共查询到20条相似文献,搜索用时 0 毫秒
1.
Time-resolved changes in equatorial x-ray diffraction and stiffness during rise of tetanic tension in intact length-clamped single muscle fibers. 总被引:4,自引:5,他引:4
下载免费PDF全文

We report the first time-resolved x-ray diffraction studies on tetanized intact single muscle fibers of the frog. The 10, 11, 20, 21, 30, and Z equatorial reflections were clearly resolved in the relaxed fiber. The preparation readily withstood 100 1-s duration (0.4-s beam exposure) tetani at 4 degrees C (less than 4% decline of force and no deterioration in the 10, 11 equatorial intensity ratio at rest or during activation). Equatorial intensity changes (10 and 11) and fiber stiffness led tension (t1/2 lead 20 ms at 4 degrees C) during the tetanus rise and lagged during the isometric phase of relaxation. These findings support the existence of a low force cross-bridge state during the rise of tetanic tension and isometric relaxation that is not evident at the tetanus plateau. In "fixed end" tetani lattice expansion occurred with a time course similar to stiffness during the tetanus rise. During relaxation, lattice spacing increased slightly, while the sarcomere length remained isometric, but underwent large changes after the "shoulder" of tension. Under length clamp control, lattice expansion during the tetanus rise was reduced or abolished, and compression (2%) of the lattice was observed. A lattice compression is predicted by certain cross-bridge models of force generation (Schoenberg, M. 1980. Biophys. J. 30:51-68; Schoenberg, M. 1980. Biophys. J. 30:69-78). 相似文献
2.
We have searched for fluctuations in the steady-state tension developed by stimulated single muscle fibers. Such tension "noise" is expected to be present as a result of the statistical fluctuations in the number and/or state of myosin cross-bridges interacting with thin filament sites at any time. A sensitive electro-optical tension transducer capable of resolving the expected fluctuations in magnitude and frequency was constructed to search for the fluctuations. The noise was analyzed by computing the power spectra and amplitude of stochastic fluctuations in the photomultiplier counting rate, which was made proportional to muscle force. The optical system and electronic instrumentation together with the minicomputer software are described. Tensions were measured in single skinned glycerinated rabbit psoas muscle fibers in rigor and during contraction and relaxation. The results indicate the presence of fluctuations in contracting muscles and a complete absence of tension noise in eith rigor or relaxation. Also, a numerical method was developed to simulate the power spectra and amplitude of fluctuations, given the rate constants for association and dissociation of the cross-bridges and actin. The simulated power spectra and the frequency distributions observed experimentally are similar. 相似文献
3.
Schuh RA Jackson KC Khairallah RJ Ward CW Spangenburg EE 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,302(6):R712-R719
Measurement of mitochondrial function in skeletal muscle is a vital tool for understanding regulation of cellular bioenergetics. Currently, a number of different experimental approaches are employed to quantify mitochondrial function, with each involving either mechanically or chemically induced disruption of cellular membranes. Here, we describe a novel approach that allows for the quantification of substrate-induced mitochondria-driven oxygen consumption in intact single skeletal muscle fibers isolated from adult mice. Specifically, we isolated intact muscle fibers from the flexor digitorum brevis muscle and placed the fibers in culture conditions overnight. We then quantified oxygen consumption rates using a highly sensitive microplate format. Peak oxygen consumption rates were significantly increased by 3.4-fold and 2.9-fold by simultaneous stimulation with the uncoupling agent, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), and/or pyruvate or palmitate exposure, respectively. However, when calculating the total oxygen consumed over the entire treatment, palmitate exposure resulted in significantly more oxygen consumption compared with pyruvate. Further, as proof of principle for the procedure, we isolated fibers from the mdx mouse model, which has known mitochondrial deficits. We found significant reductions in initial and peak oxygen consumption of 51% and 61% compared with fibers isolated from the wild-type (WT) animals, respectively. In addition, we determined that fibers isolated from mdx mice exhibited less total oxygen consumption in response to the FCCP + pyruvate stimulation compared with the WT mice. This novel approach allows the user to make mitochondria-specific measures in a nondisrupted muscle fiber that has been isolated from a whole muscle. 相似文献
4.
Approximating the isometric force-calcium relation of intact frog muscle using skinned fibers. 总被引:2,自引:0,他引:2
下载免费PDF全文

In previous papers we used estimates of the composition of frog muscle and calculations involving the likely fixed charge density in myofibrils to propose bathing solutions for skinned fibers, which best mimic the normal intracellular milieu of intact muscle fibers. We tested predictions of this calculation using measurements of the potential across the boundary of skinned frog muscle fibers bathed in this solution. The average potential was -3.1 mV, close to that predicted from a simple Donnan equilibrium. The contribution of ATP hydrolysis to a diffusion potential was probably small because addition of 1 mM vanadate to the solution decreased the fiber actomyosin ATPase rate (measured by high-performance liquid chromatography) by at least 73% but had little effect on the measured potential. Using these solutions, we obtained force-pCa curves from mechanically skinned fibers at three different temperatures, allowing the solution pH to change with temperature in the same fashion as the intracellular pH of intact fibers varies with temperature. The bath concentration of Ca2+ required for half-maximal activation of isometric force was 1.45 microM (22 degrees C, pH 7.18), 2.58 microM (16 degrees C, pH 7.25), and 3.36 microM (5 degrees C, pH 7.59). The [Ca2+] at the threshold of activation at 16 degrees C was approximately 1 microM, in good agreement with estimates of threshold [Ca2+] in intact frog muscle fibers. 相似文献
5.
The postnatal changes in resting muscle tension were investigated at 20 degrees C by using small muscle fiber bundles isolated from either the extensor digitorum longus or the soleus of both neonatal (7-21 days old) and adult rats. The results show that the tension-extension characteristics of the bundles depended on the age of the rats. For example, both the extensor digitorum longus and soleus bundles of rats older than 14 days showed characteristic differences that were absent in bundles from younger rats. Furthermore, the tension-extension relation of the adult slow muscle fiber bundles were similar to those of the two neonatal muscles and were shifted to longer sarcomere lengths relative to those of the adult fast-fiber bundles. Thus, at the extended sarcomere length of 2.9 microm, the adult fast muscle fiber bundles developed higher resting tensions (5.6 +/- 0.5 kN/m2) than either the two neonatal ( approximately 3 kN/m2) or the adult slow (3.1 +/- 0.4 kN/m2) muscle fiber bundles. At all ages examined, the resting tension responses to a ramp stretch were qualitatively similar and consisted of three components: a viscous, a viscoelastic, and an elastic tension. However, in rats older than 14 days, all three tension components showed clear fast- and slow-fiber type differences that were absent in younger rats. Bundles from 7-day-old rats also developed significantly lower resting tensions than the corresponding adult ones. Additionally, the resting tension characteristics of the adult muscles were not affected by chemical skinning. From these results, we conclude that in rats resting muscle tension, like active tension, differentiates within the first 3 wk after birth. 相似文献
6.
Raman spectra, in the frequency region of the protein vibrations, of intact single muscle fibers of the giant barnacle are presented. Strong bands at 1521 and 1156 cm-1 in the spectra are attributed to resonance-enhanced Raman bands of membrane-bound beta-carotene. Many bands of the myofibrillar proteins are also observed, and at least three spectral features confirm that these proteins adopt a predominantly alpha-helical structure: (1) the amide I band at 1648 cm-1, (2) the weak scattering in the amide III region, and (3) a strong skeletal C-C stretching band at 939 cm-1. Deuterated fibers have also been examined in order to find the exact shape of the amide III band. The presence in the fibers of paramyosin, which is only found in catch muscles, is also apparent from the spectra. 相似文献
7.
Cross-bridge attachment and stiffness during isotonic shortening of intact single muscle fibers. 总被引:1,自引:2,他引:1
下载免费PDF全文

Equatorial x-ray diffraction pattern intensities (I10 and I11), fiber stiffness and sarcomere length were measured in single, intact muscle fibers under isometric conditions and during constant velocity (ramp) shortening. At the velocity of unloaded shortening (Vmax) the I10 change accompanying activation was reduced to 50.8% of its isometric value, I11 reduced to 60.7%. If the roughly linear relation between numbers of attached bridges and equatorial signals in the isometric state also applies during shortening, this would predict 51-61% attachment. Stiffness (measured using 4 kHz sinusoidal length oscillations), another putative measure of bridge attachment, was 30% of its isometric value at Vmax. When small step length changes were applied to the preparation (such as used for construction of T1 curves), no equatorial intensity changes could be detected with our present time resolution (5 ms). Therefore, unlike the isometric situation, stiffness and equatorial signals obtained during ramp shortening are not in agreement. This may be a result of a changed crossbridge spatial orientation during shortening, a different average stiffness per attached crossbridge, or a higher proportion of single headed crossbridges during shortening. 相似文献
8.
Effects of passive tension on unloaded shortening speed of frog single muscle fibers. 总被引:4,自引:1,他引:4
下载免费PDF全文

Experiments were performed to determine the influence of sarcomere length and passive tension on the velocity of unloaded shortening (Vu) as measured by the slack test technique. Slack test results were obtained from intact twitch fibers isolated from the frog (Rana temporaria). Measurements were made both in the absence and presence of passive tension using two different protocols. In one, all releases were initiated from the same sarcomere length and passive tension level; in the other, all releases ended at the same sarcomere length. In the absence of passive tension, no difference was observed between the results from the two slack test protocols. When passive tension was present, performing all releases from the same initial sarcomere length and passive tension level resulted in linear step size-slack time relationships in which the slopes (Vu) were independent of length over a sarcomere length range extending to 3.1 microns, and the intercepts increased with increasing sarcomere length. Performing all releases to the same final sarcomere length in the presence of passive tension produced nonlinear step size-slack time relationships. The results presented here show that, in the presence of significant levels of passive tension, the traditional interpretation of the slope of the slack test plot as the constant unloaded shortening velocity is only correct when all length steps are initiated from the same initial sarcomere length and level of passive tension. 相似文献
9.
The effect of a rapid change in pHe (pH of bathing solution) on the isometric tetanic tension developed by sartorius muscles of toads acclimated to 5 and 25 degrees C was measured at 5 and 25 degrees C. The pH was altered by changing the carbon dioxide concentration of a bicarbonate buffered physiological solution. Acclimation temperature did not modify the response to a rapid change in pH, but test temperature did. Following a pH decrease from 9.0 to 6.0, tetanic tension decreased at a faster rate at 5 degrees C than at 25 degrees C. A new steady state was reached in 15 min at 5 degrees C but in 40 min at 25 degrees C. Following a pH increase from 6.0 to 8.5, tetanic tension increased at a faster rate at 25 degrees C than at 5 degrees C. A new steady state was reached in 60 min at 5 degrees C but in 10 min at 25 degrees C. We conclude that the rate of carbon dioxide diffusion through the sartorius muscle is only one factor that determines how rapidly tetanic tension changes following the step change in pH, and that muscle resists pH change more effectively at higher temperatures. 相似文献
10.
Electrochemical potentials were measured as a function of myofilament packing density in crayfish striated muscle. The A-band striations are supramolecular smectic B1 lattice assemblies of myosin filaments and the I-band striations are nematic liquid crystals of actin filaments. Both A- and I-bands generate potentials derived from the fixed charge that is associated with structural proteins. In the reported experiments, filament packing density was varied by osmotically reducing lattice volume. The electrochemical potentials were measured from the A- and I-bands in the relaxed condition over a range of lattice volumes. From the measurements of relative cross-sectional area, unit-cell volume (obtained by low-angle x-ray diffraction) and previously determined effective linear charge densities (Aldoroty, R.A., N.B. Garty, and E.W. April, 1985, Biophys. J., 47:89-96), Donnan potentials can be predicted for any amount of compression. In the relaxed condition, the predicted Donnan potentials correspond to the measured electrochemical potentials. In the rigor condition, however, a net increase in negative charge associated with the myosin filament is observed. The predictability of the data demonstrates the applicability of Donnan equilibrium theory to the measurement of electrochemical potentials from liquid-crystalline systems. Moreover, the relationship between filament spacing and the Donnan potential is consistent with the concept that surface charge provides the necessary electrostatic force to stabilize the myofilament lattice. 相似文献
11.
Michel Pezolet Marie Pigeon-Gosselin Rodrigue Savoie Jean-Pierre Caille 《Biochimica et Biophysica Acta (BBA)/General Subjects》1978,544(2):394-406
Laser Raman spectroscopy has been used to investigate the state of water in intact single muscle fibers of the giant barnacle (Balanus nulilus). The spectra in the region of the O-H (or O-2H) stretching modes of water in unfrozen fibers show that there is no appreciable difference between the shape and relative intensity of the Raman bands due to the water molecules located inside a muscle fiber and those of the corresponding bands in the spectrum of pure water. The presence of significant amounts of “structured” intracellular water, greater than approx. 5% of the total water content, in these fibers is thus excluded. The Raman spectra of frozen fibers have also been recorded in order to evaluate the amount of intracellular water which remains unfrozen at temperatures below the normal freezing point of water. We have been able to reproduce these spectra by assuming that the spectrum of a frozen fiber is the sum of the individual spectra of water and ice. To calculate the amount of unfrozen water from these curve fittings, it was also necessary to determine the intensities of the water and ice Raman bands relative to one another. We have found the I(ice)/I(water) ratio is 1.07 ± 0.01 for H2O and 1.05 ± 0.03 for 2H2O With these figures, we have calculated that for a fiber with a normal water content of 80%, 20% of the water molecules remain in the supercooled state at ?5°C, which corresponds to 1 g of water per of fiber dry weight. This amount of bound water was also found to be independent of the water content of the fibers. 相似文献
12.
The isometric tension of single fibers isolated from glycerinated rabbit psoas muscle was measured at various temperatures using Mg-ITP as a substrate. The tension developed in Mg-ITP decreased linearly as the temperature was reduced from 24 degrees C to 4 degrees C. Myosin formed the myosin--product complex predominantly via ATP hydrolysis at the burst site during Mg-ATP hydrolysis, irrespective of temperature, and the tension developed in Mg-ATP decreased linearly as the temperature decreased (Yoshida and Tawada (1976) J. Biochem. 80, 861). During Mg-ITP hydrolysis, myosin forms the myosin*-product complex predominantly at the burst site above 20 degrees C, while myosin forms the myosin*-substrate complex below 8 degrees C (Hozumi (1976) Eur. J. Biochem. 63, 241). However, the temperature dependence of tension development in Mg-ITP is linear, as with Mg-ATP, as mentioned above. This temperature dependence is not compatible with some muscle models which assume the formation of the myosin*-product complex by cross-bridges prior to combination with actin during contraction. 相似文献
13.
F Franciolini 《Acta physiologica Hungarica》1984,63(2):147-151
The effects of the alkaloid quinine on the tension response and intracellular calcium movements of giant muscle fibres are reported. Under voltage clamp conditions, the isometric tension showed an early transient increase (approx. 1.6 fold), and a subsequent decline to negligible values in response to a constant step depolarization. At rest and under voltage clamp condition, fibres injected with the Ca-indicator aequorine showed a 40% increase in aequorine light output, while no change was observed in tension response. We interpret these results as due to the calcium releasing action of quinine both on the SR membrane, and at the diadic level where calcium ions are crucial for the E-C coupling process. 相似文献
14.
Polyribosomal organization in intact intrafusal muscle fibers 总被引:1,自引:0,他引:1
15.
Optical depolarization changes in single, skinned muscle fibers. Evidence for cross-bridge involvement.
下载免费PDF全文

Optical ellipsometry studies of single, skinned muscle fibers conducted on the diffraction orders have yielded spectra that are sensitive to the state of the fiber. The linearly polarized light field vector becomes elliptically polarized as it passes through the fiber and may be collected at the diffraction orders. Fibers that have been subjected to extraction of myosin (0.6 M KCl) retain a weak diffraction pattern and exhibit a substantially decreased depolarization of incident linearly polarized light. A significant decrease in polarization is seen in skinned fibers that are subject to an increase in pH from 7.0 to 8.0. This increase in pH results in a decrease of approximately 30% in the depolarization angle of single fibers. The major decrease in depolarization angle that we observe at pH 8.0 is consistent with the notion that as cross-bridges move out from the shaft of the thick filament, their ability to cause depolarization of the incident linearly polarized light decreases. This interpretation is also consistent with the work of Ueno and Harrington where the decrease in the ability to cross-link S-1 and S-2 to the thick filament at pH 8.2 suggests cross-bridge movement away from the thick filament. A large decrease in birefringence, seen after treatment of skinned fibers with alpha-chymotrypsin, appears to be related to the breakdown of myosin into rod, S-1, heavy meromyosin, and light meromyosin. 相似文献
16.
17.
Laser Raman scattering. A molecular probe of the contractile state of intact single muscle fibers.
下载免费PDF全文

The 500 to 1,800-cm-1 region of the Raman spectra of intact single muscle fibers from the giant barnacle are dominated by bands caused by the protein component of the fibers. The frequency and the intensity of the conformationally sensitive bands indicate that the contractile proteins adopt a predominantly alpha-helical structure and are not affected when the contractile state of the fibers is changed from relaxed to contracted by addition of ATP and Ca. However, the contraction induces a decrease of the scattering intensity of some of the Raman bands caused by the acidic and tryptophan side chains, showing that these amino acids are involved during the generation of tension. 相似文献
18.
Structural changes in single muscle fibers after stimulation at a low frequency 总被引:7,自引:1,他引:7
下载免费PDF全文

《The Journal of general physiology》1979,74(1):1-16
Direct stimulation of single muscle fibers from Xenopus laevis at a frequency of 1 Hz results in a decline of the peak isometric twitch tension after about 200 twitches. Fibers were chemically fixed in glutaraldehyde after a varying number of twitches and at several fatigue levels, and the ultrastructural appearance was compared with that of resting fibers treated by identical fixation methods. No gross structural abnormalities were observed but subtle changes occurred. The mitochondria of stimulated fibers contain granules of normal size and number. The inner crista width is constant but the matrix width is increased on stimulation. These changes would not compromise ATP production. The myofibrils are normal except for a slight swelling in the myosin lattice. The transverse system (T system) and sarcoplasmic reticulum are intact. The minor diameter of the transverse tubule (T tubule) is increased slightly in stimulated fibers. The gap between the T-TC membranes stays constant at about 110 A, but tiny connecting pillars are seen to cross this gap more frequently in stimulated fibers (21 +/- 5% triads) than in resting fibers (8 +/- 6%). In stimulated fibers there is a marked increase in the electron dense content of the terminal cisternae (TC). Inasmuch as the observed structural changes correlate with the number of twitches but not with the fatigue level, it is concluded that TC density and T-TC pillar formation are related to the normal mechanisms of excitation-contraction coupling. 相似文献
19.
S Hollingworth J Peet W K Chandler S M Baylor 《The Journal of general physiology》2001,118(6):653-678
Calcium sparks were studied in frog intact skeletal muscle fibers using a home-built confocal scanner whose point-spread function was estimated to be approximately 0.21 microm in x and y and approximately 0.51 microm in z. Observations were made at 17-20 degrees C on fibers from Rana pipiens and Rana temporaria. Fibers were studied in two external solutions: normal Ringer's ([K(+)] = 2.5 mM; estimated membrane potential, -80 to -90 mV) and elevated [K(+)] Ringer's (most frequently, [K(+)] = 13 mM; estimated membrane potential, -60 to -65 mV). The frequency of sparks was 0.04-0.05 sarcomere(-1) s(-1) in normal Ringer's; the frequency increased approximately tenfold in 13 mM [K(+)] Ringer's. Spark properties in each solution were similar for the two species; they were also similar when scanned in the x and the y directions. From fits of standard functional forms to the temporal and spatial profiles of the sparks, the following mean values were estimated for the morphological parameters: rise time, approximately 4 ms; peak amplitude, approximately 1 DeltaF/F (change in fluorescence divided by resting fluorescence); decay time constant, approximately 5 ms; full duration at half maximum (FDHM), approximately 6 ms; late offset, approximately 0.01 DeltaF/F; full width at half maximum (FWHM), approximately 1.0 microm; mass (calculated as amplitude x 1.206 x FWHM(3)), 1.3-1.9 microm(3). Although the rise time is similar to that measured previously in frog cut fibers (5-6 ms; 17-23 degrees C), cut fiber sparks have a longer duration (FDHM, 9-15 ms), a wider extent (FWHM, 1.3-2.3 microm), and a strikingly larger mass (by 3-10-fold). Possible explanations for the increase in mass in cut fibers are a reduction in the Ca(2+) buffering power of myoplasm in cut fibers and an increase in the flux of Ca(2+) during release. 相似文献
20.
The AM loading of a number of different fluorescent Ca2+ indicators was compared in intact single fibers of frog muscle. Among the 13 indicators studied, loading rates (the average increase in the fiber concentration of indicator per first 60 min of loading) varied approximately 100-fold, from approximately 3 microM/h to >300 microM/h (16 degrees C). Loading rates were strongly dependent on the molecular weight of the AM compounds, with the rate increasing steeply as molecular weight decreased below approximately 850. Properties of delta F/F (the Ca2(+)-related fluorescence signal observed with fiber stimulation) were also measured in AM-loaded fibers and compared with those previously reported for fibers microinjected with indicator. In general, the time course of delta F/F was very similar with AM-loading and microinjection; however, the amplitude of delta F/F was usually smaller with AM-loading. There was a strong correlation between the rate of indicator loading and the value of the parameter f (the ratio of the amplitude of delta F/F in AM-loaded versus microinjected fibers). For indicators with small loading rates (<10 microM/h, N = 5), f values were generally small (< or =0.4, N = 4); whereas with large loading rates (>100 microM/h, N = 4), f values were large (> or =0.8, N = 4). This suggests that, with any AM indicator, a small concentration may associate nonspecifically with the fiber (either the indicator is incompletely de-esterified or, if completely de-esterified, not located in the myoplasmic compartment). If the loaded concentration is small, the nonspecific indicator will present a significant source of error in the estimation of [Ca2+]i. 相似文献