首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The range of genetic variation of spontaneous chromosome doubling frequency of maize haploid plantlets derived from in vitro anther culture was evaluated. When regeneration is obtained by direct embryo-genesis, bypassing the callus phase, it appears that the frequency of spontaneous doubling may exceed 40 of the regenerated plantlets. This high frequency may be one consequence of the use of doubled haploid lines derived from anther culture and spontaneous chromosome doubling. We also report an increase, by more than 50, of the productivity of diploid fertile regenerated plantlets produced by colchicine supplemented medium during the cold shock pretreatment of the microspores inside the anthers. Optimization of the treatments and the anther culture procedure are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
An efficient method for producing doubled haploid plants of oilseed rape (Brassica napus L.) was established using in vitro colchicine treatment of haploid embryos. Haploid embryos in the cotyledonary stage were treated with one of four colchicine concentrations (125, 250, 500 and 1,000 mg/L); for one of three treatment durations (12, 24 and 36 h) at one of the two temperatures (8 and 25°C) and were compared to control embryos (without colchicine treatment). The number of chromosomes, seed recovery, size and density of leaf stomata, and pollen grain size from regenerated plants were determined. No doubled haploid plants were regenerated from control embryos; however, the doubled haploid plants were regenerated from colchicine-treated embryos. A high doubling efficiency, 64.29 and 66.66% of regenerated plants, was obtained from 250 mg/L colchicine treatment for 24 h and 500 mg/L colchicine treatment for 36 h, respectively, at 8°C. Following 500 mg/L colchicine treatment for 36 h, a few plants regenerated (9 plants). At the higher colchicine concentration (1,000 mg/L), no plant regenerated. These results indicate that the colchicine treatment of embryos derived from microspores can induce efficient chromosome doubling for the production of doubled haploid lines of oilseed rape.  相似文献   

3.
Microspore or anther culture has been used to produce desirable meiotic recombinants in numerous species. However, the utilization of these recombinants relies on inefficient genome doubling procedures to obtain fertile doubled haploid plants. This study presents a simple and rapid procedure to generate fertile doubled haploids in Brassica napus cv. Topas using trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl- p -toluidine), a plant specific microtubule inhibitor. The effects of trifluralin on microtubule depolymerization and chromosome doubling in embryogenic microspore cultures of B. napus were examined and compared with those of colchicine. Indirect immunofluorescence labeling of isolated microspores indicated that microtubules were depolymerized within 30 min of trifluralin treatment and after 3–8 h of colchicine treatment. The direct application of these microtubule inhibitors to microspore cultures resulted in the recovery of fertile doubled haploid plants. Continuous culture in the presence of colchicine, was more effective than 18-h treatments for fertile plant production but resulted in abnormal embryo formation and recalcitrant plant regeneration. The application of 1 or 10 μ M trifluralin during the first 18 h of microspore culture was found to be the superior method for doubled haploid production. The embryos generated after trifluralin treatment developed normally, germinated readily and of the plants produced, close to 60% were fertile. The use of trifluralin to double chromosomes very early in microspore cultures is a simple process requiring minimal manipulation and should be very useful for genetic studies and breeding programs of B. napus and possibly other species.  相似文献   

4.
Plating rice anthers on a semisolid induction medium containing 250 or 500 mg/l colchicine for 24 or 48 h-incubations followed by transfer to colchicine-free medium and standard anther culture procedures resulted in overall 1.5- to 2.5- fold increases in doubled haploid green plant productions compared to control anther cultures. The addition of colchicine had no detrimental effects on the different anther culture efficiency parameters, but in some treatments led to significant enhancement of anther callusing frequency or callus green plant regenerating ability. The most efficient treatment raised doubled haploid plant recovery from 31% to 65.5%. These results suggest that post-plating colchicine treatment of anthers, since it was found to improve both anther culture efficiency and doubled haploid plant recovery frequency, could be integrated into rice doubled haploid plant production programmes.Abbreviations DH doubled haploid - NAA naphthalenacetic acid - PAS periodic acid Schiff  相似文献   

5.
Summary Ploidy levels of 26Zea mays L. anther culture-derived callus lines of the F1 hybrids (H99 × Pa91, Pa91 × FR16, and H99 × FR16) were determined at various times after culture initiation using flow cytometry (for 21 lines) or chromosome counting of callus cells or regenerated plants (for the remaining 5 lines). Twenty of the lines remained haploid, whereas 6 were diploid. The results from flow cytometry, after examining the DNA content of 5000 nuclei of each callus line, show that each callus line consisted of homogenous haploid or diploid cells. Thus for diploid callus lines, spontaneous chromosome doubling must have occurred before or in the early stages of androgenesis, before the initiation of callus cultures. These long-term callus cultures (growing for up to 38 mo.) have stably maintained their ploidy levels so it is unlikely that the culture conditions have caused chromosome doubling. The restriction fragment length polymorphism pattern obtained with 52 to 58 markers for each diploid callus line shows that all the diploid lines are homozygous diploid so each originated from a microspore and not from diploid maternal F1 hybrid tissue.  相似文献   

6.
An effective chromosome doubling protocol was established in essential garden crop of cucumber (Cucumis sativus L.) Cv. Hi Power. The different concentrations of colchicine (0, 250, 500, 750, and 1500 mg/L), oryzalin (0, 5, 15, 25, 50, 75, and 150 mg/L) and trifluralin (0, 5, 15, 25, 50, 75, and 150 mg/L) were applied on parthenogenesis-induced haploid nodal and shoot tip explants of cucumber for 18 and 38 h in three independent factorial experiments. Increasing concentrations of applied antimitotic agents led to the significant reduction in the survival rate of both shoot tip and nodal explants, especially in longer exposure duration. Three ploidy levels including haploid, mixoploid, and doubled haploid were regenerated form both explant types treated with colchicine, oryzalin, and trifluralin. Flow cytometry analysis proved successful chromosome doubling of haploid plants. Based on the results obtained, the highest number of regenerated doubled haploid plants (92.31%) and fruit set (86.21%) were related to immersion of nodal explants in 50 mg/L oryzalin for 18 h. The highest doubled haploid regeneration for colchicine and trifluralin antimitotic agents were 58.33 and 83.33%, respectively. The leaf size of doubled haploid plants was larger than their correspond haploids. The optimized chromosome doubling protocol would be applicable for doubled haploid production in garden crops of Cucurbitaceae family, which is recalcitrant to the spontaneous doubling, and also for in vitro polyploidy induction studies.  相似文献   

7.
The effects of different media and cold pretreatment of spikes on the androgenic response and regeneration capacity from anther culture of tritordeum was studied. L5 medium gave the highest frequency of anther response. The frequency of cultures regenerating green or albino plantlets was not affected by the composition of the medium tested. Cold pretreatment of the spikes significantly increased the frequency of anther response and also the percentage of cultures giving albino plantlets. A mean of four green plants was obtained per 100 subcultured calli/embryos. The percentage of spontaneous chromosome doubling was only 1%. The addition of colchicine at 0.02% to the induction medium significantly increased the frequency of doubled haploids regenerated without any effect on regeneration capacity. This technique proved more efficient than a conventional chromosome-doubling method.  相似文献   

8.
Summary Androgenesis occurred from chile pepper (Capsicum annuum L.) anthers incubated in a continuous warm environment (29° C) with continuous light. Forty plantes and embryoids were retrieved from anther cultures and anllyzed for isozyme markers. Of these, 35 exhibited a single allele for markers suggesting microspore origin, while 5 were heterozygous indicating somatic tissue origin. Chromosome numbers were confirmed for 21 plantlets, of which 16 were haploid and 5 were diploid. However, two plants exhibited a single allele for an isozyme marker but possessed the diploid chromosome number, suggesting spontaneous doubling. Anther cultures also produced callus. Nearly 92% of the slow-growing calli sampled were heterozygous for the isozyme marker, suggesting somatic tissue origin. More than 46% of the fast-growing calli exhibited only one allele for the marker, indicating microspore origin. Callus did not regenerate plantlets. The occurrence of both heterozygous and homozygous diploid plantlets from pepper anther cultures has important implications for applied breeding programs.  相似文献   

9.
Doubled haploid technologies have become key tools for plant breeding. Using these techniques, the speed and efficiency of plant improvement processes can be significantly enhanced. Anther culture-based technologies have the potential to regenerate large numbers of doubled haploid plants without colchicine treatment. In an attempt to elucidate the influence of phytohormones on non-directly induced chromosome doubling, two synthetic auxins, 2,4-D and centrophenoxine, were tested in a wheat anther culture approach. Whereas the induction of androgenic embryo-like structures (ELSs) was efficient for both auxins, we observed a significantly higher frequency of chromosome doubling when using 2,4-D than when using centrophenoxine. When 2,4-D was added to the induction medium, a positive correlation between the size of ELSs and their ploidy level was detected by flow cytometry. The morphological selection of ELSs, a process that was included in routine operations of the method without significantly extending the input of time and effort, facilitates the production of fertile DH plants with a frequency of 60 %. Our findings may contribute to a more efficient production of doubled haploid wheat plants using a colchicine-free anther culture approach.  相似文献   

10.
Summary In order to determine the ploidy of individual embryo-like structures (ELSs) following chromosome doubling treatments, a method was developed to determine the DNA content (ploidy level) of nuclei from single ELSs weighing as little as 1 mg using flow cytometry. About half (53%) of the ELSs which formed during anther culture of the maize inbred line used in control medium were haploid, 27% mixoploid and 20% diploid. Gibberellic acid (GA3) increased the diploid percentage to 52% without affecting the mixoploid frequency (26%). A four day treatment with the chromosome doubling agent colchicine (50M) increased chromosome doubling while oryzalin eliminated the diploidy and mixoploidy. When regenerable callus cultures were initiated from the ELSs none were found to be mixoploid but the haploid and diploid proportions were similar to that of the ELSs analyzed. Regenerable cultures could not be initiated from the colchicine treated ELSs, however. These studies show that with the genotype used here, GA3 and colchicine increased the amount of chromosome doubling of the ELSs while oryzalin and pronamide did not. The mixoploidy which existed in about 25% of the ELSs was never observed in calli apparently because these structures do not initiate callus or cells of only one ploidy level grew.Abbreviations ELS embryo-like structure - GA3 gibberellin A3  相似文献   

11.
There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.  相似文献   

12.
Cytological studies on leaf callus cells and regenerated potato plants suggest that it may be possible to utilize somatic chromosome doubling to obtain tetraploids from outstanding dihaploid breeding clones. The ploidy levels found in callus-derived plants were diploid, tetraploid, and octaploid, but the proportion of these was dependent on the donor genotype. L1 and L3 germ layers were studied in more than 300 plants; periclinal ploidy chimerism, an undesirable feature of colchicine doubling, was not found. Leaf callus was more efficiently induced using NAA than 2, 4-D as an auxin source in the Murashige and Skoog medium. A high proportion of dividing cells in young calli were polyploid. The frequency of doubled and octaploid plants regenerated was significantly dependent on donor genotype. The extent of polyploidization was marginally higher after callus growth on a medium containing 2, 4-D than in a medium containing NAA. In some genotypes the chromosome numbers of regenerated plants were variable, being less than tetraploid (mixohypotetraploid). After tuber propagation, the original ploidy level was maintained although mixohypotetraploidy persisted. In a few somatically doubled clones, male fertility was tested and found to be satisfactory with respect to seed-setting.  相似文献   

13.
Experiments were carried out to double the somatic cell chromosome numbers of a monoploid and dihaploid of Solanum tuberosum and a genotype of S. circaeifolium subsp. quimense. Colchicine was used in vitro on shoot nodes from which the axillary meristems had been removed. Plants with doubled chromosome numbers were obtained from shoots grown from the tertiary, sub-axillary meristems of all three genotypes. The callus culture of stem and leaf explants was found to produce more shoots with doubled chromosome numbers than the colchicine treatment in the case of the dihaploid and quimense genotypes but no shoots were obtained from callus culture of the monoploid. Fifty-two % of the shoots from the dihaploid and 63% from the quimense clone were ploidy doubled in the case of the best callus culture system. Using a sub-lethal dose of colchicine, the dihaploid yielded 37% ploidy-doubled shoots whereas all the shoots produced from the monoploid were doubled and the quimense clone produced 27% doubled plants. Callus culture was highly dependent upon the type of growth medium and other, unknown, factors. The colchicine treatment, although yielding fewer products, was more reliable for achieving ploidy doubling in selected clones if the number of plants produced is not important.  相似文献   

14.
The perennial grass, Miscanthus×giganteus is a sterile triploid, which due to its growth rate and biomass accumulation has significant economic potential as a new bioenergy crop. The sterility associated with the triploid genome of this accession requires labor‐intensive vegetative, instead of seed propagation for potential commercial production. Chromosome doubling was used to produce hexaploid plants in an effort to restore fertility to M×giganteus. Tissue culture derived calli from immature inflorescences were treated with the antimitotic agents, colchicine and oryzalin in liquid and solid media. Calli survival rate decreased with increasing concentrations and durations of colchicine or oryzalin treatments and ranged from 0% to 100%. Nuclear DNA content, as determined by flow cytometry, indicated that the frequency of chromosome‐doubled calli varied between compounds and concentrations with the greatest proportion of callus doubling observed using 2‐day treatments of 15 μm oryzalin (78%) or 939 μm colchicine (67%). Liquid media treatments were more effective than solid gels for chromosome doubling. Although oryzalin was effective at chromosome doubling, it inhibited callus growth and plant regeneration frequency. Seven hexaploid plants with doubled DNA content were generated, which displayed increased stomata size (30.0±0.2 μm) compared with regenerated triploid M. ×giganteus plants (24.3±1.0 μm). Following clonal replication these plants will be evaluated for growth rate, biomass accumulation, and pollen viability. Successful chromosome doubling and plant regeneration of M.×giganteus suggests that ploidy manipulation of this plant and its parental species (Miscanthus sinensis and Miscanthus sacchariflorus) could be a means to access genetic variability for the improvement of Miscanthus as a biofuel/bioenergy crop.  相似文献   

15.
Androgenic haploids of the neem tree (Azadirachta indica A. Juss.) were produced by anther culture at the early- to late-uninucleate stage of pollen. Haploid formation occurred via callusing. The best medium for inducing callusing in the anther cultures was Murashige and Skoog's basal medium (MS) (9% sucrose) supplemented with 1 microM 2,4-D, 1 microM NAA and 5 microM BAP, while anther callus multiplied best on MS medium supplemented with 1 microM 2,4-D and 10 microM Kn. These calli differentiated shoots when transferred to a medium containing BAP; 5 microM BAP was optimum for young calli (75% cultures differentiated shoots), but older calli showed the best regeneration with 7.5 microM BAP. Shoots elongated at a lower concentration of BAP-0.5 microM. These shoots were multiplied by forced axillary branching and rooted in vitro. The plants were subsequently established in soil. Of the plants that regenerated from anther callus 60% were haploid, 20% were diploid and 20% were aneuploid.  相似文献   

16.
The development of haploid callus, embryos and plantlets from cultured anthers and the various factors affecting androgenesis in Peltophorum pterocarpum (Copper pod), a tropical legume tree is reported. A pretreatment of flower buds at moderate temperature of 14°C for 8 days was most effective for callus production. The colour of the anther was found to be a reliable and efficient indicator for identification of suitable stage of anther for culture. The frequency of anthers which produced callus and shoots was highest when anthers were cultured at mid or late-uninucleate stage. A high sucrose concentration of 10% is a specific media requirement for androgenesis. The haploid nature of the embryos, callus and regenerated plants (n=14) were confirmed by chromosome count.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - KN kinetin - NAA naphthaleneacetic acid - BAP bezylaminopurine  相似文献   

17.
The aim of this work was to study the effects of colchicine application on chromosome doubling and androgenic response in anther and microspore culture of different bread wheat genotypes. Colchicine was applied during a mannitol stress pretreatment or during the first 48 h of culture at concentrations of 0, 150 and 300 mg l−1. When colchicine was applied during stress pretreatment, the percentage of doubling depended on genotype and concentration. A significant increase in doubling was observed with 300 mg l−1 in the low androgenic responding cv. Caramba. Colchicine incorporation during the first hours of culture improved percentage of doubling in all genotypes, in both anther and microspore culture. Application of 300 mg l−1 colchicine improved the percentage of doubling in the two low responding genotypes, to 118% of control in DH24033, and 75% in Caramba in microspore and anther culture, respectively. Concerning the androgenic response, the effect of colchicine on embryo formation and percentage of green plants depended on the genotype and on the culture method. In cv. Pavon, a 2- and a 3-fold increase in percentage of embryogenesis and green plants, respectively, were obtained with 300 mg l−1 colchicine in microspore culture. However, no significant differences in these two variables were observed in anther culture. The number of green doubled haploid (DH) plants reflects the index of success of the procedure. Regardless of the culture method, when colchicine was incorporated during the first hours of culture, the number of green DH plants increased significantly in three of four genotypes. These results confirm the usefulness of colchicine application during the first hours of culture in wheat breeding programs.  相似文献   

18.
Summary Wheat (Triticum aestivum L.) haploids and doubled haploids have been used in breeding programs and genetic studies. Wheat haploids and doubled haploids via anther culture are usually produced by a multiple step culture procedure. We improved a wheat haploid and doubled haploid production system via anther culture in which plants are produced from microspore-derived embryos using one medium and one culture environment. In the improved protocol, tillers of donor plants were pretreated at 4°C for 1–2 wk before anthers were plated on a modified 85D12 basal medium with phenylacetic acid (PAA) and zeatin and cultured at 30°C with a 12-h daylength (43 μEs−1m−2) in an incubator. Microspore-derived embryos developed in 2–3 wk and the plants were produced 3–4 wk after anther plating. In the improved system, as much as 53% of the anthers of Pavon 76 were responsive with multiple embryos. For plant regeneration, as many as 22 green and 25 albino plants were produced from 100 anthers. Sixty-five green plants were grown to maturity and 32 (49%) plants were fertile and produced seeds (indicating spontaneous chromosome doubling) while 33 plants did not produce seed. Of five Nebraska breeding lines tested using the protocol, NE96675 was very responsive and the other lines less so, indicating that the protocol is genotype-dependent.  相似文献   

19.
This is the first report on the production of double-haploid chickpea embryos and regenerated plants through anther culture using Canadian cultivar CDC Xena (kabuli) and Australian cultivar Sonali (desi). Maximum anther induction rates were 69% for Sonali and 63% for CDC Xena. Under optimal conditions, embryo formation occurred within 15–20 days of culture initiation with 2.3 embryos produced per anther for CDC Xena and 2.0 embryos per anther for Sonali. For anther induction, the following stress treatments were used: (1) flower clusters were treated at 4°C for 4 days, (2) anthers were subjected to electric shock treatment of three exponentially decaying pulses of 50–400 V with 25 μF capacitance and 25 Ω resistance, (3) anthers were centrifuged at 168–1,509g for 2–15 min, and finally (4) anthers were cultured for 4 days in high-osmotic pressure (563 mmol) liquid medium. Anthers were then transferred to a solid embryo development medium and, 15–20 days later, embryo development was observed concomitant with a small amount of callus growth of 0.1–3 mm. Anther-derived embryos were regenerated on plant regeneration medium. Electroporation treatment of anthers enhanced root formation, which is often a major hurdle in legume regeneration protocols. Cytological studies using DAPI staining showed a wide range of ploidy levels from haploid to tetraploid in 10–30-day-old calli. Flow cytometric analysis of calli, embryos and regenerated plants showed haploid profiles and/or spontaneous doubling of the chromosomes during early regeneration stages.  相似文献   

20.
Summary Four antimicrotubule herbicides, amiprophosmethyl (APM), pronamide, oryzalin, and trifluralin, were evaluated for their ability to induce chromosome doubling in anther-derived, haploid maize callus. Effects of various herbicide treatments on the growth and regenerative capacity of callus along with the ploidy and seed set of regenerated plants were determined. Flow cytometric analysis was also used to measure changes in ploidy levels of callus cells following treatments. More than 50% of the cells were doubled in chromosome number after the haploid callus was treated with 5 or 10 M APM or 10 M pronamide for 3 days. A similar proportion of plants regenerated from the treated callus produced seed upon self-pollination. APM and pronamide did not inhibit callus growth at these concentrations and the treated callus retained a high plant regeneration capacity. Oryzalin very effectively induced chromosome doubling, but severely inhibited the growth of regenerable callus and plant regeneration. Trifluralin induced chromosome doubling in a small proportion of cells at lower concentrations (0.5 and 1 M), however, at a higher concentration (5 M) it inhibited callus growth and plant regeneration. The results indicate that APM and pronamide may be useful agents for inducing chromosome doubling of anther-derived maize haploid callus at very low concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号