首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant plasmid carrying the recA gene of Leptospira biflexa serovar patoc was isolated from a cosmid library of genomic DNA by complementation of an Escherichia coli recA mutation. The cloned serovar patoc recA gene efficiently restored resistance to UV radiation and methyl methanesulfonate. Recombination proficiency was also restored, as measured by the formation of Lac+ recombinants from duplicated mutant lacZ genes. Additionally, the cloned recA gene increased the spontaneous and mitomycin C-induced production of lambda phage in lysogens of an E. coli recA mutant. The product of the cloned recA gene was identified in maxicells as a polypeptide with an Mr of 43,000. Antibodies prepared against the E. coli RecA protein cross-reacted with the serovar patoc RecA protein, indicating structural conservation. Southern hybridization data showed that the serovar patoc recA gene has diverged from the recA gene of L. interrogans, Leptonema illini, and E. coli. With the exception of the RecA protein of L. interrogans serovar hardjo, the RecA protein of the Leptospira serovars and L. illini were synthesized at elevated levels following treatment of cells with nalidixic acid. The level of detectable RecA correlated with previous studies demonstrating that free-living cells of L. biflexa serovars and L. illini were considerably more resistant to DNA-damaging agents than were those of parasitic L. interrogans serovars. RecA protein was not detected in cells of virulent Treponema pallidum or Borrelia burgdorferi.  相似文献   

2.
A recombinant plasmid carrying the recA gene of Leptospira biflexa serovar patoc was isolated from a cosmid library of genomic DNA by complementation of an Escherichia coli recA mutation. The cloned serovar patoc recA gene efficiently restored resistance to UV radiation and methyl methanesulfonate. Recombination proficiency was also restored, as measured by the formation of Lac+ recombinants from duplicated mutant lacZ genes. Additionally, the cloned recA gene increased the spontaneous and mitomycin C-induced production of lambda phage in lysogens of an E. coli recA mutant. The product of the cloned recA gene was identified in maxicells as a polypeptide with an Mr of 43,000. Antibodies prepared against the E. coli RecA protein cross-reacted with the serovar patoc RecA protein, indicating structural conservation. Southern hybridization data showed that the serovar patoc recA gene has diverged from the recA gene of L. interrogans, Leptonema illini, and E. coli. With the exception of the RecA protein of L. interrogans serovar hardjo, the RecA protein of the Leptospira serovars and L. illini were synthesized at elevated levels following treatment of cells with nalidixic acid. The level of detectable RecA correlated with previous studies demonstrating that free-living cells of L. biflexa serovars and L. illini were considerably more resistant to DNA-damaging agents than were those of parasitic L. interrogans serovars. RecA protein was not detected in cells of virulent Treponema pallidum or Borrelia burgdorferi.  相似文献   

3.
Deinococcus radiodurans strain rec30, which is a DNA damage repair-deficient mutant, has been estimated to be defective in the deinococcal recA gene. To identify the mutation site of strain rec30 and obtain information about the region flanking the gene, a 4.4-kb fragment carrying the wild-type recA gene was sequenced. It was revealed that the recA locus forms a polycistronic operon with the preceding cistrons (orf105a and orf105b). Predicted amino acid sequences of orf105a and orf105b showed substantial similarity to the competence-damage inducible protein (cinA gene product) from Streptococcus pneumoniae and the 2'-5' RNA ligase from Escherichia coli, respectively. By analyzing polymerase chain reaction (PCR) fragments derived from the genomic DNA of strain rec30, the mutation site in the strain was identified as a single G:C to A:T transition which causes an amino acid substitution at position 224 (Gly to Ser) of the deinococcal RecA protein. Furthermore, we succeeded in expressing both the wild-type and mutant recA genes of D. radiodurans in E. coli without any obvious toxicity or death. The gamma-ray resistance of an E. coli recA1 strain was fully restored by the expression of the wild-type recA gene of D. radiodurans that was cloned in an E. coli vector plasmid. This result is consistent with evidence that RecA proteins from many bacterial species can functionally complement E. coli recA mutants. In contrast with the wild-type gene, the mutant recA gene derived from strain rec30 did not complement E. coli recA1, suggesting that the mutant RecA protein lacks functional activity for recombinational repair.  相似文献   

4.
Interspecific complementation of an Escherichia coli recA mutant with a Legionella pneumophila genomic library was used to identify a recombinant plasmid encoding the L. pneumophila recA gene. Recombinant E. coli strains harbouring the L. pneumophila recA gene were isolated by replica-plating bacterial colonies on medium containing methyl methanesulphonate (MMS). MMS-resistant clones were identified as encoding the L. pneumophila recA analogue by their ability to protect E. coli HB101 from UV exposure and promote homologous recombination. Subcloning of selected restriction fragments and Tn5 mutagenesis localized the recA gene to a 1.7 kb Bg/II-EcoRI fragment. Analysis of minicell preparations harbouring a 1.9 kb EcoRI fragment containing the recA coding segment revealed a single 37.5 kDa protein. Insertional inactivation of the cloned recA gene by Tn5 resulted in the disappearance of the 37.5 kDa protein, concomitant with the loss of RecA function. The L. pneumophila recA gene product did not promote induction of a lambda lysogen; instead, the presence of the heterologous recA gene caused a significant reduction in spontaneous and mitomycin-C-induced prophage induction in recA+ and recA E. coli backgrounds. Despite the lack of significant genetic homology between the L. pneumophila recA gene and the E. coli counterpart, the L. pneumophila RecA protein was nearly identical to that of E. coli in molecular mass, and the two proteins showed antigenic cross-reactivity. Western blot analysis of UV-treated L. pneumophila revealed a significant increase in RecA antigen in irradiated versus control cells, suggesting that the L. pneumophila recA gene is regulated in a manner similar to that of E. coli recA.  相似文献   

5.
A recombinant plasmid carrying the recA gene of Vibrio cholerae was isolated from a V. cholerae genomic library, using complementation in Escherichia coli. The plasmid complements a recA mutation in E. coli for both resistance to the DNA-damaging agent methyl methanesulfonate and recombinational activity in bacteriophage P1 transductions. After determining the approximate location of the recA gene on the cloned DNA fragment, we constructed a defined recA mutation by filling in an XbaI site located within the gene. The 4-base pair insertion resulted in a truncated RecA protein as determined by minicell analysis. The mutation was spontaneously recombined onto the chromosome of a derivative of V. cholerae strain P27459 by screening for methyl methanesulfonate-sensitive variants. Southern blot analysis confirmed the presence of the inactivated XbaI site in the chromosome of DNA isolated from one of these methyl methanesulfonate-sensitive colonies. The recA V. cholerae strain was considerably more sensitive to UV light than its parent, was impaired in homologous recombination, and was deficient in induction of a temperate vibriophage upon exposure to UV light. We conclude that the V. cholerae RecA protein has activities which are analogous to those described for the RecA protein of E. coli.  相似文献   

6.
7.
Functions of the Borrelia burgdorferi RecA protein were investigated in Escherichia coli recA null mutants. Complementation with B. burgdorferi recA increased survival of E. coli recA mutants by 3 orders of magnitude at a UV dose of 2,000 microJ/cm(2). The viability at this UV dose was about 10% that provided by the homologous recA gene. Expression of B. burgdorferi recA resulted in survival of E. coli at levels of mitomycin C that were lethal to noncomplemented hosts. B. burgdorferi RecA was as effective as E. coli RecA in mediating homologous recombination in E. coli. Furthermore, E. coli lambda phage lysogens complemented with B. burgdorferi recA produced phage even in the absence of UV irradiation. The level of phage induction was 55-fold higher than the level in cells complemented with the homologous recA gene, suggesting that B. burgdorferi RecA may possess an enhanced coprotease activity. This study indicates that B. burgdorferi RecA mediates the same functions in E. coli as the homologous E. coli protein mediates. However, the rapid loss of viability and the absence of induction in recA expression after UV irradiation in B. burgdorferi suggest that recA is not involved in the repair of UV-induced damage in B. burgdorferi. The primary role of RecA in B. burgdorferi is likely to be a role in some aspect of recombination.  相似文献   

8.
9.
A recombinant plasmid, pRSR100, containing the functional analogue of the Escherichia coli recA gene was isolated from a genomic library of Thiobacillus ferrooxidans ATCC 33020. The plasmid complemented defects in DNA repair and homologous recombination in E. coli recA mutant strains. Antiserum raised against E. coli RecA protein reacted with the native but defective E. coli HB101 RecA protein; it did not react with protein extracts from the recA deletion mutant E. coli JK696, but it reacted with two protein bands in extracts of E. coli JK696(pRSR100). A single band with an apparent Mr equal to the higher-Mr band in E. coli JK696(pRSR100) was detected in T. ferrooxidans cell extracts with the E. coli RecA antiserum.  相似文献   

10.
The nucleotide sequence of the recA gene of Thiobacillus ferrooxidans has been determined. No SOS box characteristic of LexA-regulated promoters could be identified in the 196-bp region upstream from the coding region. The cloned T. ferrooxidans recA gene was expressed in Escherichia coli from both the lambda pR and lac promoters. It was not expressed from the 2.2-kb of T. ferrooxidans DNA preceding the gene. The T. ferrooxidans recA gene specifies a protein of 346 amino acids that has 66% and 69% homology to the RecA proteins of E. coli and Pseudomonas aeruginosa, respectively. Most amino acids that have been identified as being of functional importance in the E. coli RecA protein are conserved in the T. ferrooxidans RecA protein. Although some amino acids that have been associated with proteolytic activity have been substituted, the cloned protein has retained protease activity towards the lambda and E. coli LexA repressors.  相似文献   

11.
The recA gene of Synechococcus sp. strain PCC 7002 was detected and cloned from a lambda gtwes genomic library by heterologous hybridization by using a gene-internal fragment of the Escherichia coli recA gene as the probe. The gene encodes a 38-kilodalton polypeptide which is antigenically related to the RecA protein of E. coli. The nucleotide sequence of a portion of the gene was determined. The translation of this region was 55% homologous to the E. coli protein; allowances for conservative amino acid replacements yield a homology value of about 74%. The cyanobacterial recA gene product was proficient in restoring homologous recombination and partial resistance to UV irradiation to recA mutants of E. coli. Heterologous hybridization experiments, in which the Synechococcus sp. strain PCC 7002 recA gene was used as the probe, indicate that a homologous gene is probably present in all cyanobacterial strains.  相似文献   

12.
A fragment of Mycobacterium tuberculosis DNA containing recA-like sequences was identified by hybridization with the Escherichia coli recA gene and cloned. Although no expression was detected from its own promoter in E. coli, expression from a vector promoter partially complemented E. coli recA mutants for recombination, DNA repair, and mutagenesis, but not for induction of phage lambda. This clone produced a protein which cross-reacts with antisera raised against the E. coli RecA protein and was approximately the same size. However, the nucleotide sequence of the cloned fragment revealed the presence of an open reading frame for a protein about twice the size of other RecA proteins and the cloned product detected by Western blotting (immunoblotting). The predicted M. tuberculosis RecA protein sequence was homologous with RecA sequences from other bacteria, but this homology was not dispersed; rather it was localized to the first 254 and the last 96 amino acids, with the intervening 440 amino acids being unrelated. Furthermore, the junctions of homology were in register with the uninterrupted sequence of the E. coli RecA protein. Identical restriction fragments were found in the genomic DNAs of M. tuberculosis H37Rv and H37Ra and of M. bovis BCG. It is concluded that the ancestral recA gene of these species diversified via an insertional mutation of at least 1,320 bp of DNA. Possible processing mechanisms for synthesizing a normal-size RecA protein from this elongated sequence are discussed.  相似文献   

13.
R G Quivey  R C Faustoferri 《Gene》1992,116(1):35-42
The inactivation of the RecA protein in pathogenic oral streptococci would facilitate genetic analysis of potential virulence factors in these strains. Comparison of recA nucleotide (nt) sequences from a number of bacteria has suggested that two regions of highly conserved RecA amino acid (aa) sequence could be used as a basis for synthesizing degenerate oligodeoxyribonucleotide primers with which to amplify recA homologues from the streptococci. Accordingly, primer mixtures were used to amplify a 693-bp fragment of the Streptococcus mutans chromosome by PCR. The amplified fragment was cloned and its identity confirmed via hybridization to an Escherichia coli recA gene probe and by nt sequence determination. The recA homologue fragment from S. mutans GS-5 was 63% and 75% homologous to the deduced aa sequences of the E. coli and Bacillus subtilis RecA enzymes, respectively. The S. mutans recA fragment was mutagenized in vitro via insertional inactivation and returned to the chromosome using allelic exchange. The resulting strains of S. mutans were shown to be substantially more sensitive to UV irradiation than the wild-type strain. Further, the ability to incorporate linear markers into the chromosome was abolished in putative S. mutans recA strains, thus indicating the functional inactivation of RecA in these microorganisms.  相似文献   

14.
The deduced amino acid sequence of Gluconobacter oxydans RecA protein shows 75.2, 69.4, and 66.2% homology with those from Aquaspirillum magnetotacticum, Escherichia coli, and Pseudomonas aeruginosa, respectively. The amino acid residues essential for function of the recombinase, protease, and ATPase in E. coli recA protein are conserved in G. oxydans. Of 24 amino acid residues believed to be the ATP binding domain of E. coli RecA, 17 are found to be identical in G. oxydans RecA. Interestingly, nucleotide sequence alignment between the SOS box of G. orphans recA gene and those from different microorganisms revealed that all the DNA sequences examined have dyad symmetry that can form a stem-loop structure. A G. oxydans recA-deficient mutant (LCC96) was created by allelic exchange using the cloned recA gene that had been insertionally inactivated by a kanamycin-resistance cassette. Such replacement of the wild-type recA with a kanamycin resistance gene in the chromosome was further verified by Southern hybridization. Phenotypically, the recA-deficient mutant is significantly more sensitive to UV irradiation than the wild-type strain, suggesting that the recA gene of G. oxydans ATCC9324 plays a role in repairing DNA damage caused by UV irradiation. Moreover, the mutant strain is much more plasmid transformable than its parent strain, illustrating that G. oxydans LCC96 could be used as a host to take up the recombinant plasmid for gene manipulation.  相似文献   

15.
Mutagenesis by proximity to the recA gene of Escherichia coli   总被引:2,自引:0,他引:2  
Escherichia coli recA (Prtc) strains, which produce protease constitutive RecA proteins in the absence of DNA-damaging treatments, display an increased frequency of spontaneous mutations. These mutations occurred preferentially in the neighborhood of the recA gene. This cis-like mutagenic effect was observed in the recA, rexAB, phoE and bio genes. The localized mutagenesis can be explained by the ease with which RecA(Prtc) proteins are activated to the protease state, which implies that there should be a relatively high concentration of activated RecA protein near the recA gene, where the protein is synthesized. The unusually high frequency of mutation in the recA gene is a novel example of an overactive gene preferentially turning itself down by mutation.  相似文献   

16.
The recA gene has been isolated from Rickettsia prowazekii, an obligate intracellular bacterium. Comparison of the amino acid sequence of R. prowazekii RecA with that of Escherichia coli RecA revealed that 62% of the residues were identical. The highest identity was found with RecA of Legionella pneumophila, in which 69% of the residues were identical. Amino acid residues of E. coli RecA associated with functional activities are conserved in rickettsial RecA, and the R. prowazekii recA gene complements E. coli recA mutants for UV light and methyl methanesulfonate sensitivities as well as recombinational deficiencies. The characterized region upstream of rickettsial recA did not contain a sequence homologous to an E. coli LexA binding site (SOS box), suggesting differences in the regulation of the R. prowazekii recA gene.  相似文献   

17.
18.
We have studied the levels of recA and umuC protein synthesis in Escherichia coli as a probe for regulatory and mechanistic events involved in mitomycin C mutagenesis. Both RecA and UmuC protein induction were greatly stimulated by mitomycin C in the wild-type strain, reached a peak at about 60 min for the recA gene, and at 90 min for the umuC gene, respectively, and maintained a plateau. The induction was blocked by recA and lexA(Ind-) mutations that conferred no mutagenesis on the cell. Mutation affecting uvrA protein markedly decreased induction of the recA gene as well as the umuC gene by mitomycin C. The results established that UvrA protein is involved in the induction of recA and umuC, and account, at least in part, for the mitomycin C nonmutability of uvrA mutants.  相似文献   

19.
Mycoplasmas are wall-less prokaryotes phylogenetically related to gram-positive bacteria. In order to investigate DNA recombination in these organisms, we have cloned the recA gene from the mycoplasma Acholeplasma laidlawii. DNA sequence data indicate extensive homology between the A. laidlawii recA gene and recA genes from other bacteria, particularly Bacillus subtilis. The recA sequences from three A. laidlawii strains (strains JA1, K2, and 8195) were compared, and surprisingly, the gene from A. laidlawii 8195 was found to contain a nonsense mutation that results in truncation of 36 amino acids from the carboxyl terminus of the RecA protein. By using sensitivity to UV irradiation as a measure of DNA repair, strain 8195 had an apparent RecA- phenotype. When carried on a multicopy plasmid, the wild-type A. laidlawii recA gene was detrimental to growth of Escherichia coli, perhaps because of improper regulation of the RecA protein.  相似文献   

20.
Abstract The recA gene of Chlamydia trachomatis was isolated by complementation of an Escherichia coli recA mutant. The cloned gene restored resistance to methyl methanesulfonate in E. coli recA mutants. The DNA sequence of the chlamydial gene was determined and the deduced protein sequence compared with other RecA proteins. In E. coli recA deletion mutants, the cloned gene conferred moderate recombinational activity as assayed by Hfr matings. The chlamydial recA gene was efficient in repairing alkylated DNA but less so in repairing of UV damage when compared with the E. coli homologue. As detected by an SOS gene fusion, a small but measurable amount of LexA co-cleavage was indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号