首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to examine whether the influence of conditioning contraction intensity on the extent of postactivation potentiation (PAP) is muscle dependent. Eleven healthy males performed both thumb adduction and plantar flexion as a conditioning contraction. The conditioning contraction intensities were set at 20%, 40%, 60%, 80%, or 100% of the maximal voluntary isometric contraction (MVC).Before and after the conditioning contraction, twitch torque was measured for the respective joint to calculate the extent of PAP. In plantar flexion, the extent of PAP became significantly larger as the conditioning contraction intensity increased up to 80% MVC (p < 0.05). In contrast, the extent of PAP in thumb adduction increased significantly only up to 60% MVC (p < 0.05), but not at higher intensities.These results indicate that the influence of the conditioning contraction intensity on the extent of PAP is muscle dependent. Our results suggest that a conditioning contraction with submaximal intensity can sufficiently evoke sizable PAP in the muscle where most of muscle fibers are recruited at submaximal intensities, thereby attenuating muscle fatigue induced by the conditioning contraction.  相似文献   

2.
The central- and peripheral mechanisms by which heat strain limits physical performance are not fully elucidated. Nevertheless, pre-cooling is often used in an attempt to improve subsequent performance. This study compared the effects of pre-cooling vs. a pre-thermoneutral application on central- and peripheral fatigue during 60% of isometric maximum voluntary contraction (MVC) of the right quadriceps femoris muscle. Furthermore, the effects between a pre-cooling and a pre-thermoneutral application on isometric MVC of the right quadriceps femoris muscle and subjective ratings of perceived exertion (RPE) were investigated. In this randomized controlled trial, 18 healthy adults voluntarily participated. The participants received either a cold (experimental) application (+8 °C) or a thermoneutral (control) application (+32 °C) for 20 min on their right thigh (one cuff). After the application, central (fractal dimension – FD) and peripheral (muscle fiber conduction velocity – CV) fatigue was estimated using sEMG parameters during 60% of isometric MVC. Surface EMG signals were detected from the vastus medialis and lateralis using bidimensional arrays. Immediately after the submaximal contraction, isometric MVC and RPE were assessed. Participants receiving the cold application were able to maintain a 60% isometric MVC significantly longer when compared to the thermoneutral group (mean time: 78 vs. 46 s; p=0.04). The thermoneutral application had no significant impact on central fatigue (p>0.05) compared to the cold application (p=0.03). However, signs of peripheral fatigue were significantly higher in the cold group compared to the thermoneutral group (p=0.008). Pre-cooling had no effect on isometric MVC of the right quadriceps muscle and ratings of perceived exertion. Pre-cooling attenuated central fatigue and led to significantly longer submaximal contraction times compared to the pre-thermoneutral application. These findings support the use of pre-cooling procedures prior to submaximal exercises of the quadriceps muscle compared to pre-thermoneutral applications.  相似文献   

3.
PurposeTo compare a new normalization technique (wax pad, WAX) with the currently utilized cotton roll (COT) method in surface electromyography (sEMG) of the masticatory muscles.MethodssEMG of the masseter and anterior temporalis muscles of 23 subjects was recorded while performing two repetitions of 5 s maximum voluntary clenches (MVC) on COT and WAX. For each task, the mean value of sEMG amplitude and its coefficient of variation were calculated, and the differences between the two repetitions computed. The standard error of measurement (SEM) was calculated. For each subject and muscle, the COT-to-WAX maximum activity increment was computed. Participant preference between tasks was also recorded.ResultsWAX MVC tasks had larger maximum EMG amplitude than COT MVC tasks (P < 0.001), with COT-to-WAX maximum amplitude increments of 61% (temporalis) and 94% (masseter) (P = 0.006). WAX MVC had better test-retest repeatability than COT. For both MVC modalities, the mean amplitude (P > 0.391) and its coefficient of variation were unchanged (P > 0.180). The WAX task was the more comfortable for 18/23 subjects (P = 0.007).ConclusionWAX normalization ensures the same stability level of maximum EMG amplitude as COT normalization, but it is more repeatable, elicits larger maximum muscular contraction, and is felt to be more comfortable by subjects.  相似文献   

4.
In this study, the effects of mental fatigue on mechanically induced tremor at both a low (3–6 Hz) and high (8–12 Hz) frequency were investigated. The two distinct tremor frequencies were evoked using two springs of different stiffness, during 20 s sustained contractions of the knee extensor muscles at 30% maximum voluntary contraction (MVC) before and after 100 min of a mental fatigue task, in 12 healthy (29 ± 3.7 years) participants. Mental fatigue resulted in a 6.9% decrease in MVC and in a 9.4% decrease in the amplitude of the agonist muscle EMG during sustained 30% MVC contractions in the induced high frequency only. Following the mental fatigue task, the coefficient of variation and standard deviation of the force signal decreased at 8–12 Hz induced tremor by 31.7% and 35.2% respectively, but not at 3–6 Hz induced tremor. Similarly, the maximum value and area underneath the peak in the power spectrum of the force signal decreased by 55.5% and 53.1% respectively in the 8–12 Hz range only. In conclusion, mental fatigue decreased mechanically induced 8–12 Hz tremor and had no effect on induced 3–6 Hz tremor. We suggest that the reduction could be attributed to the decreased activation of the agonist muscles.  相似文献   

5.
The effects of fatigue on maximum voluntary contraction (MVC) parameters were examined by using force and surface electromyography (sEMG) signals of the biceps brachii muscles (BBM) of 12 subjects. The purpose of the study was to find the sEMG time interval of the MVC recordings which is not affected by the muscle fatigue. At least 10 s of force and sEMG signals of BBM were recorded simultaneously during MVC. The subjects reached the maximum force level within 2 s by slightly increasing the force, and then contracted the BBM maximally. The time index of each sEMG and force signal were labeled with respect to the time index of the maximum force (i.e. after the time normalization, each sEMG or force signal’s 0 s time index corresponds to maximum force point). Then, the first 8 s of sEMG and force signals were divided into 0.5 s intervals. Mean force, median frequency (MF) and integrated EMG (iEMG) values were calculated for each interval. Amplitude normalization was performed by dividing the force signals to their mean values of 0 s time intervals (i.e. ?0.25 to 0.25 s). A similar amplitude normalization procedure was repeated for the iEMG and MF signals. Statistical analysis (Friedman test with Dunn’s post hoc test) was performed on the time and amplitude normalized signals (MF, iEMG). Although the ANOVA results did not give statistically significant information about the onset of the muscle fatigue, linear regression (mean force vs. time) showed a decreasing slope (Pearson-r = 0.9462, p < 0.0001) starting from the 0 s time interval. Thus, it might be assumed that the muscle fatigue starts after the 0 s time interval as the muscles cannot attain their peak force levels. This implies that the most reliable interval for MVC calculation which is not affected by the muscle fatigue is from the onset of the EMG activity to the peak force time. Mean, SD, and range of this interval (excluding 2 s gradual increase time) for 12 subjects were 2353, 1258 ms and 536–4186 ms, respectively. Exceeding this interval introduces estimation errors in the maximum amplitude calculations of MVC–sEMG studies for BBM. It was shown that, simultaneous recording of force and sEMG signals was required to calculate the maximum amplitude of the MVC–sEMG more accurately.  相似文献   

6.
ObjectiveThe objective of this work was to study modifications in motor control through surface electromyographic (sEMG) activity during a very short all-out cycling exercise.MethodsTwelve male cyclists (age 23 ± 4 years) participated in this study. After a warm-up period, each subject performed three all-out cycling exercises of 6 s separated by 2 min of complete rest. This protocol was repeated three times with a minimum of 2 days between each session. The braking torque imposed on cycling motion was 19 N m. The sEMG of the vastus lateralis was recorded during the first seven contractions of the sprint. Time–frequency analysis of sEMG was performed using continuous wavelet transform. The mean power frequency (MPF, qualitative modifications in the recruitment of motor units) and signal energy (a quantitative indicator of modifications in the motor units recruitment) were computed for the frequency range 10–500 Hz.ResultssEMG energy increased (P ? 0.05) between contraction number 1 and 2, decreased (P ? 0.05) between contraction number 2 and 3 then stabilized between contraction number 3 and 7 during the all-out test. MPF increased (P ? 0.05) during the all-out test. This increase was more marked during the first two contractions.ConclusionsThe decrease in energy and the increase in the sEMG MPF suggest a large spatial recruitment of motor units (MUs) at the beginning of the sprint followed by a preferential recruitment of faster MUs at the end of the sprint, respectively.  相似文献   

7.
PurposePrevious studies have suggested that muscle coactivation could be reduced by a recurrent activity (training, daily activities). If this was correct, skilled athletes should show a specific muscle activation pattern with a low level of coactivation of muscles which are typically involved in their discipline. In particular, the aim of this study was to verify the hypothesis that the amount of antagonist activation of biceps brachii (BB) and triceps brachii (TB) is different between tennis players and non-players individuals during maximal isokinetic contractions.MethodsTen young healthy men and eight male tennis players participated in the study. The surface electromyographic signals (sEMG) were recorded from the BB and TB muscles during three maximal voluntary isometric contractions (MVC) of elbow flexors and extensors and a set of three maximal elbow flexions and extensions at 15°, 30°, 60°, 120°, 180° and 240°/s. Normalized root mean square (RMS) of sEMG was calculated as an index of sEMG amplitude.ResultsAntagonist activation (%RMSmax) of TB was significantly lower in tennis players (from 14.0 ± 7.9% at MVC to 16.3 ± 8.9% at 240°/s) with respect to non-players (from 27.7 ± 19.7% at MVC to 38.7 ± 17.6% at 240°/s) at all angular velocities. Contrary to non-players, tennis players did not show any difference in antagonist activation between BB and TB muscles.ConclusionsTennis players, with a constant practice in controlling forces around the elbow joint, learn how to reduce coactivation of muscles involved in the control of this joint. This has been shown by the lower antagonist muscular activity of triceps brachii muscle during isokinetic elbow flexion found in tennis players with respect to non-players.  相似文献   

8.
In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters (n = 11) and endurance athletes (n = 12) in not-specifically trained muscle (biceps brachii) during prolonged dynamic exercises at low forces. sEMG was acquired during 4 min’ exercises: unloaded, 5%, 10% and 20% of maximal voluntary contraction (MVC). The features extracted from the sEMG were: the mean muscle conduction velocity – estimated using the inter-peak latency and cross-correlation methods, the within-subject skewness (expressing the proportions of faster and slower propagating MUPs) and the within-subject standard deviation of MUP velocities (SD-mup). Sprinters showed a greater proportion of faster propagating MUPs than endurance athletes. During fatigue, the SD-mup of sprinters broadened progressively, whereas that of endurance athletes did not. The findings suggest that sprinters conveyed a greater proportion of faster motor units than endurance athletes and that motor unit behavior during fatigue differed between groups. Thus, the distribution of MUP velocities enables distinction between a muscle of sprinters and endurance athletes during prolonged dynamic exercises at low forces.  相似文献   

9.
Motor unit behavior differs between contraction types at submaximal contraction levels, however is challenging to study during maximal voluntary contractions (MVCs). With multi-channel surface electromyography (sEMG), mean physiological characteristics of the active motor units can be extracted. Two 8-electrode sEMG arrays were attached on biceps brachii muscle (one on each head) to examine behavior of sEMG variables during isometric, eccentric and concentric MVCs of elbow flexors in 36 volunteers.On average, isometric (364 ± 88 N) and eccentric (353 ± 74 N) MVCs were higher than concentric (290 ± 73 N) MVC (p < 0.001). Mean muscle fiber conduction velocity (CV) was highest during eccentric MVC (4.42 ± 0.49 m/s) than concentric (4.25 ± 0.49 m/s, p < 0.01) and isometric (4.14 ± 0.45 m/s, p < 0.001) MVCs. Furthermore, eccentric MVC showed lower sEMG amplitude at the largest elbow joint angles (120–170°) and higher CV at the smallest (70–150°) elbow joint angles (p < 0.05–0.001) than concentric MVC.The differences in CV and sEMG amplitude between the MVCs suggest that the control strategy of motor units differs between the contraction types during MVCs, and is dependent on the muscle length between the dynamic MVCs.  相似文献   

10.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

11.
The aim was to assess the effects of sex and age on fatigability and recovery from sustained maximal voluntary contraction (MVC) of the knee extensor muscles. The central (central activation ratio (CAR) and electrical activity amplitude) and peripheral (electrically evoked torque and muscle contractile properties) factors contributing to fatigue and recovery of 24 young adults (12 males) aged 23.2 ± 3.6 years and 20 older adults (12 males) aged 70.6 ± 4.4 years were compared. The increase in central and peripheral fatigue was greater (p  0.01) in the young adults vs the older adults. Sex differences (p = 0.002) regarding MVC were attributed to the greater (p < 0.01) peripheral fatigue of males vs females. The recovery rate of MVC was greater (p < 0.001) in the young adults vs the older adults, with no sex effect. The recovery of MVC was correlated with the CAR in older adults (p = 0.001). Thus, the greater endurance observed with age is caused by differences in central and peripheral mechanisms, whereas the greater endurance in females is caused by a difference in a mechanism located within the muscle. The impaired recovery from fatigue in older adults relied more on the recovery of central factors.  相似文献   

12.
Experiments were carried out to examine whether innervation zone (IZ) location remains stable at different levels of isometric contraction in the biceps brachii muscle (BB), and to determine how the proximity of the IZ affects common surface electromyography (sEMG) parameters. Twelve subjects performed maximal (MVC) and submaximal voluntary isometric contractions at 10%, 20%, 30%, 40%, 50% and 75% of MVC. sEMG signals were recorded with a 13 rows × 5 columns grid of electrodes from the short head of BB. The IZ shifted in the proximal direction by up to 2.4 cm, depending upon the subject and electrode column. The mean shift of all the columns was 0.6 ± 0.4 cm (10% vs. 100% MVC, P < 0.001). This shift biased the average values of mean frequency (+21.8 ± 9.9 Hz, P < 0.001), root mean square (?0.16 ± 0.15 mV, P < 0.05) and conduction velocity (?1.15 ± 0.93 m/s, P < 0.01) in the channels immediately proximal to the IZ. The shift in IZ could be explained by shortening of the muscle fibers, and thus lengthening of the (distal) tendon due to increasing force. These results underline the importance of individual investigation of IZ locations before the placement of sEMG electrodes, even in isometric contractions.  相似文献   

13.
In this paper, we propose a force estimation model to compute the handgrip force from SEMG signal during fatiguing muscle contraction tasks. The appropriate frequency range was analyzed using various combinations of a wavelet scale, and the highest accuracy was achieved at a range from 242 to 365 Hz. After that, eight healthy individuals performed a series of static (70%, 50%, 30%, and 20% MVC) and dynamic (0–50% MVC) muscle contraction tasks to evaluate the performance of this technique in comparison with that of former method using the Root Mean Square of the SEMG signal. Both methods had comparable results at the beginning of the experiments, before the onset of muscle fatigue. However, differences were clearly observed as the degree of muscle fatigue began to increase toward the endurance time. Under this condition, the estimated handgrip force using the proposed method improved from 17% to 134% for static contraction tasks and 40% for dynamic contraction tasks. This study overcomes the limitation of the former method during fatiguing muscle contraction tasks and, therefore, unlocks the potential of utilizing the SEMG signal as an indirect force estimation method for various applications.  相似文献   

14.
Although mechanomyography (MMG) reflects local vibrations from contracting muscle fibers, it also includes bulk movement: deformation in global soft tissue around measuring points. To distinguish between them, we compared the multi-channel MMG of resting muscle, which dominantly reflected the bulk movement caused by arterial pulsations, to that of the contracting muscle. The MMG signals were measured at five points around the upper arms of 10 male subjects during resting and during isometric ramp contraction from 5% to 85% of maximal voluntary contraction (MVC) of the biceps brachii muscle. The characteristics of bulk movement were defined as the amplitude distribution and phase relation among the five MMG signals. The bulk movement characteristics during the rest state were not necessarily the same among the subjects. However, below 30 Hz, each subject’s characteristics remained the same from the rest state (0% MVC) to the contracting state (80% MVC), at which the bulk movement mainly originates from muscle contraction activity. Results show that the MMG of the low frequency domain (<30 Hz) includes bulk movement depending on the mechanical deformation characteristics of each subject’s body, for a wide range of muscle contraction intensities.  相似文献   

15.
The objective was to explore if vibration superposed to tonic contraction induces plastic changes in the contra- and ipsilateral motor cortex. Healthy subjects (n = 12) abducted the right index finger with a force 5% of maximal voluntary contraction (MVC) against the lever of a torque motor while a 60 Hz vibration stimulus of 10 min was delivered. Motor evoked potentials (MEPs) after single and paired-pulse transcranial magnetic stimulation (TMS) were recorded from the first dorsal interosseous muscle of right and left hand pre, during, post and 30 min post-stimulation. The TMS assessments were employed with tonic contraction alone (TONIC) and with superposed vibrostimulation (VIBRO), each for the ipsi- and contralateral cortex separately. In the contralateral cortex: resting motor threshold (rMT) decreased, MEP amplitudes increased, short-interval intracortical inhibition (SICI) reduced and intracortical facilitation (ICF) increased post VIBRO, while no changes occurred post TONIC. In the ipsilateral cortex: rMT decreased, MEP amplitude increased and SICI reduced during TONIC, while no changes occurred post TONIC, during and post VIBRO. Vibration superposed to tonic contraction, induces lasting (30 min) plastic changes, whereas contraction alone caused no outlasting effects. Mainly intrinsic intracortical mechanisms are involved because spinal adaptation could be excluded (F-wave assessments). These findings have a therapeutic potential in the functional recovery of motor deficits with robot-aided devices.  相似文献   

16.
PurposeVibratory stimuli enhance muscle activity and may be used for rehabilitation and performance enhancement. Efficacy of vibration varies with the frequency of stimulation, but the optimal frequency is unclear. The purpose of this study was to examine the effects of 30 Hz and 60 Hz local muscle vibration (LMV) on quadriceps function.MethodsTwenty healthy volunteers (age = 20.4 ± 1.4 years, mass = 68.1 ± 11.0 kg, height = 170.1 ± 8.8 cm, males = 9) participated. Isometric knee extensor peak torque (PT), rate of torque development (RTD), and electromyography (EMG) of the quadriceps were assessed followed by one of the three LMV treatments (30 Hz, 60 Hz, control) applied under voluntary contraction, and again immediately, 5, 15, and 30 min post-treatment in three counterbalanced sessions. Dependent variables were analyzed using condition by time repeated-measures ANOVA.ResultsThe condition × time interaction was significant for EMG amplitude (p = 0.001), but not for PT (p = 0.324) or RTD (p = 0.425). The increase in EMG amplitude following 30 Hz LMV was significantly greater than 60 Hz LMV and control.ConclusionsThese findings suggest that 30 Hz LMV may elicit an improvement in quadriceps activation and could be used to treat quadriceps dysfunction resulting from knee pathologies.  相似文献   

17.
Exposure to vibration is suggested as a risk factor for developing neck and shoulder disorders in working life. Mechanical vibration applied to a muscle belly or a tendon can elicit a reflex muscle contraction, also called tonic vibration reflex, but the mechanisms behind how vibration could cause musculoskeletal disorders has not yet been described. One suggestion has been that the vibration causes muscular fatigue. This study investigates whether vibration exposure changes the development of muscular fatigue in the trapezius muscle. Thirty-seven volunteers (men and women) performed a sub-maximal isometric shoulder elevation for 3 min. This was repeated four times, two times with induced vibration and two times without. Muscle activity was measured before and after each 3-min period to look at changes in the electromyography parameters. The result showed a significantly smaller mean frequency decrease when performing the shoulder elevation with vibration (?2.51 Hz) compared to without vibration (?4.04 Hz). There was also a slightly higher increase in the root mean square when exposed to vibration (5.7% of maximal voluntary contraction) compared to without (3.8% of maximal voluntary contraction); however, this was not statistically significant. The results of the present study indicate that short-time exposure to vibration has no negative acute effects on the fatiguing of upper trapezius muscle.  相似文献   

18.
The time course of alteration in neuromuscular function of the knee extensor muscles was characterized during a prolonged intermittent exercise. Maximal voluntary contraction (MVC) and surface EMG activity of both vastii were measured during brief interruptions before (T0), during (30, 60, 90, 120, 150 and 180 min: T30, T60, T90, T120, T150, T180) and 30 min after (T+30) a 3 h tennis match in 12 trained players. M-wave and twitch contractile properties were analyzed following single stimuli. Short tetani at 20 Hz and 80 Hz were also applied to six subjects at T0 and T180. Significant reductions in MVC (P < 0.05; −9%) and electromyographic activity normalized to the M wave for both vastii (P < 0.01) occurred with fatigue at T180. No significant changes in M-wave duration and amplitude nor in twitch contractile properties were observed. The ratio between the torques evoked by 20 Hz and 80 Hz stimulation declined significantly (P < 0.001; −12%) after exercise. Central activation failure and alterations in excitation–contraction coupling are probable mechanisms contributing to the moderate impairment of the neuromuscular function during prolonged tennis playing.  相似文献   

19.
Surface myoelectric signal changes occurring during sustained isometric contractions have been extensively studied with quantitative surface electromyography (sEMG) and are described by means of some sEMG global variables in time and frequency domain (such as the median power spectral frequency). Recently, the possibility of studying local muscle O2 saturation during exercise using non-invasive methods has been enhanced thanks to the use of near-infrared spectroscopy (NIRS). The purpose of this work was to combine NIRS and sEMG techniques to analyze the relationship between modifications of sEMG parameters and the underlying metabolic status of the exercising biceps brachii muscle. This relationship was tested under different isometric contraction modalities, namely static (ST) at 20, 40, 60 and 80%MVC and sinusoidal (SIN) at 40 ± 20 and 60 ± 20%MVC. Results clearly indicated the presence of an initial fast phase of muscle O2 desaturation followed by a slow phase, regardless of the contraction modality. Moreover, the initial rate of muscle O2 desaturation was related to the level of force output (R = 0.92), but it was independent on the contraction modality (p < 0.05). Similarly, changes in sEMG parameters were related to force level (Conduction Velocity-CV vs. Force: R = 0.87; sEMG Median Frequency-MDF vs. Force: R = 0.86). The high correlation found between CV-MDF and Tissue Oxygenation Index (TOI) slope (R = 0.73 and 0.72, respectively) suggests a strong relationship between NIRS and sEMG data. This study indicates that muscle O2 demand during isometric contractions from low to high force levels is influenced by the type of active motor units and not from the type of isometric exercise modality.  相似文献   

20.
Whole body vibration (WBV) during exercise offers potential to augment the effects of basic exercises. However, to date there is limited information on the basic physiological and biomechanical effects of WBV on skeletal muscles. The aim of this study was to determine the effects of WBV (40 Hz, 1.9 mm synchronous vertical displacement) on the myoelectrical activity of selected plantarflexors during heel raise exercise. 3D motion capture of the ankle, synchronised with sEMG of the lateral gastrocnemius and soleus, was obtained during repetitive heel raises carried out at 0.5 Hz on 10 healthy male subjects (age 27 ± 5 years, height 1.78 ± 0.04 m, weight 75.75 ± 11.9 kg). During both vibration and non vibration the soleus activation peaked earlier than that of the lateral gastrocnemius. The results indicate that WBV has no effect on the timing of exercise completion or the amplitude of the lateral gastrocnemius activity, however significant increases in amplitudes of the soleus muscle activity (77.5–90.4% MVC P < 0.05). WBV had no significant effect on median frequencies of either muscle. The results indicate that the greatest effect of WBV during heel raise activity is in the soleus muscles during the early phases of heel raise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号