首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The community compositions of Bacteria and Archaea were investigated in deep, sub-seafloor sediments from the highly productive Peru Margin (ODP Leg 201, sites 1228 and 1229, c. 25 km apart) down to nearly 200 m below the seafloor using taxonomic (16S rRNA) and functional (mcrA and dsrA) gene markers. Bacterial and archaeal groups identified from clone libraries of 16S rRNA gene sequences at site 1229 agreed well with sequences amplified from bands excised from denaturing gradient gel electrophoresis (DGGE) depth profiles, with the exception of the Miscellaneous Crenarchaeotic Group (MCG). This suggested that the prokaryotic community at site 1228, obtained from DGGE profiling alone, was reliable. Sites were dominated by Bacteria in the Gammaproteobacteria, Chloroflexi (green non-sulphur bacteria) and Archaea in the MCG and South African Gold Mine Euryarchaeotic Group, although community composition changed with depth. The candidate division JS1 was present throughout both sites but was not dominant. The populations identified in the Peru Margin sediments consisted mainly of prokaryotes found in other deep subsurface sediments, and were more similar to communities from the Sea of Okhotsk (pelagic clays) than to those from the low organic carbon Nankai Trough sediments. Despite broad similarities in the prokaryotic community at the two sites, there were some differences, as well as differences in activity and geochemistry. Methanogens (mcrA) within the Methanosarcinales and Methanobacteriales were only found at site 1229 (4 depths analysed), whereas sulphate-reducing prokaryotes (dsrA) were only found at site 1228 (one depth), and these terminal-oxidizing prokaryotes may represent an active community component present at low abundance. This study clearly demonstrates that the deep subsurface sediments of the Peru Margin have a large diverse and metabolically active prokaryotic population.  相似文献   

2.
Gas hydrates harbour gigatons of natural gas, yet their microbiomes remain understudied. We bioprospected 16S rRNA amplicons, metagenomes, and metaproteomes from methane hydrate-bearing sediments under Hydrate Ridge (offshore Oregon, USA, ODP Site 1244, 2–69 mbsf) for novel microbial metabolic and biosynthetic potential. Atribacteria sequences generally increased in relative sequence abundance with increasing sediment depth. Most Atribacteria ASVs belonged to JS-1-Genus 1 and clustered with other sequences from gas hydrate-bearing sediments. We recovered 21 metagenome-assembled genomic bins spanning three geochemical zones in the sediment core: the sulfate–methane transition zone, the metal (iron/manganese) reduction zone, and the gas hydrate stability zone. We found evidence for bacterial fermentation as a source of acetate for aceticlastic methanogenesis and as a driver of iron reduction in the metal reduction zone. In multiple zones, we identified a Ni-Fe hydrogenase-Na+/H+ antiporter supercomplex (Hun) in Atribacteria and Firmicutes bins and in other deep subsurface bacteria and cultured hyperthermophiles from the Thermotogae phylum. Atribacteria expressed tripartite ATP-independent transporters downstream from a novel regulator (AtiR). Atribacteria also possessed adaptations to survive extreme conditions (e.g. high salt brines, high pressure and cold temperatures) including the ability to synthesize the osmolyte di-myo-inositol-phosphate as well as expression of K+-stimulated pyrophosphatase and capsule proteins.  相似文献   

3.
A new group of anaerobic thermophilic bacteria was isolated from enrichment cultures obtained from deep sea sediments of Peru Margin collected during Leg 201 of the Ocean Drilling Program. A total of ten isolates were obtained from cores of 1–2 m below seafloor (mbsf) incubated at 60°C: three isolates came from the sediment 426 m below sea level with a surface temperature of 9°C (Site 1227), one from 252 m below sea level with a temperature of 12°C (Site 1228), and six isolates under sulfate-reducing condition from the lower slope of the Peru Trench (Site 1230). Strain JW/IW-1228P from the Site 1228 and strain JW/YJL-1230-7/2 from the Site 1230 were chosen as representatives of the two identified clades. Based on the 16S rDNA sequence analysis, these isolates represent a novel group with Thermovenabulum and Caldanaerobacter as their closest relatives. The temperature range for growth was 52–76°C with an optimum at around 68°C for JW/IW-1228P and 43–76°C with an optimum at around 64°C for JW/YJL-1230-7/2. The pH25C range for growth was from 6.3 to 9.3 with an optimum at 7.5 for JW/IW-1228P and from 5 to 9.5 with an optimum at 7.9–8.4 for JW/YJL-1230-7/2. The salinity range for growth was from 0% to 6% (w/v) for JW/IW-1228P and from 0% to 4.5% (w/v) for JW/YJL-1230-7/2. The G+C content of the DNA was 50 mol% for both JW/IW-1228P and JW/YJL-1230-7/2. DNA–DNA hybridization yielded 52% similarity between the two strains. According to 16S rRNA gene sequence analysis, the isolates are located within the family, Thermoanaerobacteriaceae. Based on their morphological and physiological properties and phylogenetic analysis, it is proposed that strain JW/IW-1228PT is placed into a novel taxa, Thermosediminibacter oceani, gen. nov., sp. nov. (DSM 16646T=ATCC BAA-1034T), and JW/YJL-1230-7/2T into Thermosediminibacter litoriperuensis sp. nov. (DSM 16647T =ATCC BAA-1035T).An erratum to this article can be found at  相似文献   

4.
Microbiological investigations of deep‐sea sediments recovered from the Peru Margin during the ODP Leg 201 (Hole 1229A, 1–110 mbsf) demonstrated that microoganisms were a consistent component throughout the profile. Optimization of the dilution factor and DAPI‐staining procedures for direct cell counts allowed the determination of the abundance of the entire microbial community, which was about 108 cells per g dry sediment. Microbial diversity in discrete samples taken from the 110‐m profile was analysed using horseradish‐peroxydase‐rRNA‐probes. In general, the majority of the detected cells belonged to the Eubacteria kingdom with a dominance of sulphate‐reducing bacteria. The composition of the suflate‐reducing community varied with depth. Desulfobacteriaceae were dominant in the uppermost sulphate‐reducing zone and Desulfovibrionaceae at deeper depths in the upward diffusing sulphate‐rich brines. Both sulphate‐reducing groups were also detected in the methanogenic zone. Similarly, Archaea were detected throughout the profile, not only in the methanogenic zone but also in the upper and lower sulphate‐reducing zones.  相似文献   

5.
Site 1231 of the Ocean Drilling Project (ODP) was characterized by low concentrations of organic carbon, as well as low cell numbers and biological activity rates. A 16S rRNA survey was performed in order to analyse the microbial community composition of these central oceanic sediments. Archaeal 16S rRNA genes from subsurface sediments at Site 1231 (1.8, 9.0, and 43 mbsf) were affiliated with uncultured lineages from subsurface or hydrothermal vent habitats. Members of the Marine Group I (MGI) found in the 1.8 mbsf sediment formed distinct clusters, some dominated by phylotypes from Site 1231 and other subsurface environments. The archaeal community survey at Site 1231 indicated that several archaeal lineages were widespread in subsurface environments, marine sediments as well as hydrothermal habitats.  相似文献   

6.
We investigated methane production and oxidation and the depth distribution and phylogenetic affiliation of a functional gene for methanogenesis, methyl coenzyme M reductase subunit A (mcrA), at two sites of the Integrated Ocean Drilling Program Expedition 311. These sites, U1327 and U1329, are respectively inside and outside the area of gas hydrate distribution on the Cascadia Margin. Radiotracer experiments using 14C‐labelled substrates indicated high potential methane production rates in hydrate‐bearing sediments [128–223 m below seafloor (mbsf)] at U1327 and in sediments between 70 and 140 mbsf at U1329. Tracer‐free experiments indicated high cumulative methane production in sediments within and below the gas hydrate layer at U1327 and in sediments below 70 mbsf at U1329. Stable tracer experiments using 13C‐labelled methane showed high potential methane oxidation rates in near‐surface sediments and in sediments deeper than 100 mbsf at both sites. Results of polymerase chain reaction amplification of mcrA in DNA were mostly consistent with methane production: relatively strong mcrA amplification was detected in the gas hydrate‐bearing sediments at U1327, whereas at U1329, it was mainly detected in sediments from around the bottom‐simulating reflector (126 mbsf). Phylogenetic analysis of mcrA separated it into four phylotype clusters: two clusters of methanogens, Methanosarcinales and Methanobacteriales, and two clusters of anaerobic methanotrophic archaea, ANME‐I and ANME‐II groups, supporting the activity measurement results. These results reveal that in situ methanogenesis in deep sediments probably contributes to gas hydrate formation and are inconsistent with the geochemical model that microbial methane currently being generated in shallow sediments migrates downward and contributes to the hydrate formation. At Site U1327, gas hydrates occurred in turbidite sediments, which were absent at Site U1329, suggesting that a geological setting suitable for a gas hydrate reservoir is more important for the accumulation of gas hydrate than microbiological properties.  相似文献   

7.
The Brazos-Trinity Basin on the slope of the Gulf of Mexico passive margin was drilled during Integrated Ocean Drilling Progam Expedition 308. The buried anaerobic sediments of this basin are largely organic-poor and have few microbial inhabitants compared with the organic-rich sediments with high cell counts from the Peru Margin that were drilled during Ocean Drilling Program Leg 201. Nucleic acids were extracted from Brazos-Trinity Basin sediments and were subjected to whole-genome amplification and pyrosequencing. A comparison of the Brazos-Trinity Basin metagenome, consisting of 105 Mbp, and the existing Peru Margin metagenome revealed trends linking gene content, phylogenetic content, geological location and geochemical regime. The major microbial groups (Proteobacteria, Firmicutes, Euryarchaeota and Chloroflexi) occur consistently throughout all samples, yet their shifting abundances allow for discrimination between samples. The cluster of orthologous groups category abundances for some classes of genes are correlated with geochemical factors, such as the level of ammonia. Here we describe the sediment metagenome from the oligotrophic Brazos-Trinity Basin (Site 1320) and show similarities and differences with the dataset from the Pacific Peru Margin (Site 1229) and other pyrosequenced datasets. The microbial community found at Integrated Ocean Drilling Program Site 1320 likely represents the subsurface microbial inhabitants of turbiditic slopes that lack substantial upwelling.  相似文献   

8.

Bacterial populations exist at great depths in marine sediments, but little is known about the type and characteristics of organisms in this unique bacterial environment. Cascadia Margin sediments from the Pacific Ocean have deep bacterial activity and bacterial populations, which are stimulated around a gas hydrate zone (215–225 m below sea floor [mbsf]). Bacterial sulfate reduction is the dominant anaerobic process within these sediments, and the depth distribution of sulfate‐reducing activity corresponds with distributions of viable sulfate‐reducing bacteria (SRB). Anaerobically stored sediments from this site were used to isolate sulfate‐reducing bacteria using a temperature‐gradient system, elevated pressure and temperatures, different media, and a range of growth substrates. A variety of enrichments on lactate were obtained from 0.5 and 222 mbsf, with surprisingly more rapid growth from the deeper sediments. The temperature range of enrichments producing strong growth from 222 mbsf was markedly wider than those from the near surface sediment (15–45°C and 9–19°C, respectively). This presumably reflects a temperature increase in deeper sediments. Only a few of these enrichments were successfully isolated due to very slow or no growth on subculture, despite the use of a wide range of different media and growth conditions. Psychrophilic and mesophilic sulfate‐reducing isolates were obtained from 0.5 m depth. As the minimum growth temperature of the mesophile (probably a Desulfotomaculum sp.) was above the in situ temperature of 3°C, it must have been present in the sediment as spores. A larger number of isolates (23) was obtained from 222 mbsf, and these barophilic SRB were closely related (based on 16S rRNA gene analysis), but not identical to, Desulfovibrio profundus, recently isolated from deep sediments from the Japan Sea. Bacteria related to D. profundus may be widespread in deep marine sediments.  相似文献   

9.
We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca2+ and Cl1‐ are largely supplied via diffusion from a high‐salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm?3 day?1 at ~400 mbsf. We also note the disappearance of δ‐Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g?1) and manganese (up to 20 μmol g?1). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate‐reducing pathways. The detection of the manganese‐ and iron‐reducer γ‐Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.  相似文献   

10.
The aim of this work was to relate depth profiles of prokaryotic community composition with geochemical processes in the deep subseafloor biosphere at two shallow-water sites on the Peru Margin in the Pacific Ocean (ODP Leg 201, sites 1228 and 1229). Principal component analysis of denaturing gradient gel electrophoresis banding patterns of deep-sediment Bacteria, Archaea, Euryarchaeota and the novel candidate division JS1, followed by multiple regression, showed strong relationships with prokaryotic activity and geochemistry (R(2)=55-100%). Further correlation analysis, at one site, between the principal components from the community composition profiles for Bacteria and 12 other variables quantitatively confirmed their relationship with activity and geochemistry, which had previously only been implied. Comparison with previously published cell counts enumerated by fluorescent in situ hybridization with rRNA-targeted probes confirmed that these denaturing gradient gel electrophoresis profiles described an active prokaryotic community.  相似文献   

11.
"A meta-enzyme approach" is proposed as an ecological enzymatic method to explore the potential functions of microbial communities in extreme environments such as the deep marine subsurface. We evaluated a variety of extra-cellular enzyme activities of sediment slurries and isolates from a deep subseafloor sediment core. Using the new deep-sea drilling vessel "Chikyu", we obtained 365 m of core sediments that contained approximately 2% organic matter and considerable amounts of methane from offshore the Shimokita Peninsula in Japan at a water depth of 1,180 m. In the extra-sediment fraction of the slurry samples, phosphatase, esterase, and catalase activities were detected consistently throughout the core sediments down to the deepest slurry sample from 342.5 m below seafloor (mbsf). Detectable enzyme activities predicted the existence of a sizable population of viable aerobic microorganisms even in deep subseafloor habitats. The subsequent quantitative cultivation using solid media represented remarkably high numbers of aerobic, heterotrophic microbial populations (e.g., maximally 4.4 x 10(7) cells cm(-3) at 342.5 mbsf). Analysis of 16S rRNA gene sequences revealed that the predominant cultivated microbial components were affiliated with the genera Bacillus, Shewanella, Pseudoalteromonas, Halomonas, Pseudomonas, Paracoccus, Rhodococcus, Microbacterium, and Flexibacteracea. Many of the predominant and scarce isolates produced a variety of extra-cellular enzymes such as proteases, amylases, lipases, chitinases, phosphatases, and deoxyribonucleases. Our results indicate that microbes in the deep subseafloor environment off Shimokita are metabolically active and that the cultivable populations may have a great potential in biotechnology.  相似文献   

12.
Subseafloor sulfate concentrations typically decrease with depth as this electron acceptor is consumed by respiring microorganisms. However, studies show that seawater can flow through hydraulically conductive basalt to deliver sulfate upwards into deeply buried overlying sediments. Our previous work on IODP Site C0012A (Nankai Trough, Japan) revealed that recirculation of sulfate through the subducting Philippine Sea Plate stimulated microbial activity near the sediment–basement interface (SBI). Here, we describe the microbial ecology, phylogeny, and energetic requirements of population of aero‐tolerant sulfate‐reducing bacteria in the deep subseafloor. We identified dissimilatory sulfite reductase gene (dsr) sequences 93% related to oxygen‐tolerant Desulfovibrionales species across all reaction zones while no SRB were detected in drilling fluid control samples. Pore fluid chemistry revealed low concentrations of methane (<0.25 mM), while hydrogen levels were consistent with active bacterial sulfate reduction (0.51–1.52 nM). Solid phase total organic carbon (TOC) was also considerably low in these subseafloor sediments. Our results reveal the phylogenetic diversity, potential function, and physiological tolerance of a community of sulfate‐reducing bacteria living at ~480 m below subducting seafloor.  相似文献   

13.
The continental shelf and slope in the northern South China Sea is well known for its prospect of oil/gas/gas-hydrate resources. To study microbial communities and their roles in carbon cycling, a 4.9-m sediment core was collected from the Qiongdongnan Basin on the continental slope of the South China Sea during our cruise HY4-2005-5 in 2005. Geochemical, mineralogical, and molecular phylogenetic analyses were carried out. Sulfate concentration in pore water decreased with depth. Abundant authigenic carbonates and pyrite were observed in the sediments. The bacterial community was dominated by aerobic and facultative organisms. Bacterial clone sequences belonged to the Gamma-, Alpha-, Deltaproteobacteria and Firmicutes group, and they were related to Fe(III) and/or Mn(IV) reducers, sulfate reducers, aromatic hydrocarbon degraders, thiosulfate/sulfite oxidizers, and denitrifiers. Archaeal clone sequences exhibited greater overall diversity than the bacterial clones with most sequences related to Deep-Sea Archaeal Group (DSAG), Miscellaneous Crenarchaeotic Group (MCG), and Uncultured Euryarchaeotic Clusters (UECs). Archaeal sequences related to Methanosarcinales, South African Gold Mine Euryarchaeotic Group (SAGMEG), Marine Benthic Group-D (MBG-D) were also present. Most of these groups are commonly present in deep-sea sediments, particularly in methane/organic-rich or putative methane hydrate-bearing sediments.  相似文献   

14.
Diversity of Bacteria and Archaea was studied in deep marine sediments by PCR amplification and sequence analysis of 16S rRNA and methyl co-enzyme M reductase (mcrA) genes. Samples analysed were from Ocean Drilling Program (ODP) Leg 190 deep subsurface sediments at three sites spanning the Nankai Trough in the Pacific Ocean off Shikoku Island, Japan. DNA was amplified, from three depths at site 1173 (4.15, 98.29 and 193.29 mbsf; metres below the sea floor), and phylogenetic analysis of clone libraries showed a wide variety of uncultured Bacteria and Archaea. Sequences of Bacteria were dominated by an uncultured and deeply branching 'deep sediment group' (53% of sequences). Archaeal 16S rRNA gene sequences were mainly within the uncultured clades of the Crenarchaeota. There was good agreement between sequences obtained independently by cloning and by denaturing gradient gel electrophoresis. These sequences were similar to others retrieved from marine sediment and other anoxic habitats, and so probably represent important indigenous bacteria. The mcrA gene analysis suggested limited methanogen diversity with only three gene clusters identified within the Methanosarcinales and Methanobacteriales. The cultivated members of the Methanobacteriales and some of the Methanosarcinales can use CO2 and H2 for methanogenesis. These substrates also gave the highest rates in 14C-radiotracer estimates of methanogenic activity, with rates comparable to those from other deep marine sediments. Thus, this research demonstrates the importance of the 'deep sediment group' of uncultured Bacteria and links limited diversity of methanogens to the dominance of CO2/H2 based methanogenesis in deep sub-seafloor sediments.  相似文献   

15.
During ODP Leg 201 microbial communities in Eastern Equatorial Pacific Ocean and Peru Margin sediments were investigated. The sediment layers sampled extended down to 420 m below the sea floor, with estimated ages of up to 40 million years. Contamination-free anoxic slurries were inoculated into media containing different substrate combinations, all at micromolar concentration. These culture media were designed for a broad spectrum of physiological groups. A total of 162 pure cultures were isolated that could be grouped into 19 different phylotypes based on 16S rRNA gene analysis. The isolates belonged to the Alpha-, Gamma- and Deltaproteobacteria, the Firmicutes, Actinobacteria, and Bacteroidetes. The genera most frequently isolated were Bacillus (68 isolates) and Rhizobium (40 isolates). Comparison of strains with the same phylotypes by enterobacterial repetitive intergenic consensus (ERIC-PCR) analysis revealed the presence of several subgroups that did not correlate with medium, sediment depth or sampling site. The majority of the isolates, although obtained from anoxic environments and isolated under strictly anoxic conditions, turned out to be facultativly aerobic. Physiologically, the isolates were characterized as generalists, able to utilize a broad variety of electron donors with either oxygen, nitrate and in some cases manganese oxides as electron acceptors. The diversity inferred from physiological tests was even higher than that on the phylogenetic or genomic level. The outcome of the contamination tests, the isolation of close relatives of already known subsurface bacteria, the repeated finding of the same phylotype from different sites and the level of diversity present in the culture collection strongly suggest that indigenous deep-biosphere bacteria had been isolated.  相似文献   

16.
The importance of crustal fluid chemical composition in driving the marine deep subseafloor biosphere was examined in northeast Pacific ridge-flank sediments. At IODP Site U1301, sulfate from crustal fluids diffuses into overlying sediments, forming a transition zone where sulfate meets in situ-produced methane. Enhanced cell counts and metabolic activity suggest that sulfate stimulates microbial respiration, specifically anaerobic methane oxidation coupled to sulfate reduction. Cell counts and activity are also elevated in basement-near layers. Owing to the worldwide expansion of the crustal aquifer, we postulate that crustal fluids may fuel the marine deep subseafloor biosphere on a global scale.  相似文献   

17.
Four ODP sites located between 64°S and 41°S in the eastern Atlantic sector of the Southern Ocean were investigated to refine the Miocene diatom biostratigraphic zonation tied to the geomagnetic chronology. The Miocene diatom stratigraphy from two sites located on Maud Rise (ODP Leg 113) is revised considering the progress in diatom biostratigraphic research, diatom taxonomy and magnetostratigraphic age assignment during the past 10 years. A new diatom zonation was erected for Site 1092 (ODP Leg 177) located on Meteor Rise integrating a magnetostratigraphic interpretation of the shipboard data. This zonation was also applied to Site 1088 (ODP Leg 177) located on Astrid Ridge. The study is focused to Middle and Upper Miocene sequences. It reveals latitudinal differentiations in stratigraphic species ranges and species occurrence pattern that are related to latitudinal differences in surface water masses reflecting the climatic development of the Antarctic cryosphere. Considering the latitudinal differences two stratigraphic zonations are proposed that are applicable to the northern and southern zone of the Southern Ocean, respectively. The southern Southern Ocean Miocene diatom biostratigraphic zonation consists of 16 zones in which 11 represent new or modified zones. The northern biostratigraphic zonation contains 10 diatom zones allowing a stratigraphic resolution in the range of 0.2–2 Myr. This paper also includes the taxonomic transfer of seven Miocene diatom taxa from genus Nitzschia Hassal to Fragilariopsis Hustedt.  相似文献   

18.
ODP Leg 171B investigated the sediments of the Blake Plateau off northern Florida and recovered 36 Upper Albian ammonites — one from Site 1050C, the others from Site 1052E. This unusually large number of specimens from an ODP site permits the dating of the interval between 668 to 621 m below sea-floor at Site 1052E as late Late Albian, Stoliczkaia ( S .) dispar ammonite zone. This zone is indicated by the genera Mortoniceras and Stoliczkaia ( S. ). Site 1050C (Interval 171B-1050C-31R-3, 0.80–0.86 m) cannot be dated more precisely than Late Aptian to Mid Cenomanian by ammonites. The fauna is cosmopolitan. Tetragonites jurinianus Puzosia mayoriana are widely distributed forms. Kossmatella muhlenbecki was thought to be restricted to a fairly small area around the Mediterranean, but the record off northern Florida presented here, indicates that it is not an endemic species; this is also true for Hemiptychoceras subgaultinum in the Albian. The event-like character of the ammonite-bearing interval at Site 1052E is unique. It is overlain by a laminated claystone succession; the top of this sequence is considered to represent maximum flooding (Oceanic Anoxic Event, OAE 1d). Ammonites perhaps profited from an increased nutrient supply derived from flooded coastal plains during a continuous transgression.  相似文献   

19.
Anaerobic methanotrophic archaea (ANME) consume methane in marine sediments, limiting its release to the water column, but their responses to changes in methane and sulfate supplies remain poorly constrained. To address how methane exposure may affect microbial communities and methane- and sulfur-cycling gene abundances in Arctic marine sediments, we collected sediments from offshore Svalbard that represent geochemical horizons where anaerobic methanotrophy is expected to be active, previously active, and long-inactive based on reaction-transport biogeochemical modelling of porewater sulfate profiles. Sediment slurries were incubated at in situ temperature and pressure with different added methane concentrations. Sediments from an active area of seepage began to reduce sulfate in a methane-dependent manner within months, preceding increased relative abundances of anaerobic methanotrophs ANME-1 within communities. In previously active and long-inactive sediments, sulfur-cycling Deltaproteobacteria became more dominant after 30 days, though these communities showed no evidence of methanotrophy after nearly 8 months of enrichment. Overall, enrichment conditions, but not methane, broadly altered microbial community structure across different enrichment times and sediment types. These results suggest that active ANME populations may require years to develop, and consequently microbial community composition may affect methanotrophic responses to potential large-scale seafloor methane releases in ways that provide insight for future modelling studies.  相似文献   

20.
Exopolysaccharides (EPS) may have an important role in the Antarctic marine environment, possibly acting as ligands for trace metal nutrients such as iron or providing cryoprotection for growth at low temperature and high salinity. Ten bacterial strains, isolated from Southern Ocean particulate material or from sea ice, were characterized. Whole cell fatty acid profiles and 16S rRNA gene sequences showed that the isolates included representatives of the genera Pseudoalteromonas, Shewanella, Polaribacter, and Flavobacterium as well as one strain, which constituted a new bacterial genus in the family Flavobacteriaceae. The isolates are, therefore, members of the “Gammaproteobacteria” and Cytophaga-Flexibacter-Bacteroides, the taxonomic groups that have been shown to dominate polar sea ice and seawater microbial communities. Exopolysaccharides produced by Antarctic isolates were characterized. Chemical composition and molecular weight data revealed that these EPS were very diverse, even among six closely related Pseudoalteromonas isolates. Most of the EPS contained charged uronic acid residues; several also contained sulfate groups. Some strain produced unusually large polymers (molecular weight up to 5.7 MDa) including one strain in which EPS synthesis is stimulated by low temperature. This study represents a first step in the understanding of the role of bacterial EPS in the Antarctic marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号