首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ig kappa-chain gene rearrangement results in the displacement or loss of the DNA immediately 5' of Jk. This retained DNA is found on a different size fragment than in the germline (a reciprocal fragment), and contains the reciprocal joint of rearranged Vk and Jk genes, the back-to-back fusion of the heptamer/nonamer recombination signals. B cells of independent origin rarely have reciprocal fragments of the same size. However, we report that 9 of 15 B cell hybridomas of independent origin have reciprocal fragments of the same size (8-kb BamHI fragments) unrelated to their productive rearrangements. An 8-kb reciprocal fragment has also occurred on about 25% of the kappa alleles of normal splenic B cells. We find that the reciprocal fragments in two of these hybridomas contain the reciprocal joints of Jk1 genes and different Vk8 genes. In addition, we find that at least 8 of the 12 Jk4 or Jk5 expressing hybridomas have undergone double recombinations on their productive kappa alleles. The implications of these findings on the high frequency of 8-kb reciprocal rearrangements and on Vk rearrangement are discussed.  相似文献   

2.
We have analyzed the structure of Ig kappa chain genes in B cell lines derived from a human individual who cannot synthesize any kappa chains, and whose Igs all contain lambda chains (1). We have characterized secondary DNA recombination events at two kappa alleles which have undergone misaligned V-J recombinations. One such secondary recombination has joined the flanking sequences of a V kappa and a J kappa 2 gene segment as if it were the reciprocal product of a V-J kappa 2 recombination, and resulted in the displacement of the recombined VJ kappa 1 gene segments from the C kappa locus. The non-rearranged form of the V kappa fragment which had recombined with the J kappa 2 flank was cloned. Nucleotide sequencing of this fragment identified a V kappa gene that differed by at least 38% from all previously sequenced human V kappa genes. The other V-J kappa segment analyzed has undergone a secondary recombination at a different site from that described above, at a site within the intervening sequence between the J kappa and C kappa gene segments, similar to the location of secondary recombinations which have occurred in lambda + B cell lines from mice and humans (2,3). These results prove that multiple recombinations can occur at one J kappa-C kappa locus.  相似文献   

3.
E Selsing  J Voss    U Storb 《Nucleic acids research》1984,12(10):4229-4246
Many immunoglobulin (Ig)-producing cells retain the DNA that separates Ig variable (V) and constant (C) region genes in the germline. This "remnant" DNA must be moved during the recombination process that joins V and C genes via a joining (J) segment. We have analyzed remnant DNAs in several Ig-producing cell lines. The nucleotide sequences of kappa (kappa) light chain remnant DNAs indicate close relationships to V-J joining. We find fused V kappa and J kappa recognition sequences in five remnant DNAs, suggesting reciprocal relationships to the fused V kappa and J kappa segments produced by V-J joining. However, of sixteen plasmacytoma remnant DNAs analyzed, all involve only recombination with J kappa l. Thus, in most cell lines, remnant DNAs are not directly reciprocal to recombined kappa-genes. On the other hand, our analyses of some myelomas do indicate indirect relationships between remnant DNAs and kappa-genes. Our results suggest that multiple steps of DNA recombination occur during Ig-gene rearrangement. Because remnant DNA joining sites do not exhibit the flexibility that has been observed in Ig-gene V-J joining, our findings also suggest that the joining mechanism may involve endonuclease, exonuclease and ligase activities.  相似文献   

4.
5.
Contrary to the situation in humans or mice, where the constant region (C) of the Immunoglobulin (Ig) kappa (kappa) light chain is encoded by a single gene, the rabbit possesses two C kappa genes: C kappa 1 and C kappa 2. However, in domestic rabbits, the vast majority of the immunoglobulins have a light chain of the kappa 1 isotype, which is expressed under four complex, highly divergent allelic forms: b4, b5, b6 and b9. In previous papers, we have shown that this high level of divergence was due, at least partly, to conversion events of the kappa 1 by the kappa 2 locus. Up to now, little was known about the evolution of the C kappa 2 gene. Here, we report sequences of the C kappa 2 genes in three different haplotypes, and show that, in contrast to the situation in the kappa 1 locus, the three analysed C kappa 2 alleles are identical (or only differing by one silent substitution). This suggests that intergenic conversion, which introduced most of the divergence in the kappa 1 locus, is not reciprocal and is unidirectional from kappa 2 towards kappa 1. To explain the small number of silent substitutions in the C kappa 2 gene and its remarkable conservation, we propose an extended model of multigenic family evolution, which postulates that gene conversion events occur between linked genes as well as between alleles.  相似文献   

6.
The principle that the antigen and the antibody prefer different phases in an aqueous two-phase system is the analytical basis of the work presented here. The antigen horseradish peroxidase, which is bound to a monoclonal antibody (mAb), is separated from free Ag in an aqueous phase system (polyethylene glycol (PEG)/dextran) as a function of the concentration of mAb. The plot of the partition coefficient kappa of horseradish peroxidase versus the concentration of mAb yields a sigmoidal curve similar to the curve obtained by enzyme-linked immunosorbent assay (ELISA). Comparing the plots normally used for ELISA in order to determine the apparent binding constant of mAb and the number of epitopes on the Ag we derived a relationship between the difference in partitioning of the free Ag and the bound Ag (delta kappa) and the concentration of mAb. The new linear plot of reciprocal delta kappa versus reciprocal concentration of mAb gives the apparent binding constant of mAb, which is evaluated from the slope. From the intercept at the ordinate the maximum difference of the partition coefficient of the free and bound antigen is derived and the apparent partition coefficient of the free monoclonal antibody can be calculated.  相似文献   

7.
The variant (6;15) translocations in murine plasmacytomas join the myc oncogene-bearing band of chromosome 15 and the immunoglobulin kappa band of chromosome 6. We recently cloned a region from chromosome 15 linked to C kappa and have now used probes from that region to define the major locus of plasmacytoma variant translocations, which we denote pvt-1. In five of nine plasmacytomas we analysed, the 6;15 translocation resulted from reciprocal recombination between the C kappa locus and a 4.5-kb region of pvt-1. Moreover, nearby we located the region shown by others to have undergone a complex (15;12;6) translocation in plasmacytoma PC7183. All the chromosome 6 breakpoints fell between 1 and 3 kb 5' to C kappa but only two were near J kappa genes. Thus the J kappa -C kappa region appears to be a recombination 'hot spot' in lymphocytes, but the breaks are unlikely to be mediated via V/J recombination enzymes. Comparison of a cloned 108-kb region across pvt-1 and another of 52 kb across c-myc established that the pvt-1 breakpoints lie at least 72 kb from the c-myc promoters. Since c-myc is expressed at a substantial level, the 6;15 translocation apparently activates c-myc. Activation may occur directly, at a remarkable distance along the chromosome, or indirectly, via a putative pvt-1 gene product.  相似文献   

8.
The products of kappa immunoglobulin gene recombination have been characterized in two murine plasmacytomas to examine the relationship between V-J products and reciprocal elements. By cloning, sequencing, hybridization, and application of the polymerase chain reaction, we have established the direct relationship of the kappa recombination products in these cells. The results provide stronger support for the intrastrand mechanism of kappa gene recombination as well as demonstrating a role for secondary, corrective recombinations.  相似文献   

9.
A complex translocation at the murine kappa light-chain locus.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have previously reported that a segment of DNA from a murine plasmacytoma comprises DNA from three chromosomes, the immunoglobulin kappa light-chain locus on chromosome 6, the S mu locus on chromosome 12, and a region on chromosome 15. We now report that the reciprocal product contains DNA from only the kappa locus and chromosome 15 and not from S mu. We conclude that a complex series of events, including both a transposition of DNA and a translocation between chromosomes, generated these imperfect reciprocal products.  相似文献   

10.
Previous characterization of mouse immunoglobulin kappa gene rearrangement products cloned from murine plasmacytomas has indicated that two recombination events can take place on a single kappa allele (R. M. Feddersen and B. G. Van Ness, Proc. Natl. Acad. Sci. USA 82:4792-4797, 1985; M. A. Shapiro and M. Weigert, J. Immunol. 139:3834-3839, 1987). To determine whether multiple recombinations on a single kappa allele can contribute to the formation of productive V-J genes through corrective recombinations, we have examined several Abelson murine leukemia virus-transformed pre-B-cell clones which rearrange the kappa locus during cell culture. Clonal cell lines which had rearranged one kappa allele nonproductively while maintaining the other allele in the germ line configuration were grown, and secondary subclones, which subsequently expressed kappa protein, were isolated and examined for further kappa rearrangement. A full spectrum of rearrangement patterns was observed in this sequential cloning, including productive and nonproductive recombinations of the germ line allele and secondary recombinations of the nonproductive allele. The results show that corrective V-J recombinations, with displacement of the nonproductive kappa gene, occur with a significant frequency (6 of 17 kappa-producing subclones). Both deletion and maintenance of the primary (nonfunctional) V-J join, as a reciprocal product, were observed.  相似文献   

11.
Wild-type V(D)J recombination in scid pre-B cells.   总被引:14,自引:8,他引:6       下载免费PDF全文
Homozygous mutation at the scid locus in the mouse results in the aberrant rearrangement of immunoglobulin and T-cell receptor gene segments. We introduced a retroviral vector containing an inversional immunoglobulin rearrangement cassette into scid pre-B cells. Most rearrangements were accompanied by large deletions, consistent with previously characterized effects of the scid mutation. However, two cell clones were identified which contained perfect reciprocal fragments and wild-type coding joints, documenting, on a molecular level, the ability of scid pre-B cells to generate functional protein-coding domains. Subsequent rearrangement of the DGR cassette in one of these clones was accompanied by a deletion, suggesting that this cell clone had not reverted the scid mutation. Indeed, induced rearrangement of the endogenous kappa loci in these two cell clones resulted in a mixture of scid and wild-type V-J kappa joints, as assayed by a polymerase chain reaction and DNA sequencing. In addition, three immunoglobulin mu- scid pre-B cell lines showed both scid and wild-type V-J kappa joins. These experiments strongly suggest that the V(D)J recombinase activity in scid lymphoid cells is diminished but not absent, consistent with the known leakiness of the scid mutation.  相似文献   

12.
13.
Chromatin remodeling at the Ig loci prior to V(D)J recombination.   总被引:8,自引:0,他引:8  
Rearrangement of Ig H and L chain genes is highly regulated and takes place sequentially during B cell development. Several lines of evidence indicate that chromatin may modulate accessibility of the Ig loci for V(D)J recombination. In this study, we show that remodeling of V and J segment chromatin occurs before V(D)J recombination at the endogenous H and kappa L chain loci. In recombination-activating gene-deficient pro-B cells, there is a reorganization of nucleosomal structure over the H chain J(H) cluster and increased DNase I sensitivity of V(H) and J(H) segments. The pro-B/pre-B cell transition is marked by a decrease in the DNase I sensitivity of V(H) segments and a reciprocal increase in the nuclease sensitivity of Vkappa and Jkappa segments. In contrast, J(H) segments remain DNase I sensitive, and their nucleosomal organization is maintained in mu(+) recombination-activating gene-deficient pre-B cells. These results indicate that initiation of rearrangement is associated with changes in the chromatin structure of both V and J segments, whereas stopping recombination involves changes in only V segment chromatin. We further find an increase in histone H4 acetylation at both the H and kappa L chain loci at the pro-B cell stage. Although histone H4 acetylation appears to be an early change associated with B cell commitment, acetylation alone is not sufficient to promote subsequent modifications in Ig chromatin.  相似文献   

14.
Fusions were performed between the mouse PAI myeloma cell line and spleen cells from Balb/c mice immunized with intact erythrocytes from 1-day Cornell K-strain White Leghorn chickens. Following single cell cloning, four hybridoma clones were found to secrete erythroid specific monoclonal antibodies. Based on its pattern of reactivity, the antibody (IgG2a, kappa) secreted by clone 10C6 detects a specific avian oncodevelopmental antigen associated with the hematopoietic system: chicken fetal antigen (CFA). Two other clones, designated as 3F12 and 4C2, produced antibodies (IgM, kappa) that recognize another avian developmental antigen: chicken adult antigen (CAA). A fourth clone, 9F9, produced an antibody (IgM, kappa) that reacts with all peripheral erythrocytes from both Japanese quail and chicken regardless of age. Clone 10C6 antibody apparently detects an erythrocyte specific (ES) determinant of CFA associated with determinant #8 while antibodies of clones 3F12 and 4C2 recognize a chicken specific determinant of CAA. Analysis by complement mediated microcytotoxicity indicated that the epitopes detected by 10C6 vs 3F12 and 4C2 antibodies were expressed on erythrocytes in a reciprocal fashion during development. Furthermore, strain variations in the incidence of erythrocytes carrying these epitopes were observed. The usefulness of these monoclonal antibodies for the study of erythroid populations is discussed.  相似文献   

15.
There is growing evidence that interactions between biological molecules (e.g., RNA-RNA, protein-protein, RNA-protein) place limits on the rate and trajectory of molecular evolution. Here, by extending Kimura's model of compensatory evolution at interacting sites, we show that the ratio of transition to transversion substitutions (kappa) at interacting sites should be equal to the square of the ratio at independent sites. Because transition mutations generally occur at a higher rate than transversions, the model predicts that kappa should be higher at interacting sites than at independent sites. We tested this prediction in 10 RNA secondary structures by comparing phylogenetically derived estimates of kappa in paired sites within stems (kappa(p)) and unpaired sites within loops (kappa(u)). Eight of the 10 structures showed an excellent match to the quantitative predictions of the model, and 9 of the 10 structures matched the qualitative prediction kappa(p) > kappa(u). Only the Rev response element from the human immunovirus (HIV) genome showed the reverse pattern, with kappa(p) < kappa(u). Although a variety of evolutionary forces could produce quantitative deviations from the model predictions, the reversal in magnitude of kappa(p) and kappa(u) could be achieved only by violating the model assumption that the underlying transition (or transversion) mutation rates were identical in paired and unpaired regions of the molecule. We explore the ability of the APOBEC3 enzymes, host defense mechanisms against retroviruses, which induce transition mutations preferentially in single-stranded regions of the HIV genome, to explain this exception to the rule. Taken as a whole, our findings suggest that kappa may have utility as a simple diagnostic to evaluate proposed secondary structures.  相似文献   

16.
We previously reported that domestic rabbits harbor at least two DNA sequences that hybridize strongly to immunoglobulin kappa C region probes in Southern blots. One of these was cloned from a domestic b4 rabbit and identified as the gene for the nominal b4 allotype kappa chain which is expressed at high levels. We now have cloned (from a b4 rabbit) the other homologous sequence and find that it encodes a kappa chain nearly identical to the kappa 2 chain of "bas" rabbits, which is not normally expressed at detectable levels in domestic rabbits. Sequence analysis of this kappa 2 chain reveals a J kappa -C kappa locus with no obvious coding sequence defects that could explain its low expression. However, several base changes in a putative enhancer region as well as deletions (totalling about 1.5 kb) in the J-C intron might be related to low expression. The comparison between these two kappa genes raises questions about the selective pressures operating during the evolution of this gene system.  相似文献   

17.
A molecular cloning approach was used to determine the relative utilization of 2 individual V kappa 21 genes, 13 V kappa gene families, and the 4 functional J kappa gene segments among splenic B cells of nonimmunized BALB/c mice. Based on the observed frequency of individual V kappa gene expression, we estimate that the mouse genome encodes 150 to 180 functional V kappa genes, and we suggest that most functional V kappa exons are expressed at comparable frequencies in the preimmune antibody repertoire. In contrast, clear differences in J kappa segment utilization were observed, J kappa 4 being consistently underrepresented with respect to the other J kappa segments.  相似文献   

18.
19.
20.
As part of the ongoing work in our laboratory on the structural organization of the human V kappa locus we screened cosmid libraries with V kappa gene probes and obtained numerous V kappa gene-containing cosmid clones. Several genomic regions of the V kappa locus were reconstructed from overlapping cosmid inserts and were extended by one step of chromosomal walking. The regions that are called Wa, Wb, Oa, Ob and Ob' comprise about 370 kb (10(3) bases) of DNA and contain 24 V kappa genes and pseudogenes. The V kappa genes belong to the three dominant subgroups (V kappa I, V kappa II, V kappa III) and are arranged to form mixed clusters with members of the different subgroups being intermingled with each other. The distances between the genes range from 1 to 15 kb. Three genes of the Wa and Wb regions that were sequenced turned out to be pseudogenes. Terminal parts of the regions Wa and Ob that do not contain V kappa genes of one of the known subgroups may represent extended spacer regions within the V kappa locus. Wa and Wb are duplicated regions located at different positions of the locus. Region Wb was found to comprise inversely repeated sections of at least 14 kb each that contain V kappa genes oriented in opposite polarity. This finding is consistent with inversion-deletion models of V-J joining; it also shows that the V kappa locus contains not only unique and duplicated but also triplicated parts. The data on the W and O regions are discussed together with those on the L regions and on other regions established in our laboratory. Although the picture of the human V kappa locus with, to date, about 70 different non-allelic V kappa genes is still incomplete, some general features with respect to the organization of the genes and the limited duplication of genomic regions have emerged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号