首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Emerging techniques in electron microscopy promise to yield a wide range of new information about the nervous system. Aided by the development of detectors, electron optics, energy filters, computer automation and preparative methods, electron tomography now provides three-dimensional structures over a scale ranging from single receptor molecules to synapses and neurons. To relate structure to function, a variety of correlative methods are being developed, including protein tags observable both by light microscopy of living cells and, subsequently, by electron microscopy. It is also becoming possible to measure functionally important ions like Ca(2+) in cellular compartments at a scale of about 10 nm by exploiting new advances in electron energy loss and X-ray spectroscopic imaging.  相似文献   

2.
The higher-order assembly of the approximately 30 nm chromatin fibers into the characteristic morphology of HeLa mitotic chromosomes was investigated by electron microscopy. Transmission electron microscopy (TEM) of serial sections was applied to view the distribution of the DNA-histone-nonhistone fibers through the chromatid arms. Scanning electron microscopy (SEM) provided a complementary technique allowing the surface arrangement of the fibers to be observed. The approach with both procedures was to swell the chromosomes slightly, without extracting proteins, so that the densely-packed chromatin fibers were separated. The degree of expansion of the chromosomes was controlled by adjusting the concentration of divalent cations (Mg2+). With TEM, individual fibers could be resolved by decreasing the Mg2+ concentration to 1.0-1.5 mM. The predominant mode of fiber organization was seen to be radial for both longitudinal and transverse sections. Using SEM, surface protuberances with an average diameter of 69 nm became visible after the Mg2+ concentration was reduced to 1.5 mM. The knobby surface appearance was a variable feature, because the average diameter decreased when the divalent cation concentration was further reduced. The surface projections appear to represent the peripheral tips of radial chromatin loops. These TEM and SEM observations support a "radial loop" model for the organization of the chromatin fibers in metaphase chromosomes.  相似文献   

3.
Correlative microscopy is a powerful technique that combines the strengths of fluorescence microscopy and electron microscopy. The first enables rapid searching for regions of interest in large fields of view while the latter exhibits superior resolution over a narrow field of view. Routine use of correlative microscopy is seriously hampered by the cumbersome and elaborate experimental procedures. This is partly due to the use of two separate microscopes for fluorescence and electron microscopy. Here, an integrated approach to correlative microscopy is presented based on a laser scanning fluorescence microscope integrated in a transmission electron microscope. Using this approach the search for features in the specimen is greatly simplified and the time to carry out the experiment is strongly reduced. The potential of the integrated approach is demonstrated at room temperature on specimens of rat intestine cells labeled with AlexaFluor488 conjugated to wheat germ agglutinin and on rat liver peroxisomes immunolabeled with anti-catalase antibodies and secondary AlexaFluor488 antibodies and 10nm protein A-gold.  相似文献   

4.
We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells.  相似文献   

5.
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists. This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2-5 nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method. Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.  相似文献   

6.
Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.  相似文献   

7.
Two derivatives of a tungstate cluster containing 11 tungsten atoms (W11PO39SiR4-) have been synthesized which enable them to be covalently attached to biomolecules at specific sites. The tungstate cluster is 1.0 nm in diameter, electron dense, and visible in the electron microscope. One derivative is a W11-sulfonyl chloride, reactive with amines and sulfhydryls. The second compound is a W11-thiosulfonate which can be used to label sulfhydryl groups. These new labels are beam resistant and provide significantly higher resolution then most other electron microscopy (EM) markers. Labeling of the protein albumin is described as an example.  相似文献   

8.
A meeting was held at the European Bioinformatics Institute (EBI) in Hinxton, United Kingdom to discuss recent progress in the development of EMD, a database for maps determined by electron microscopy that is now integrated with MSD, the macromolecular structure database at EBI. This meeting of representatives of many of the major image processing groups in electron microscopy also discussed possible software developments that would ease the documentation and deposition of such datasets. The meeting concluded with a strong endorsement of map deposition in electron microscopy and its linkage with the family of archival databases in biomedical research.  相似文献   

9.
This protocol details methods for the isolation of oocyte nuclear envelopes (NEs) from the African clawed toad Xenopus laevis, immunogold labeling of component proteins and subsequent visualization by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). This procedure involves the initial removal of the ovaries from mature female X. laevis, the dissection of individual oocytes, then the manual isolation of the giant nucleus and subsequent preparation for high-resolution visualization. Unlike light microscopy, and its derivative technologies, electron microscopy enables 3-5 nm resolution of nuclear structures, thereby giving unrivalled opportunities for investigation and immunological characterization in situ of nuclear structures and their structural associations. There are a number of stages where samples can be stored, although we recommend that this protocol take no longer than 2 d. Samples processed for FESEM can be stored for weeks under vacuum, allowing considerable time for image acquisition.  相似文献   

10.
Summary Single crystals from adult human peritubular dentine were studied by high-resolution transmission electron microscopy. Periodic fringe patterns were obtained from which the exact shape of the inorganic crystals were deduced. The crystals were found to have a mean length of 36.00±1.87 nm, a mean width of 25.57±1.37 nm, and a mean thickness of 9.76±0.69 nm. They consisted of platelets with a mean width-to-thickness ratio of 2.61, each being a flattened hexagonal prism of hydroxyapatite. Such conclusions are based upon a) the electron diffraction patterns that we obtained, and b) our comparison of the values of the periodic, equidistant fringes seen along different planes of sectioning with the corresponding theoretical values for hydroxyapatite.  相似文献   

11.
Summary The host-parasite relationship of HeLa M cells artificially infected with a bovine species of Mycoplasma was studied by light microscopy, transmission electron microscopy and scanning electron microscopy. The use of morphometry to quantitate some of the findings was explored. The parasites were seen in locations extracellular to the cell surface. The detection of small numbers of organisms by light microscopy was well demonstrated by use of the fluorescent antibody technique. Scanning electron microscopy proved to be an excellent method for revealing the surface details of cell-parasite morphology. Ultra-thin sections showed that the parasites are aligned mostly parallel to the plasma membrane of the host cell but separated by a gap of 10 nm. Morphometry indicated an average of 69 organisms per cell surface occupying 1.7% of the surface area. An increase of 26% in diameter of the HeLa cells, possibly as a result of infection, was observed.The authors wish to thank Christiana Ulness and Andrea Erickson for expert technical assistance and Arnold Schmidt for the operation of the scanning electron microscope. This work was supported by grants from the U.S.P.H.S.: AI 09586, AI 10743, and AI 06720  相似文献   

12.
Organization of synaptosomal cytoskeleton was reproducibly visualized by the technique of whole mount electron microscopy. Synaptosomes from rat cerebrums were immobilized on the formvar membrane of the electron microscopic grid, partly solubilized by detergents of various kinds, and treated with chemicals to reveal cytoskeletons and their characteristics. Synaptosomal cytoskeletons consisted of three types: (1) pre-synaptic fiber network structure whose composite fiber was 15–20 nm in diameter and formed 60–100 nm circular rings. The rings had small particles inside and were organized into three-dimensional networks. The pre-synaptic network was different from the Triton-unextractable structure of mitochondria. (2) Post-synaptic fiber aggregate was constructed of 10-nm filaments that were typically visualized as deoxycholate- or N-lauroyl sarcosinate-unextractable cytoskeletons. The aggregate was a major structure in the Triton-unextractable cytoskeleton of synaptic plasma membrane (more than 95%). (3) Fiber connecting individual clusters of synaptosomal cytoskeletons which was probably an artifactual product formed during and after synaptosomal isolation. Existence of actin was indicated both in pre- and post-synaptic cytoplasm.  相似文献   

13.
Methanospirillum hungatei GP1 possesses paracrystalline cell envelope components including end plugs and a sheath formed from stacked hoops. Both negative-stain transmission electron microscopy (TEM) and scanning tunneling microscopy (STM) distinguished the 2.8-nm repeat on the outer surface of the sheath, while negative-stain TEM alone demonstrated this repeat around the outer circumference of individual hoops. Thin sections revealed a wave-like outer sheath surface, while STM showed the presence of deep grooves that precisely defined the hoop-to-hoop boundaries at the waveform nodes. Atomic force microscopy of sheath tubes containing entrapped end plugs emphasized the end plug structure, suggesting that the sheath was malleable enough to collapse over the end plugs and deform to mimic the shape of the underlying structure. High-resolution atomic force microscopy has revised the former idea of end plug structure so that we believe each plug consists of at least four discs, each of which is approximately 3.5 nm thick. PT shadow TEM and STM both demonstrated the 14-nm hexagonal, particulate surface of an end plug, and STM showed the constituent particles to be lobed structures with numerous smaller projections, presumably corresponding to the molecular folding of the particle.  相似文献   

14.
Bridging fluorescence microscopy and electron microscopy   总被引:1,自引:1,他引:0  
Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major breakthrough in fluorescence microscopy in biology is the ability to follow specific targets on or in living cells, revealing dynamic localization and/or function of target molecules. One of the inherent limitations of fluorescence microscopy is the resolution. Several efforts are undertaken to overcome this limit. The traditional and most well-known way to achieve higher resolution imaging is by electron microscopy. Moreover, electron microscopy reveals organelles, membranes, macromolecules, and thus aids in the understanding of cellular complexity and localization of molecules of interest in relation to other structures. With the new probe development, a solid bridge between fluorescence microscopy and electron microscopy is being built, even leading to correlative imaging. This connection provides several benefits, both scientifically as well as practically. Here, I summarize recent developments in bridging microscopy.  相似文献   

15.
Attachment of virus particles to antiserum-coated electron microscope grids (immunosorbent electron microscopy) provided a test that was at least a thousand times more sensitive than conventional electron microscopy for detecting potato leafroll (PLRV) and potato mop-top (PMTV) viruses. The identity of the attached virus particles was confirmed by exposing them to additional virus antibody, which coated the particles.
PLRV particles (up to 50/μm2 of grid area) were detected in extracts of infected potato leaves and tubers, infected Physalis floridana leaves, and single virus-carrying aphids. On average, Myzus persicae yielded 10–30 times more PLRV particles than did Macrosiphum euphorbiae .
PMTV particles (up to 10/μm2 of grid area) were detected in extracts of inoculated tobacco leaves, and of infected Arran Pilot potato tubers with symptoms of primary infection. Particles from tobacco leaves were of two predominant lengths, about 125 nm or about 290 nm, and fewer particles of other lengths were found than in previous work, in which partially purified or purified preparations of virus particles were examined, using grids not coated with antiserum.  相似文献   

16.
Membrane glycoproteins of bovine and human milk fat globules (MFG) were located by scanning electron microscopy using lectin-labelled gold granules (50 nm diameter) as specific markers. Receptors for wheat germ agglutinin (WGA) and soybean lectin (SBA) were localized in clusters over the whole MFG surface. When MFG were treated with neuraminidase, the density of marking with SBA increased. Marking of MFG with Concanavalin A (ConA) was weak. No marking was obtained with lectins specific for -fucose, -galactose and α- -galactose. When thin sections of MFG marked with WGA (18 nm diameter gold granules) were examined by transmission electron microscopy, the membrane was uniformly marked. Using markers of different sizes (5 and 18 nm diam.) prefixed milk fat globule membranes (MFGM) were simultaneously marked with WGA and SBA. The lectin receptors appeared to belong to different glycoproteins which were clustered. Thin sections of this material showed that the receptors were located on one side of the membrane. No difference was observed between bovine MFG and human MFG from donors having blood group O and A. All results indicated that MFGM is a true biological membrane.  相似文献   

17.
Chlorosomes, the antenna complexes of green bacteria, are unique antenna systems in which pigments are organized in aggregates. Studies on isolated chlorosomes from Chlorobaculum tepidum based on SDS-PAGE, immunoblotting and molecular biology have revealed that they contain ten chlorosomal proteins, but no comprehensive information is available about the protein composition of the entire organelle. To extend these studies, chlorosomes were isolated from C. tepidum using three related and one independent isolation protocol and characterized by absorption spectroscopy, tricine SDS-PAGE, dynamic light scattering (DLS) and electron microscopy. Tricine SDS-PAGE showed the presence of more than 20 proteins with molecular weights ranging between 6 and 70 kDa. The chlorosomes varied in size. Their hydrodynamic radius (R(h) ) ranged from 51 to 75 nm and electron microscopy indicated that they were on average 140 nm wide and 170 nm long. Furthermore, the mass of 184 whole chlorosome organelles determined by scanning transmission electron microscopy ranged from 27 to 237 MDa being on average 88 (±28) MDa. In contrast their mass-per-area was independent of their size, indicating that there is a strict limit to chlorosome thickness. The average protein composition of the C. tepidum chlorosome organelles was obtained by MS/MS-driven proteomics and for the first time a detailed protein catalogue of the isolated chlorosomal proteome is presented. Based on the proteomics results for chlorosomes isolated by different protocols, four proteins that are involved in the electron or ion transport are proposed to be tightly associated with or incorporated into C. tepidum chlorosomes as well as the ten Csm proteins known to date.  相似文献   

18.
Immunogold electron microscopy of surface antigens of oral bacteria   总被引:1,自引:0,他引:1  
Colloidal gold particles 3-6 nm in diameter were prepared and stabilized with the IgG fraction of polyspecific rabbit antisera produced against four different oral bacteria. The immunogold markers were used in homologous reactions to label the bacteria in a preembedding procedure for electron microscopy. An indirect immunofluorescence procedure was concurrently used to optimize the labelling conditions before observation with the electron microscope. The immunogold markers labelled fibrillar structures extending outward 50-275 nm from the Gram-positive cell envelopes and a fuzzy 5-10 nm thick capsulelike layer on the outer aspect of Bacteroides gingivalis. The immunogold method appears to be a simple, rapid, and inexpensive procedure suitable for the study of bacterial surface antigens and can be upgraded with the use of monospecific antibodies.  相似文献   

19.
Lütz-Meindl U  Aichinger N 《Protoplasma》2004,223(2-4):155-162
Summary. In the present study energy-filtering transmission electron microscopy by use of an in-column spectrometer is employed as a powerful tool for ultrastructural analysis of plant cells. Images of unstained very thin (50 nm) and thick (140 nm) sections of the unicellular green alga Micrasterias denticulata, as a model system for a growing plant cell, taken by conventional transmission electron microscopy are compared to those obtained from filtering at zero energy loss (elastic bright field) and to those generated by energy filtering below the carbon-specific absorption edge at about 250 eV. The results show that the high-contrast images produced by the latter technique are distinctly superior in contrast and information content to micrographs taken at conventional transmission electron microscopy mode or at elastic bright field. Post- or en bloc staining with heavy metals, which is indispensable for conventional bright-field transmission electron microscopy, can be completely omitted. Delicate structural details such as membranous or filamentous connections between organelles, organelle interactions, or vesicle and vacuole contents are clearly outlined against the cytoplasmic background. Also, immunoelectron microscopic localization of macromolecules benefits from energy-filtering transmission electron microscopy by a better and more accurate assignment of antigens and structures and by facilitating the detection of immunomarkers without renunciation of contrast.  相似文献   

20.
Telocytes have been reported to play an important role in long‐distance heterocellular communication in normal and diseased heart, both through direct contact (atypical junctions), as well as by releasing extracellular vesicles (EVs) which may act as paracrine mediators. Exosomes and ectosomes are the two main types of EVs, as classified by size and the mechanism of biogenesis. Using electron microscopy (EM) and electron tomography (ET) we have found that telocytes in culture release at least three types of EVs: exosomes (released from endosomes; 45 ± 8 nm), ectosomes (which bud directly from the plasma membrane; 128 ± 28 nm) and multivesicular cargos (MVC; 1 ± 0.4 μm), the latter containing tightly packaged endomembrane‐bound vesicles (145 ± 35 nm). Electron tomography revealed that endomembrane vesicles are released into the extracellular space as a cargo enclosed by plasma membranes (estimated area of up to 3 μm2). This new type of EV, also released by telocytes in tissue, likely represents an essential component in the paracrine secretion of telocytes and may consequently be directly involved in heart physiology and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号