEW: The goal of this review is to provide an update on the most recent and relevant findings in the area of genotype-phenotype associations as well as the relationships between genetic factors and cardiovascular disease risk markers and events. In addition, emphasis will be placed on the methodological problems associated with studying the genetics of complex disorders, specifically cardiovascular diseases. RECENT FINDINGS: Genes associated with cardiovascular disease predisposition have been examined, including traditional cardiovascular disease candidate genes, such as ACE, AGT, eNOS, PON and MTHFR, new loci that have recently been added to the growing list of cardiovascular disease candidate genes (i.e. MEF2A, ALOX5, LTA, APOM, PDE4D), and genes that have been shown to be at the intersection of several age-related disorders through interaction with one another or with environmental factors (i.e. APOA5, APOE, PPARgamma, LPL and LIPC). SUMMARY: During the last year, tremendous effort has been made in elucidating new genes associated with cardiovascular disease predisposition. For the most part, however, major breakthroughs have not been made, primarily due to the poor replication of results among studies, as a consequence of poor experimental design. Nevertheless, we have increased our understanding of the complexity of cardiovascular disease and the relevance of gene-environment interactions as the ultimate drivers of the individual predisposition to the disease. It is essential, therefore, that present and future genetic studies in this area take into consideration the inclusion of high-quality environmental data in the analytical process to test the clinical usefulness of a genetic marker as a risk predictor.  相似文献   

20.
Ankylosing spondylitis is a highly heritable, common rheumatic condition, primarily affecting the axial skeleton. The association with HLA-B27 has been demonstrated worldwide, and evidence for a role of HLA-B27 in disease comes from linkage and association studies in humans, and transgenic animal models. However, twin studies indicate that HLA-B27 contributes only 16% of the total genetic risk for disease. Furthermore, there is compelling evidence that non-B27 genes, both within and outwith the major histocompatability complex, are involved in disease aetiology. In this post-genomic era we have the tools to help elicit the genetic basis of disease. This review describes methods for genetic investigation of ankylosing spondylitis, and summarises the status of current research in this exciting area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号