首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The tyrosine (eTATase) and aspartate (eAATase) aminotransferases of Escherichia coli transaminate diacarboxylic amino acids with similar rate constants. However, eTATase exhibits approximately 10(2)-10(4)-fold higher second-order rate constants for the transamination of aromatic amino acids than does eAATase. A series of natural and unnatural amino acid substrates was used to quantitate specificity differences for these two highly related enzymes. A general trend toward lower transamination activity with increasing side-chain length (extending from aspartate to glutamate to alpha-aminoadipate) is observed for both enzymes. This result suggests that dicarboxylate ligands associate with the two highly related enzymes in a similar manner. The high reactivity of the enzymes with L-Asp and L-Glu can be attributed to an ion pair interaction between the side-chain carboxylate of the amino acid substrate and the guanidino group of the active site residue Arg 292 that is common to both enzymes. A strong linear correlation between side-chain hydrophobicity and transamination rate constants obtains for n-alkyl side-chain amino substrates with eTATase, but not for eAATase. The present kinetic data support a model in which eAATase contains one binding mode for all classes of substrate, whereas the active site of eTATase allows an additional mode that has increased affinity for hydrophobic amino acid.  相似文献   

2.
Escherichia coli phenylalanine aminotransferase (ecPheAT) catalyzes the biosynthesis of phenylalanine and tyrosine. The crystal structure of ecPheAT was determined in our previous study. The comparison of the 3-D structure of several aminotransferases revealed that the residue at position 297 plays an important role in enzyme function. Analysis of activities and kinetic parameters of wild type and mutant ecPheATs suggested that the residue Ser(297) was structurally selected for better catalytic efficiency. Computational modeling of ecPheAT mutants further suggested that Ser in position 297 could make ecPheAT easy with change of conformation from open form to closed form.  相似文献   

3.
The six mutations, referred to as the Hex mutations, that together have been shown to convert Escherichia coli aspartate aminotransferase (AATase) specificity to be substantially like that of E. coli tyrosine aminotransferase (TATase) are dissected into two groups, (T109S/N297S) and (V39L/K41Y/T47I/N69L). The letters on the left and right of the numbers designate AATase and TATase residues, respectively. The T109S/N297S pair has been investigated previously. The latter group, the "Grease" set, is now placed in the AATase framework, and the retroGrease set (L39V/Y41K/I47T/L69N) is substituted into TATase. The Grease mutations in the AATase framework were found primarily to lower K(M)s for both aromatic and dicarboxylic substrates. In contrast, retroGrease TATase exhibits lowered k(cat)s for both substrates. The six retroHex mutations, combining retroGrease and S109T/S297N, were found to invert the substrate specificity of TATase, creating an enzyme with a nearly ninefold preference (k(cat)/K(M)) for aspartate over phenylalanine. The retroHex mutations perturb the electrostatic environment of the pyridoxal phosphate cofactor, as evidenced by a spectrophotometric titration of the internal aldimine, which uniquely shows two pK(a)s, 6.1 and 9.1. RetroHex was also found to have impaired dimer stability, with a K(D) for dimer dissociation of 350 nM compared with the wild type K(D) of 4 nM. Context dependence and additivity analyses demonstrate the importance of interactions of the Grease residues with the surrounding protein framework in both the AATase and TATase contexts, and with residues 109 and 297 in particular. Context dependence and cooperativity are particularly evident in the effects of mutations on k(cat)/K(M)(Asp). Effects on k(cat)/K(M)(Phe) are more nearly additive and context independent.  相似文献   

4.
Escherichia coli aspartate aminotransferase was exposed to aspartate or phenylalanine without oxo acid in buffered 2H2O. The alpha-hydrogen of the amino acids underwent first-order exchange with respect to both substrate and enzyme. P.m.r. spectroscopy gave consistent reaction-rate constants. The deuterium-exchange rate was only moderately increased by addition of oxo acids and was of the same order as the transamination rate. No beta-deuteration was observed. The C(alpha)-H-bond-breaking step is discussed as a part of the entire transamination mechanism.  相似文献   

5.
Two new mutations are described which, together, eliminate essentially all the aminotransferase activity required for de novo biosynthesis of tyrosine, phenylalanine, and aspartic acid in a K-12 strain of Escherichia coli. One mutation, designated tyrB, lies at about 80 min on the E. coli map and inactivates the "tyrosine-repressible" tyrosine/phenylalanine aminotransferase. The second mutation, aspC, maps at about 20 min and inactivates a nonrespressible aspartate aminotransferase that also has activity on the aromatic amino acids. In ilvE- strains, which lack the branched-chain amino acid aminotransferase, the presence of either the tyrosine-repressible aminotransferase or the aspartate aminotransferase is sufficient for growth in the absence of exogenous tyrosine, phenylalanine, or aspartate; the tyrosine-repressible enzyme is also active in leucine biosynthesis. The ilvE gene product alone can reverse a phenylalanine requirement. Biochemical studies on extracts of strains carrying combinations of these aminotransferase mutations confirm the existence of two distinct enzymes with overlapping specificities for the alpha-keto acid analogues of tyrosine, phenylalanine, and aspartate. These enzymes can be distinguished by electrophoretic mobilities, by kinetic parameters using various substrates, and by a difference in tyrosine repressibility. In extracts of an ilvE- tyrB- aspC- triple mutant, no aminotransferase activity for the alpha-keto acids of tyrosine, phenylalanine, or aspartate could be detected.  相似文献   

6.
Site-directed mutagenesis was performed to change the substrate specificity of Escherichia coli aspartate aminotransferase (AAT). A double mutant, R292E/L18H, with a 12.9-fold increase in the specific activity toward L-lysine and 2-oxo-4-phenylbutanoic acid (OPBA) was identified. E. coli cells expressing this mutant enzyme could convert OPBA to L-homophenylalanine (L-HPA) with 97% yield and more than 99.9% ee using L-lysine as amino donor. The transamination product of L-lysine, 2-keto-6-aminocaproate, was cyclized nonenzymatically to form Delta(1)-piperideine 2-carboxylic acid in the reaction mixture. The low solubility of L-HPA and spontaneous cyclization of 2-keto-6-aminocaproate drove the reaction completely toward L-HPA production. This is the first aminotransferase process using L-lysine as inexpensive amino donor for the L-HPA production to be reported.  相似文献   

7.
Chow MA  McElroy KE  Corbett KD  Berger JM  Kirsch JF 《Biochemistry》2004,43(40):12780-12787
Several mutant Escherichia coli aspartate aminotransferases (eAATases) have been characterized in the attempt to evolve or rationally redesign the substrate specificity of eAATase into that of E. coli tyrosine aminotransferase (eTATase). These include HEX (designed), HEX + A293D (design followed by directed evolution), and SRHEPT (directed evolution). The A293D mutation realized from directed evolution of HEX is here imported into the SRHEPT platform by site-directed mutagenesis, resulting in an enzyme (SRHEPT + A293D) with nearly the same ratio of k(cat)/K(m)(Phe) to k(cat)/K(m)(Asp) as that of wild-type eTATase. The A293D substitution is an important specificity determinant; it selectively disfavors interactions with dicarboxylic substrates and inhibitors compared to aromatic ones. Context dependence analysis is generalized to provide quantitative comparisons of a common substitution in two or more different protein scaffolds. High-resolution crystal structures of ligand complexes of HEX + A293D, SRHEPT, and SRHEPT + A293D were determined. We find that in both SRHEPT + A293D and HEX + A293D, the additional mutation holds the Arg 292 side chain away from the active site to allow increased specificity for phenylalanine over aspartate. The resulting movement of Arg 292 allows greater flexibility of the small domain in HEX + A293D. While HEX is always in the closed conformation, HEX + A293D is observed in both the closed and a novel open conformation, allowing for more rapid product release.  相似文献   

8.
A data base was compiled containing the amino acid sequences of 12 aspartate aminotransferases and 11 other aminotransferases. A comparison of these sequences by a standard alignment method confirmed the previously reported homology of all aspartate aminotransferases and Escherichia coli tyrosine aminotransferase. However, no significant similarity between these proteins and any of the other aminotransferases was detected. A more rigorous analysis, focusing on short sequence segments rather than the total polypeptide chain, revealed that rat tyrosine aminotransferase and Saccharomyces cerevisiae and Escherichia coli histidinol-phosphate aminotransferase share several homologous sequence segments with aspartate aminotransferases. For comparison of the complete sequences, a multiple sequence editor was developed to display the whole set of amino acid sequences in parallel on a single work-sheet. The editor allows gaps in individual sequences or a set of sequences to be introduced and thus facilitates their parallel analysis and alignment. Several clusters of invariant residues at corresponding positions in the amino acid sequences became evident, clearly establishing that the cytosolic and the mitochondrial isoenzyme of vertebrate aspartate aminotransferase, E. coli aspartate aminotransferase, rat and E. coli tyrosine aminotransferase, and S. cerevisiae and E. coli histidinol-phosphate aminotransferase are homologous proteins. Only 12 amino acid residues out of a total of about 400 proved to be invariant in all sequences compared; they are either involved in the binding of pyridoxal 5'-phosphate and the substrate, or appear to be essential for the conformation of the enzymes.  相似文献   

9.
In all organisms synthesising phenylalanine and/or tyrosine via arogenate, a prephenate aminotransferase is required for the transamination of prephenate into arogenate. The identity of the gene encoding this enzyme in the organisms where this activity occurs is still unknown. Glutamate/aspartate-prephenate aminotransferase (PAT) is thus the last homeless enzyme in the aromatic amino acids pathway. We report on the purification, mass spectrometry identification and biochemical characterization of Arabidopsis thaliana prephenate aminotransferase. Our data revealed that this activity is housed by the prokaryotic-type plastidic aspartate aminotransferase (At2g22250). This represents the first identification of a gene encoding PAT.  相似文献   

10.
The amino acid sequence of aspartate aminotransferase from Escherichia coli was established by sequence analysis and alignment of 39 tryptic peptides and 7 cyanogen bromide peptides. The total number of amino acid residues of the subunit was 396, and the molecular weight was calculated to be 43,573. A comparison of the primary structure of the E. coli enzyme with all known sequences of the two types of isoenzyme (mitochondrial and cytosolic enzymes) in vertebrates revealed that approximately 25% of all residues are invariant. The amino acid residues which were proposed from crystallographic studies on the vertebrate enzymes to be essential for the enzymic action are well conserved in the E. coli enzyme. The E. coli enzyme shows a similar degree of sequence homology to both the mitochondrial and cytosolic isoenzymes (close to 40%). The finding that the positions of deletions introduced into the sequence of E. coli enzyme to give the maximum homology agree well with those of the mitochondrial enzymes supports the endosymbiotic hypothesis of mitochondrial origin.  相似文献   

11.
The S'1 binding pocket of carboxypeptidase Y is hydrophobic, spacious, and open to solvent, and the enzyme exhibits a preference for hydrophobic P'1 amino acid residues. Leu272 and Ser297, situated at the rim of the pocket, and Leu267, slightly further away, have been substituted by site-directed mutagenesis. The mutant enzymes have been characterized kinetically with respect to their P'1 substrate preferences using the substrate series FA-Ala-Xaa-OH (Xaa = Leu, Glu, Lys, or Arg) and FA-Phe-Xaa-OH (Xaa = Ala, Val, or Leu). The results reveal that hydrophobic P'1 residues bind in the vicinity of residue 272 while positively charged P'1 residues interact with Ser297. Introduction of Asp or Glu at position 267 greatly reduced the activity toward hydrophobic P'1 residues (Leu) and increased the activity two- to three-fold for the hydrolysis of substrates with Lys or Arg in P'1. Negatively charged substituents at position 272 reduced the activity toward hydrophobic P'1 residues even more, but without increasing the activity toward positively charged P'1 residues. The mutant enzyme L267D + L272D was found to have a preference for substrates with C-terminal basic amino acid residues. The opposite situation, where the positively charged Lys or Arg were introduced at one of the positions 267, 272, or 297, did not increase the rather low activity toward substrates with Glu in the P'1 position but greatly reduced the activity toward substrates with C-terminal Lys or Arg due to electrostatic repulsion. The characterized mutant enzymes exhibit various specificities, which may be useful in C-terminal amino acid sequence determinations.  相似文献   

12.
Arg292 of E. coli aspartate aminotransferase was substituted with valine or leucine by site-directed mutagenesis. In comparison with the wild-type enzyme, either of the mutant enzymes showed a decrease by over 5 orders of magnitude of kcat/km values for aspartate and glutamate. This supports the contention that Arg292 is important for determining the specificity of this enzyme for dicarboxylic substrates. In contrast, mutant enzymes displayed a 5- to 10-fold increase in kcat/Km values for aromatic amino acids as substrates. Thus, introduction of an uncharged, hydrophobic side chain into position 292 leads to a striking alteration in substrate specificity of this enzyme, thereby improving catalytic efficiency toward aromatic amino acids.  相似文献   

13.
A simple and convenient procedure is described for the isolation in good yield of two amino-transferases from various strains of Escherichia coli. On the basis of their substrate specificities one of the enzymes has been classified as an aromatic amino acid aminotransferase and the other as an aspartate aminotransferase, but both act on a wide range of substrates. Pyridoxal phosphate is bound more strongly to the aspartate aminotransferase than to the aromatic amino transferase which cannot be fully re-activated after removal of the prosthetic group. Both enzymes are composed of two subunits which appear to be identical.  相似文献   

14.
In aspartate aminotransferase (AspAT), His143 is located within a hydrogen-bonding distance to Asp222 that forms a strong ion pair with the ring nitrogen of the coenzyme, pyridoxal 5'-phosphate (PLP) or pyridoxamine 5'-phosphate (PMP). His143 of Escherichia coli AspAT was replaced by Ala or Asn. The mutant enzyme H143A showed a slight increase in the maximum velocity of the overall transamination reaction between aspartate and 2-oxoglutarate, while H143N AspAT showed a decrease to 60% in the maximum rate of the overall reactions in both directions. In all of the half-transamination reactions with four substrates, aspartate, glutamate, oxalacetate, and 2-oxoglutarate, the catalytic competence as defined by kmax/Kd decreased by 3-18-fold upon replacing His143 by either Ala or Asn. The extent of the decrease varied from one substrate to another; it was largely contributed to by the decrease in affinities for all substrates. The equilibrium constants, [PMP-form] [keto acid]/[( PLP-form] [amino acid]), decreased by over 10-fold upon the mutations at position 143. Both H143A and H143N AspATs exhibited a considerably decreased affinity for 2-methylaspartate, an external-aldimine-forming substrate analogue, yet without appreciable alteration in the affinity for succinate and glutarate, which are non-aldimine-forming analogues. All these findings suggest that, although His143 is not essential for catalysis, it might assist the formation of enzyme-substrate complex.  相似文献   

15.
酸性和碱性酶稳定性机制及其识别   总被引:1,自引:0,他引:1  
了解酸性和碱性酶稳定性机制并对其进行识别具有重要理论和实践意义。通过分析105条酸性酶和111条碱性酶序列的氨基酸组成, 结果表明: 酸性酶中Trp、Tyr、Thr和Ser的含量明显高于平均值, 而Glu、Lys、Met和Arg的含量则明显低于平均值; 碱性酶中Trp、Ala和Cys的含量略高于平均值, 而Lys、Arg和Glu的含量则略低于平均值; 酸性和碱性酶中Ala、Glu、Leu、Asn、Arg、Ser和Thr的含量存在较大差异。在此基础上, 发展了一种加权氨基酸组成的方法对两种酶进行识别, 其自一致性检验的识别精度可达86.1%, 5倍交叉验证的精度为83.3%。建立了一种基于序列识别酸性和碱性酶的新方法。  相似文献   

16.
Abstract— Mitochondrial and cytoplasmic forms of aspartate aminotransferase were purified from rat brain homogenates and tested for their ability to catalyze transamination of various aromatic amino acids. The mitochondrial enzyme exhibited activity toward tyrosine and phenylalanine with 2-oxoglutar-ate as acceptor, although the specific activities were less than 1% of the corresponding aspartate activity when all substrates were 10 mM. Even less activity was seen with DOPA, 5-hydroxytryptophan and tryptophan. The cytoplasmic aspartate aminotransferase was active toward tryptophan, 5-hydroxytryptophan and DOPA, but these transaminations were favored by pyruvate or oxaloacetate rather than 2-oxoglutarate as keto acid. Based on co-migration of aromatic activities with the respective aspartate aminotransferases during isoelectric focusing and based on equal sensitivities of aromatic transamination and aspartate transamination to inhibition by vinylglycine, it was concluded that all activities resided in the aspartate aminotransferase enzymes. Some doubt exists, however, as to the physiological significance of these alternate activities in view of the requirement that aromatic amino acids must compete with aspartate for transamination by these enzymes.  相似文献   

17.
Alpha-aminoadipate aminotransferase (AAA-AT), a homolog of mammalian kynurenine aminotransferase II (Kat II), transfers an amino group to 2-oxoadipate to yield alpha-aminoadipate in lysine biosynthesis through the alpha-aminoadipate pathway in Thermus thermophilus. AAA-AT catalyzes transamination against various substrates, including AAA, glutamate, leucine, and aromatic amino acids. To elucidate the structural change for recognition of various substrates, we determined crystal structures of AAA-AT in four forms: with pyridoxal 5'-phosphate (PLP) (PLP complex), with PLP and leucine (PLP/Leu complex), with N-phosphopyridoxyl-leucine (PPL) (PPL complex), and with N-phosphopyridoxyl-alpha-aminoadipate (PPA) at 2.67, 2.26, 1.75, and 1.67 A resolution, respectively. The PLP complex is in an open state, whereas PLP/Leu, PPL, and PPA complexes are in closed states with maximal displacement (over 7 A) of the alpha2 helix and the beta1 strand in the small domain to cover the active site, indicating that conformational change is induced by substrate binding. In PPL and PLP/Leu complexes, several hydrophobic residues on the alpha2 helix recognize the hydrophobic side chain of the bound leucine moiety whereas, in the PPA complex, the alpha2 helix rotates to place the guanidium moiety of Arg23 on the helix at the appropriate position to interact with the carboxyl side chain of the AAA moiety. These results indicate that AAA-AT can recognize various kinds of substrates using the mobile alpha2 helix. The crystal structures and site-directed mutagenesis revealed that intersubunit-electrostatic interactions contribute to the elevated thermostability of this enzyme.  相似文献   

18.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

19.
Transaminase B (branched-chain amino acid aminotransferase, EC 2.6.1.42), the ilvE gene product, was purified to apparent homogeneity from an Escherichia coli K-12 strain which carries the ilvE gene both on the host chromosome and on a plasmid. The oligomeric structure of the enzyme, as determined by analytical ultracentrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was confirmed to be that of a hexamer with a molecular weight of about 182,000 and apparently identical subunits. Cross-linking with dimethylsuberimidate yielded trimers, dimers, and monomers, but essentially no species of higher molecular weight. These results are consistent with a double-trimer arrangement of the subunits in native enzyme. The amino-terminal sequence was found to be: Gly Thr Lys Lys Ala Asp Tyr Ile (Trp) Phe Asn Gly (Thr) (Met) Val. Purified transaminase B catalyzed transamination between alpha-ketoglutarate and l-isoleucine, l-leucine, l-valine, and, to a lesser extent, l-phenylalanine and l-tyrosine, the latter reacting very sluggishly. The enzyme was free of aspartate transaminase and of transaminase C. The apparent K(m) values for the branched-chain alpha-ketoacids were smaller than those for the corresponding amino acids. The lowest K(m) was recorded for dl-alpha-keto-beta-methyl-n-valerate, and the highest was recorded for l-valine. The ratio of the valine- and isoleucine-alpha-ketoglutarate activities did not change significantly during purification, and both activities were quantitatively removed from crude extract by antibody raised against purified transaminase B. These observations argue against the existence of a separate valine-alpha-ketoglutarate transaminase. Anti-E. coli transaminase B antibody cross-reacted with crude extract from Salmonella typhimurium, but not with extract obtained from Pseudomonas aeruginosa.  相似文献   

20.
A subfamily I aminotransferase gene homologue containing an open reading frame encoding 381 amino acid residues (Mr=42,271) has been identified in the process of the genome project of an extremely thermophilic bacterium, Thermus thermophilus HB8. Alignment of the predicted amino acid sequence using FASTA shows that this protein is a member of aminotransferase subfamily Igamma. The protein shows around 40% identity with both T. thermophilus aspartate aminotransferase [EC 2.6.1.1] and mammalian glutamine:phenylpyruvate aminotransferase [EC 2.6.1.64]. The recombinant protein expressed in Escherichia coli is a homodimer with a subunit molecular weight of 42,000, has one pyridoxal 5'-phosphate per subunit, and is highly active toward glutamine, methionine, aromatic amino acids, and corresponding keto acids, but has no preference for alanine and dicarboxylic amino acids. These substrate specificities are similar to those described for mammalian glutamine: phenylpyruvate aminotransferase. This is the first enzyme reported so far that has the glutamine aminotransferase activity in non-eukaryotic cells. As the presence of aromatic amino acid:2-oxoglutarate aminotransferase [EC 2.6.1.57] has not been reported in T. thermophilus, this enzyme is expected to catalyze the last transamination step of phenylalanine and tyrosine biosynthesis. It may also be involved in the methionine regeneration pathway associated with polyamine biosynthesis. The enzyme shows a strikingly high pKa value (9.3) of the coenzyme Schiff base in comparison with other subfamily I aminotransferases. The origin of this unique pKa value and the substrate specificity is discussed based on the previous crystallographic data of T. thermophilus and E. coli aspartate aminotransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号