首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prevalent de novo biosynthetic pathway of vitamin B6 involves only two enzymes (Pdx1 and Pdx2) that form an ornate multisubunit complex functioning as a glutamine amidotransferase. The synthase subunit, Pdx1, utilizes ribose 5-phosphate and glyceraldehyde 3-phosphate, as well as ammonia derived from the glutaminase activity of Pdx2 to directly form the cofactor vitamer, pyridoxal 5'-phosphate. Given the fact that a single enzyme performs the majority of the chemistry behind this reaction, a complicated mechanism is anticipated. Recently, the individual steps along the reaction co-ordinate are beginning to be unraveled. In particular, the binding of the pentose substrate and the first steps of the reaction have been elucidated but it is not known if the latter part of the chemistry, involving the triose sugar, takes place in the same or a disparate site. Here, we demonstrate through the use of enzyme assays, enzyme kinetics, and mutagenesis studies that indeed a second site is involved in binding the triose sugar and moreover, is the location of the final vitamin product, pyridoxal 5'-phosphate. Furthermore, we show that product release is triggered by the presence of a PLP-dependent enzyme. Finally, we provide evidence that a single arginine residue of the C terminus of Pdx1 is responsible for coordinating co-operativity in this elaborate protein machinery.  相似文献   

2.
The predominant biosynthetic route to vitamin B6 is catalyzed by a single enzyme. The synthase subunit of this enzyme, Pdx1, operates in concert with the glutaminase subunit, Pdx2, to catalyze the complex condensation of ribose 5-phosphate, glutamine and glyceraldehyde 3-phosphate to form pyridoxal 5'-phosphate, the active form of vitamin B6. In previous studies it became clear that many if not all of the reaction intermediates were covalently bound to the synthase subunit, thus making them difficult to isolate and characterize. Here we show that it is possible to follow a single turnover reaction by heteronuclear NMR using (13)C- and (15)N-labeled substrates as well as (15)N-labeled synthase. By denaturing the enzyme at points along the reaction coordinate, we solved the structures of three covalently bound intermediates. This analysis revealed a new 1,5 migration of the lysine amine linking the intermediate to the enzyme during the conversion of ribose 5-phosphate to pyridoxal 5'-phosphate.  相似文献   

3.
4.
In most eubacteria, fungi, apicomplexa, plants and some metazoans, the active form of vitamin B6, PLP (pyridoxal 5-phosphate), is de novo synthesized from three substrates, R5P (ribose 5-phosphate), DHAP (dihydroxyacetone phosphate) and ammonia hydrolysed from glutamine by a complexed glutaminase. Of the three active sites of DXP (deoxyxylulose 5-phosphate)independent PLP synthase (Pdx1), the R5P isomerization site has been assigned, but the sites for DHAP isomerization and PLP formation remain unknown. In the present study, we present the crystal structures of yeast Pdx1/Snz1, in apo-, G3P (glyceraldehyde 3-phosphate)- and PLP-bound forms, at 2.3, 1.8 and 2.2 ? (1 ?=0.1 nm) respectively. Structural and biochemical analysis enabled us to assign the PLP-formation site, a G3P-binding site and a G3P-transfer site. We propose a putative catalytic mechanism for Pdx1/Snz1 in which R5P and DHAP are isomerized at two distinct sites and transferred along well-defined routes to a final destination for PLP synthesis.  相似文献   

5.
Vitamin B6 is an essential metabolite in all organisms, being required as a cofactor for a wide variety of biochemical reactions. De novo biosynthesis of the vitamin occurs in microorganisms and plants, but animals must obtain it from their diet. Two distinct and mutually exclusive de novo pathways have been identified to date, namely deoxyxylulose 5-phosphate dependent, which is restricted to a subset of eubacteria, and deoxyxylulose 5-phosphate independent, present in archaea, fungi, plants, protista, and most eubacteria. In these organisms, pyridoxal 5'-phosphate (PLP) formation is catalyzed by a single glutamine amidotransferase (PLP synthase) composed of a glutaminase domain, PDX2, and a synthase domain, PDX1. Despite plants being an important source of vitamin B6, very little is known about its biosynthesis. Here, we provide information for Arabidopsis thaliana. The functionality of PDX2 is demonstrated, using both in vitro and in vivo analyses. The expression pattern of PDX2 is assessed at both the RNA and protein level, providing insight into the spatial and temporal pattern of vitamin B6 biosynthesis. We then provide a detailed biochemical analysis of the plant PLP synthase complex. While the active sites of PDX1 and PDX2 are remote from each other, coordination of catalysis is much more pronounced with the plant proteins than its bacterial counterpart, Bacillus subtilis. Based on a model of the PDX1/PDX2 complex, mutation of a single residue uncouples enzyme coordination and in turn provides tangible evidence for the existence of the recently proposed ammonia tunnel through the core of PDX1.  相似文献   

6.
PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5′-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate.  相似文献   

7.
Biosynthesis of vitamins is fundamental to malaria parasites. Plasmodia synthesize the active form of vitamin B(6) (pyridoxal 5'-phosphate, PLP) using a PLP synthase complex. The EM analysis shown here reveals a random association pattern of up to 12 Pdx2 glutaminase subunits to the dodecameric Pdx1 core complex. Interestingly, Plasmodium falciparum PLP synthase organizes in fibers. The crystal structure shows differences in complex formation to bacterial orthologs as interface variations. Alternative positioning of an α helix distinguishes an open conformation from a closed state when the enzyme binds substrate. The pentose substrate is covalently attached through its C1 and forms a Schiff base with Lys84. Ammonia transfer between Pdx2 glutaminase and Pdx1 active sites is regulated by a transient tunnel. The mutagenesis analysis allows defining the requirement for conservation of critical methionines, whereas there is also plasticity in ammonia tunnel construction as seen from comparison across different species.  相似文献   

8.
The oxidative half-reactions of anthranilate hydroxylase (EC 1.14.12.2) were examined in the presence of anthranilate and modified substrates. C(4a)-Hydroperoxyflavin (C(4a)-FlOOH) and C(4a)-hydroxyflavin (C(4a)-FlOH) intermediates were detected in oxidative reactions with all substrates. Thus, the oxygenation reactions of the enzyme are similar to those of flavoprotein hydroxylases that convert phenolic compounds to catechols. These observations support a mechanism proposed for this enzyme (Powlowski, J. B., Dagley, S., Massey, V., and Ballou, D. P. (1987) J. Biol. Chem. 262, 69-74) involving nucleophilic attack of the substrate on C(4a)-FlOOH, and formation of an imine intermediate that is subsequently hydrolyzed. Anthranilate hydroxylase is therefore a typical flavoprotein hydroxylase with the added capacity of hydrolyzing imine intermediates. Fluorine substituents on the aromatic ring decreased the rate of conversion of C(4a)-FlOOH to C(4a)-FlOH, as predicted by this mechanism. Hydroxylation of 3-fluoro- and 3-methylanthranilates resulted in the formation of nonaromatic products that appeared to stabilize the C(4a)-FlOH. No evidence was found for a high extinction intermediate (intermediate II) (Entsch, B., Ballou, D. P., and Massey, V. (1976) J. Biol. Chem. 251, 2550-2563) under conditions where it was readily detected with other flavoprotein hydroxylases. It was shown that the spectra of the nonaromatic products (which are quinonoid forms) could not be summed with the spectra of C(4a)-hydroxyflavin to obtain that of a putative intermediate II, thus ruling out that explanation for previous observations of II.  相似文献   

9.
Vitamin B6 is one of nature's most versatile cofactors. Most organisms synthesize vitamin B6 via a recently discovered pathway employing the proteins Pdx1 and Pdx2. Here we present an in-depth characterization of the respective orthologs from the malaria parasite, Plasmodium falciparum. Expression profiling of Pdx1 and -2 shows that blood-stage parasites indeed possess a functional vitamin B6 de novo biosynthesis. Recombinant Pdx1 and Pdx2 form a complex that functions as a glutamine amidotransferase with Pdx2 as the glutaminase and Pdx1 as pyridoxal-5 '-phosphate synthase domain. Complex formation is required for catalytic activity of either domain. Pdx1 forms a chimeric bi-enzyme with the bacterial YaaE, a Pdx2 ortholog, both in vivo and in vitro, although this chimera does not attain full catalytic activity, emphasizing that species-specific structural features govern the interaction between the protein partners of the PLP synthase complexes in different organisms. To gain insight into the activation mechanism of the parasite bi-enzyme complex, the three-dimensional structure of Pdx2 was determined at 1.62 A. The obstruction of the oxyanion hole indicates that Pdx2 is in a resting state and that activation occurs upon Pdx1-Pdx2 complex formation.  相似文献   

10.
The biosynthesis of deoxyhypusine (N-(4-aminobutyl)lysine) occurs by the transfer of the 4-aminobutyl moiety of spermidine to a specific lysine residue in a precursor of eukaryotic translation initiation factor 4D (eIF-4D). Deoxyhypusine synthase, the enzyme that catalyzes this reaction, was purified approximately 700-fold from rat testis. The Km values for the substrates, spermidine, the eIF-4-D precursor protein, and NAD+, were estimated as approximately 1, 0.08, and 30 microM, respectively. After incubation of partially purified enzyme with [1,8-3H]spermidine, NAD+, and the eIF-4D precursor, equal amounts of radioactivity were found in free 1,3-diaminopropane and in protein-bound deoxyhypusine. However, when the protein substrate (eIF-4D precursor) was omitted, radioactivity was found in 1,3-diaminopropane and in delta 1-pyrroline in nearly equal quantities, providing evidence that the cleavage of spermidine occurs, albeit at a slower rate, in the absence of the eIF-4D precursor. That NAD+, which is required for this reaction, functions as the hydrogen acceptor was demonstrated by the fact that radioactivity from spermidine labeled with 3H at position 5 is found in NADH as well as in delta 1-pyrroline. Transfer of this hydrogen from spermidine to the re face of the nicotinamide ring of NAD+, as determined by the use of dehydrogenases of known stereospecificity, defines the first step of deoxyhypusine synthesis as a pro-R, or A, stereospecific dehydrogenation. Based on these findings, an enzyme mechanism involving imine intermediate formation is proposed.  相似文献   

11.
Most organisms synthesise the B6 vitamer pyridoxal 5-phosphate (PLP) via the glutamine amidotransferase PLP synthase, a large enzyme complex of 12 Pdx1 synthase subunits with up to 12 Pdx2 glutaminase subunits attached. Deletion analysis revealed that the C-terminus has four distinct functionalities: assembly of the Pdx1 monomers, binding of the pentose substrate (ribose 5-phosphate), formation of the reaction intermediate I320, and finally PLP synthesis. Deletions of distinct C-terminal regions distinguish between these individual functions. PLP formation is the only function that is conferred to the enzyme by the C-terminus acting in trans, explaining the cooperative nature of the complex.

Structured summary

MINT-7994448: PfPdx1 (uniprotkb:C6KT50) and PfPdx1 (uniprotkb:C6KT50) bind (MI:0407) by molecular sieving (MI:0071)MINT-7994425, MINT-7994413, MINT-7994435: PfPdx1 (uniprotkb:C6KT50) and PfPdx1 (uniprotkb:C6KT50) bind (MI:0407) by cosedimentation in solution (MI:0028).  相似文献   

12.
The single turnover of (1R)(+)-camphor-bound oxyferrous cytochrome P450-CAM with one equivalent of dithionite-reduced putidaredoxin (Pdx) was monitored for the appearance of transient intermediates at 3 degrees C by double mixing rapid scanning stopped-flow spectroscopy. With excess camphor, three successive species were observed after generating oxyferrous P450-CAM and reacting versus reduced Pdx: a perturbed oxyferrous derivative, a species that was a mixture of high and low spin Fe(III), and high spin ferric camphor-bound enzyme. The rates of the first two steps, approximately 140 and approximately 85 s(-1), were assigned to formation of the perturbed oxyferrous intermediate and to electron transfer from reduced Pdx, respectively. In the presence of stoichiometric substrate, three phases with similar rates were seen even though the final state is low spin ferric P450-CAM. This is consistent with substrate being hydroxylated during the reaction. The single turnover reaction initiated by adding dioxygen to a preformed reduced P450-CAM.Pdx complex with excess camphor also led to phases with similar rates. It is proposed that formation of the perturbed oxyferrous intermediate reflects alteration of H-bonding to the proximal Cys, increasing the reduction potential of the oxyferrous state and triggering electron transfer from reduced Pdx. This species may be a direct spectral signature of the effector role of Pdx on P450-CAM reactivity (i.e. during catalysis). The substrate-free oxyferrous enzyme also reacted readily with reduced Pdx, showing that the inability of substrate-free P450-CAM to accept electrons from reduced Pdx and function as an NADH oxidase is completely due to the incapacity of reduced Pdx to deliver the first but not the second electron.  相似文献   

13.
Pyridoxal 5′-phosphate (PLP) is required as a cofactor by many enzymes. The predominant de novo biosynthetic route is catalyzed by a heteromeric glutamine amidotransferase consisting of the synthase subunit Pdx1 and the glutaminase subunit Pdx2. Previously, Bacillus subtilis PLP synthase was studied by X-ray crystallography and complex assembly had been characterized by isothermal titration calorimetry. The fully assembled PLP synthase complex contains 12 individual Pdx1/Pdx2 glutamine amidotransferase heterodimers. These studies revealed the occurrence of an encounter complex that is tightened in the Michaelis complex when the substrate l-glutamine binds. In this study, we have characterized complex formation of PLP synthase from the malaria-causing human pathogen Plasmodium falciparum using isothermal titration calorimetry. The presence of l-glutamine increases the tightness of the interaction about 30-fold and alters the thermodynamic signature of complex formation. The thermodynamic data are integrated in a 3D homology model of P. falciparum PLP synthase. The negative experimental heat capacity (Cp) describes a protein interface that is dominated by hydrophobic interactions. In the absence of l-glutamine, the experimental Cp is less negative than in its presence, contrasting to the previously characterised bacterial PLP synthase. Thus, while the encounter complexes differ, the Michaelis complexes of plasmodial and bacterial systems have similar characteristics concerning the relative contribution of apolar/polar surface area. In addition, we have verified the role of the N-terminal region of PfPdx1 for complex formation. A “swap mutant” in which the complete αN-helix of plasmodial Pdx1 was exchanged with the corresponding segment from B. subtilis shows cross-binding to B. subtilis Pdx2. The swap mutant also partially elicits glutaminase activity in BsPdx2, demonstrating that formation of the protein complex interface via αN and catalytic activation of the glutaminase are linked processes.  相似文献   

14.
Variath P  Liu Y  Lee TT  Stroud RM  Santi DV 《Biochemistry》2000,39(10):2429-2435
Experimental evidence for a 5-exocyclic methylene-dUMP intermediate in the thymidylate synthase reaction was recently obtained by demonstrating that tryptophan 82 mutants of the Lactobacillus casei enzyme produced 5-(2-hydroxyethyl)thiomethyl-dUMP (HETM-dUMP) (Barret, J. E., Maltby, D. A., Santi, D. V., and Schultz, P. G. (1998) J. Am. Chem. Soc. 120, 449-450). The unusual product was proposed to emanate from trapping of the intermediate with beta-mercaptoethanol in competition with hydride transfer from H(4)folate to form dTMP. Using mutants of the C-terminal residue of thymidylate synthase, we found that the ratio of HETM-dUMP to dTMP varies as a function of CH(2)H(4)folate concentration. This observation seemed inconsistent with the conclusion that both products arose from a common intermediate in which CH(2)H(4)folate was already bound to the enzyme. The enigma was resolved by a kinetic model that allowed for differential partitioning of the intermediate formed on each of the two subunits of the homodimeric enzyme in forming the two different products. With three C-terminal mutants of L. casei TS, HETM-dUMP formation was consistent with a model in which product formation occurs upon occupancy of the first completely bound subunit, the rate of which is unaffected by occupancy of the second subunit. With one analogous E. coli TS mutant, HETM-dUMP formation occurred upon occupancy of the first subunit, but was inhibited when both subunits were occupied. With all mutants, dTMP formation occurs from occupied forms of both subunits at different rates; here, binding of cofactor to the first subunit decreased affinity for the second, but the reaction occurred faster in the enzyme form with both subunits bound to dUMP and CH(2)H(4)folate. The model resolves the apparent enigma of the cofactor-dependent product distribution and supports the conclusion that the exocyclic methylene intermediate is common to both HETM-dUMP and dTMP formation.  相似文献   

15.
Hunter GA  Ferreira GC 《Biochemistry》1999,38(12):3711-3718
5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to form CoA, carbon dioxide, and 5-aminolevulinate. This represents the first committed step of heme biosynthesis in animals and some bacteria. Lysine 313 (K313) of mature murine erythroid 5-aminolevulinate synthase forms a Schiff base linkage to the pyridoxal 5'-phosphate cofactor. In the presence of glycine and succinyl-CoA, a quinonoid intermediate absorption is transiently observed in the visible spectrum of purified murine erythroid ALAS. Mutant enzymes with K313 replaced by glycine, histidine, or arginine exhibit no spectral evidence of quinonoid intermediate formation in the presence of glycine and succinyl-CoA. The wild-type 5-aminolevulinate synthase additionally forms a stable quinonoid intermediate in the presence of the product, 5-aminolevulinate. Only conservative mutation of K313 to histidine or arginine produces a variant that forms a quinonoid intermediate with 5-aminolevulinate. The quinonoid intermediate absorption of these mutants is markedly less than that of the wild-type enzyme, however. Whereas the wild-type enzyme catalyzes loss of tritium from [2-3H2]-glycine, mutation of K313 to glycine results in loss of this activity. Titration of the quinonoid intermediate formed upon binding of 5-aminolevulinate to the wild-type enzyme indicated that the quinonoid intermediate forms by transfer of a single proton with a pK of 8.1 +/- 0.1. Conservative mutation of K313 to histidine raises this value to 8.6 +/- 0.1. We propose that K313 acts as a general base catalyst to effect quinonoid intermediate formation during the 5-aminolevulinate synthase catalytic cycle.  相似文献   

16.
The heme in prostaglandin endoperoxide synthase (PGH synthase) was substituted with Mn(III)-protoporphyrin IX. The resulting enzyme, Mn-PGH synthase, showed full cyclooxygenase activity but only 0.9% of the peroxidase activity of the native iron enzyme. During the reaction with exogenous or endogenously produced hydroperoxides, a spectral intermediate of Mn-PGH synthase was observed. The electronic absorption bands of the resting enzyme at 376, 472, and 561 nm decreased, and the intermediate's bands at 417, around 513, and 625 nm appeared. The rate constant of the formation of the intermediate was about 10(4) M-1.s-1 at 22 degrees C, three orders of magnitude lower than with the iron enzyme. Spectral properties, conditions of formation, and the suppressed formation in the presence of electron donors provide evidence for a higher oxidation state of Mn-PGH synthase, tentatively a Mn(IV) species. This species was assigned to an intermediate in the peroxidase reaction of Mn-PGH synthase, the low activity of which was explained by the rate-limiting slow reaction of Mn-PGH synthase with hydroperoxides. The findings and interpretation are consistent with the published properties of other manganese-substituted peroxidases. Although the cyclooxygenase activity was similar to that of Fe-PGH synthase, the cyclooxygenase reaction of Mn-PGH synthase showed distinct differences in comparison with Fe-PGH synthase. A longer activation phase was observed which resembled the time course of the formation of the higher oxidation state. Glutathione peroxidase with glutathione, a hydroperoxide-scavenging system, inhibited the cyclooxygenase of Mn-PGH synthase at concentrations where the activity of Fe-PGH synthase was not affected. It is demonstrated that Mn-PGH synthase requires higher concentrations of hydroperoxides for the activation of the cyclooxygenase. These findings suggest that the substitution of iron with manganese in PGH synthase does not change the mechanism of the enzyme. The main difference is the much lower rate of the reaction with hydroperoxides which affects both the peroxidase activity and the hydroperoxide-dependent activation of the cyclooxygenase. A reaction scheme for Mn-PGH synthase is proposed analogous to that suggested for Fe-PGH synthase (Karthein, R., Dietz, R., Nastainczyk, W., and Ruf, H. H. (1988) Eur. J. Biochem. 171, 313-320).  相似文献   

17.
C E Barry  P G Nayar  T P Begley 《Biochemistry》1989,28(15):6323-6333
Phenoxazinone synthase is a copper-containing oxidase that catalyzes the coupling of 2-aminophenols to form the 2-aminophenoxazinone chromophore. This reaction constitutes the final step in the biosynthesis of the potent antineoplastic agent actinomycin. The mechanism of this complex 6-electron oxidation was determined by using a variety of substituted 2-aminophenols, designed to block the reaction at intermediate stages. Thus, with 3,5-di-tert-butyl-2-aminophenol as substrate, the reaction was blocked at the o-quinone imine 17; with 5-tert-butyl-2-aminophenol (19) as substrate, the reaction was blocked at the p-quinone imine 20; and with 5-methyl-2-aminophenol (21) as substrate, the reaction was blocked at the dihydro-2-aminophenoxazinone 22. These findings suggested a mechanism in which 2-aminophenoxazinone formation proceeded via a quinone imine intermediate 4 that was trapped by a second molecule of 2-aminophenol. Oxidation of the adduct 5 to the p-quinone imine 6 was followed by a second conjugate addition and a final 2-electron oxidation to give the product, 2-aminophenoxazinone. The role of the enzyme in the catalysis of each of these steps was examined. It was found that the second conjugate addition generated a racemic center at C4a, suggesting that this reaction did not occur at the active site. A deuterium isotope effect on the cleavage of the C4-H bond of 2-aminophenol suggested that partial dissociation of an intermediate from the enzyme occurred after the first conjugate addition. It is proposed that 2-aminophenoxazinone synthesis proceeds via a sequence of three consecutive 2-electron aminophenol oxidations and that the aminophenol moiety is regenerated during the reaction sequence by facile tautomerization reactions. Thus, what initially appears to be an impressively complex mechanism may, in fact, be ingeniously simple.  相似文献   

18.
Zein F  Zhang Y  Kang YN  Burns K  Begley TP  Ealick SE 《Biochemistry》2006,45(49):14609-14620
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and is an important cofactor for several of the enzymes involved in the metabolism of amine-containing natural products such as amino acids and amino sugars. The PLP synthase holoenzyme consists of two subunits: YaaD catalyzes the condensation of ribulose 5-phosphate, glyceraldehyde-3-phosphate, and ammonia, and YaaE catalyzes the production of ammonia from glutamine. Here we describe the structure of the PLP synthase complex (YaaD-YaaE) from Thermotoga maritima at 2.9 A resolution. This complex consists of a core of 12 YaaD monomers with 12 noninteracting YaaE monomers attached to the core. Compared with the previously published structure of PdxS (a YaaD ortholog in Geobacillus stearothermophilus), the N-terminus (1-18), which includes helix alpha0, the beta2-alpha2 loop (46-56), which includes new helix alpha2a, and the C-terminus (270-280) of YaaD are ordered in the complex but disordered in PdxS. A ribulose 5-phosphate is bound to YaaD via an imine with Lys82. Previous studies have demonstrated a similar imine at Lys149 and not at Lys81 (equivalent to Lys150 and Lys82 in T. maritima) for the Bacillus subtilis enzyme suggesting the possibility that two separate sites on YaaD are involved in PLP formation. A phosphate from the crystallization solution is found bound to YaaD and also serves as a marker for a possible second active site. An ammonia channel that connects the active site of YaaE with the ribulose 5-phosphate binding site was identified. This channel is similar to one found in imidazole glycerol phosphate synthase; however, when the beta-barrels of the two complexes are superimposed, the glutaminase domains are rotated by about 180 degrees with respect to each other.  相似文献   

19.
The order of appearance of intermediates in the reoxidation of reduced cytochrome c oxidase by oxygen has been examined. Particular emphasis was placed on determining where the intermediate with the EPR signal at g = 5, 1.78, 1.69 (Shaw, R.W., Hansen, R.E. and Beinert, H. (1978) J. Biol. Chem. 253, 6637--6640) appears in the sequence of events during reoxidation. Flash photolysis of reduced, CO-complexed samples of cytochrome c oxidase in the presence of oxygen in a buffer containing 30% (v/v) ethylene glycol at 77 K and 195 K has been used to generate states of partial reoxidation. The intermediate with the EPR signal at g = 5, 1.78, and 1.69 can be detected as a product of the photolysis and subsequent oxidation but does not appear until the photolyzed sample is incubated at temperatures well above 196 K. In the course of the reoxidation, the intermediate characterized by the g = 5, 1.78, 1.69 signal occurs in the reaction sequence after the states referred to as 'Compound A' and 'Compound B' (Chance, B., Saronio, C., and Leigh, J.S. (1975) J. Biol. Chem. 250, 9226--9237). Its appearance is within the time range reported for the formation of 'oxygenated' cytochrome c oxidase (Orii, Y. (1979) in Cytochrome Oxidase (King, T.E., Orii, Y., Chance, B. and Okunuki, K., eds.), pp. 331--340, Elsevier/North-Holland Biomedical Press, Amsterdam).  相似文献   

20.
He Z  Toney MD 《Biochemistry》2006,45(15):5019-5028
Chorismate-utilizing enzymes catalyze diverse reactions, providing critical physiological functions unique to plants, bacteria, fungi, and some parasites. Their absence in animals makes them excellent targets for antimicrobials and herbicides. 4-Amino-4-deoxychorismate synthase (ADCS) catalyzes the first step in folate biosynthsis and shares a common core mechanism with isochorismate synthase (IS) and anthranilate synthase (AS), in which nucleophile addition at C2 initiates these reactions. Evidence was presented previously [He, Z., Stigers Lavoie, K. D., Bartlett, P. A., and Toney, M. D. (2004) J. Am. Chem. Soc. 126, 2378-2385] that K274 is the nucleophile in ADCS, implying formation of a covalent intermediate. Herein, we report the direct detection of this covalent intermediate formed in ADCS-catalyzed reactions by ESI-MS. Difference spectra show the covalent intermediate has an absorption maximum at 310 nm. This was used to study the pre-steady-state kinetics of covalent intermediate formation under various conditions. Additionally, E258 in ADCS was shown to be critical to formation of the covalent intermediate by acting as a general acid catalyst for loss of the C4 hydroxyl group. The E258A/D mutants both exhibit very low activity. Acetate is a poor chemical rescue agent for E258D but an excellent one for E258A, with a 20000-fold and 3000-fold rate increase for Gln-dependent and NH(4)(+)-dependent activities, respectively. Lastly, A213 in IS (structurally homologous to K274 in ADCS) was changed to lysine in an attempt to convert IS to an ADCS-like enzyme. HPLC studies support the formation of a covalent intermediate with this mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号