首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘驰  肖岚 《生命科学》2011,(3):279-282
少突胶质细胞的发育分化是由遗传的和后生的机制共同参与调控的一系列动态过程,其中,对于后生调控机制的研究称为表观遗传学。既往对少突胶质细胞的研究主要集中在相关基因本身的特性研究。近年来,关于寻址组蛋白修饰的研究使我们对少突胶质细胞发育和衰老过程中基因表达的后生调控有了新的认识。这些理论将有助于我们更好地理解脱髓鞘及衰老后髓鞘修复障碍的原因和防治途径。  相似文献   

2.
The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted.  相似文献   

3.
Cancer is controlled not only by genetic events but also by epigenetic events. The active acquisition of epigenetic changes is a poorly understood but very important process in mammalian development, differentiation, and disease. It is well established that epigenetic events are controlled by a specific subgroup of proteins, such as DNA methyltransferases, histone acetylases histone lysine methyltransferases or histone deacetylases, that influence methylation or acetylation patterns to modulate gene expression. We and others have identified S‐adenosylhomocysteine hydrolase in a high‐throughput genetic screen focused on discovering novel genes whose inhibition induces immortalisation of primary cells. Herein, we address the importance of genes involved in epigenetic mechanisms during senescence and how their effects might determine senescence bypass and immortalisation. The ways in which genes that regulate epigenetic mechanisms might modulate senescence/immortalisation and how these pathways could influence cancer development are explored. Overall, epigenetic modifications seem to play a major role in cancer, influencing tumour outcome by interfering with key senescence pathways.  相似文献   

4.
诱变、驯化等传统手段获得理想性状的酵母菌株,其性能在传代和保存过程中很容易发生性状丢失现象。从表观遗传学的角度出发,初步探讨酵母菌株在传统的诱变、驯化等育种过程及其性状丢失的表观遗传的分子机理。采用驯化等手段选育耐乙醇酵母,并通过无压力方式传代,研究此过程中酵母乙醇耐受性状遗传的稳定性与耐受相关的pro1、tps1、sod1基因启动子区域结合组蛋白上H3K4甲基化水平的关系。结果表明酵母乙醇耐受性状的变化受到酵母表观遗传控制。控制表观遗传的修饰过程易受环境改变的影响,因此经过选育获得的乙醇耐性性状遗传的不稳定性可能与表观遗传分子机理密切相关。  相似文献   

5.
Gastric cancer is a common aggressive malignancy. Although its incidence shows considerable variation among different countries, gastric cancer is still a major health problem worldwide. The causes of stomach cancer are not completely understood. What is clear is that gastric cancer is a multi-stage process involving genetic and epigenetic factors. This review is an in-depth study of the known genetic and epigenetic processes in the development of this tumor, and delineates possible approaches in gene and epigenetic therapy.  相似文献   

6.
Cancer is traditionally viewed as a primarily genetic disorder, however it is now becoming accepted that cancer is also a consequence of abnormal epigenetic events. Genetic changes and aneuploidy are associated with alterations in DNA sequence, and they are a hallmark of the malignant process. Epigenetic alterations are universally present in human cancer and result in heritable changes in gene expression and chromatin structure over many cell generations without changes in DNA sequence, leading to functional consequences equivalent to those induced by genetic alterations. Importantly, intriguing evidence emerged suggesting that epigenetic changes may precede and provoke genetic changes. In this scenario, epigenetic events are primary events while genetic changes (such as mutations) may simply be a consequence of disrupted epigenetic states. This fact may explain why many genetic screens proved to be limited with regard to cancer causality and pathogenesis. Aberrant epigenetic events affect multiple genes and cellular pathways in a non-random fashion and this can predispose to induction and accumulation of genetic changes in the course of tumour initiation and progression. These considerations are critical for a better understanding of tumourigenesis and molecular events underlying the acquisition of drug resistance, as well as development of novel strategies for cancer therapy and prevention.  相似文献   

7.
Developmental interactions and the constituents of quantitative variation   总被引:2,自引:0,他引:2  
Development is the process by which genotypes are transformed into phenotypes. Consequently, development determines the relationship between allelic and phenotypic variation in a population and, therefore, the patterns of quantitative genetic variation and covariation of traits. Understanding the developmental basis of quantitative traits may lead to insights into the origin and evolution of quantitative genetic variation, the evolutionary fate of populations, and, more generally, the relationship between development and evolution. Herein, we assume a hierarchical, modular structure of trait development and consider how epigenetic interactions among modules during ontogeny affect patterns of phenotypic and genetic variation. We explore two developmental models, one in which the epigenetic interactions between modules result in additive effects on character expression and a second model in which these epigenetic interactions produce nonadditive effects. Using a phenotype landscape approach, we show how changes in the developmental processes underlying phenotypic expression can alter the magnitude and pattern of quantitative genetic variation. Additive epigenetic effects influence genetic variances and covariances, but allow trait means to evolve independently of the genetic variances and covariances, so that phenotypic evolution can proceed without changing the genetic covariance structure that determines future evolutionary response. Nonadditive epigenetic effects, however, can lead to evolution of genetic variances and covariances as the mean phenotype evolves. Our model suggests that an understanding of multivariate evolution can be considerably enriched by knowledge of the mechanistic basis of character development.  相似文献   

8.
The expansion of invasive species challenges our understanding of the process of adaptation. Given that the invasion process often entails population bottlenecks, it is surprising that many invasives appear to thrive even with low levels of sequence-based genetic variation. Using Amplified Fragment Length Polymorphism (AFLP) and methylation sensitive-AFLP (MS-AFLP) markers, we tested the hypothesis that differentiation of invasive Japanese knotweed in response to new habitats is more correlated with epigenetic variation than DNA sequence variation. We found that the relatively little genetic variation present was differentiated among species, with less differentiation among sites within species. In contrast, we found a great deal of epigenetic differentiation among sites within each species and evidence that some epigenetic loci may respond to local microhabitat conditions. Our findings indicate that epigenetic effects could contribute to phenotypic variation in genetically depauperate invasive populations. Deciphering whether differences in methylation patterns are the cause or effect of habitat differentiation will require manipulative studies.  相似文献   

9.
10.
Pan Z  Zhang J  Li Q  Li Y  Shi F  Xie Z  Liu H 《遗传学报》2012,39(3):111-123
During the growth and development of mammalian ovarian follicles, the activation and deactivation of mass genes are under the synergistic control of diverse modifiers through genetic and epigenetic events. Many factors regulate gene activity and functions through epigenetic modification without altering the DNA sequence, and the common mechanisms may include but are not limited to: DNA methylation, histone modifications (e.g., acetylation, deacetylation, phosphorylation, methylation, and ubiquitination), and RNA-associated silencing of gene expression by noncoding RNA. Over the past decade, substantial progress has been achieved in studies involving the epigenetic alterations during mammalian germ cell development. A number of candidate regulatory factors have been identified. This review focuses on the current available information of epigenetic alterations (e.g., DNA methylation, histone modification, noncoding-RNA-mediated regulation) during mammalian folliculogenesis and recounts when and how epigenetic patterns are differentially established, maintained, or altered in this process. Based on different types of epigenetic regulation, our review follows the temporal progression of events during ovarian folliculogenesis and describes the epigenetic changes and their contributions to germ cell-specific functions at each stage (i.e., primordial folliculogenesis (follicle formation), follicle maturation, and follicular atresia).  相似文献   

11.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Despite significant progresses in the last decades, the origin of this cancer remains unclear and no efficient therapy exists. PDAC does not arise de novo: three remarkable different types of pancreatic lesions can evolve towards pancreatic cancer. These precursor lesions include: Pancreatic intraepithelial neoplasia (PanIN) that are microscopic lesions of the pancreas, Intraductal Papillary Mucinous Neoplasms (IPMN) and Mucinous Cystic Neoplasms (MCN) that are both macroscopic lesions. However, the cellular origin of these lesions is still a matter of debate. Classically, neoplasm initiation or progression is driven by several genetic and epigenetic alterations. The aim of this review is to assemble the current information on genetic mutations and epigenetic disorders that affect genes during pancreatic carcinogenesis. We will further discuss the interest of the genetic and epigenetic alterations for the diagnosis and prognosis of PDAC. Large genetic alterations (chromosomal deletion/amplification) and single point mutations are well described for carcinogenesis inducers. Mutations classically occur within key regions of the genome. Consequences are various and include activation of mitogenic pathways or silencing of apoptotic processes. Alterations of K-RAS, P16 and DPC4 genes are frequently observed in PDAC samples and have been described to arise gradually during carcinogenesis. DNA methylation is an epigenetic process involved in imprinting and X chromosome inactivation. Alteration of DNA methylation patterns leads to deregulation of gene expression, in the absence of mutation. Both genetic and epigenetic events influence genes and non-coding RNA expression, with dramatic effects on proliferation, survival and invasion. Besides improvement in our fundamental understanding of PDAC development, highlighting the molecular alterations that occur in pancreatic carcinogenesis could provide new clinical tools for early diagnosis of PDAC and the molecular basis for the development of new effective therapies.  相似文献   

12.
表遗传学推动新一轮遗传学的发展   总被引:2,自引:0,他引:2  
薛开先 《遗传》2005,27(1):155-159
科学的发展孕育着突破,表遗传学研究推动着新一轮的遗传学的发展。表遗传学是研究没有DNA序列变化的、可遗传的表达改变。表遗传学不仅对医学和农业有重要的实践意义,而且还提供了理解遗传和进化的新观点。研究表明,人类基因组含有两类遗传信息,遗传学信息提供了合成生命所必需蛋白质的模板,而表遗传学信息提供了何时、何地和怎样地应用遗传学信息的指令;遗传学和表遗传学的关系有如“阴阳”,它们既相区别又协同参与调节生命活动。同时还讨论了基因的概念、进化和epigenetics的中文译名等问题。表遗传学研究应引起国内学术界的关注。Abstract: Scientific development is pregnant with a breakthrough, epigenetic studies are pushing the genetics forward. Epigenetics is the study of heritable changes in gene expression that occurs without a change in DNA sequence. Epigenetics not only has practical significance for medicine and agriculture, but also provides new views on understanding heredity and evolution. Human genome contains information in two forms: the genetic information provides the blueprint for the manufacture of all the proteins necessary to create a living thing while the epigenetic information provides instructions on how, where, and when the genetic information should be used. The interrelationship of genetics and epigenetics is like a yin-yan, they are different from each other, and cooperatively take part in regulation of a variety of living activities. In this paper concept of gene and problems of evolution has been also discussed according to epigenetic viewpoints.  相似文献   

13.
Discussions about evolutionary change in developmental processes or morphological structures are predicated on specific quantitative genetic models whose parameters predict whether evolutionary change can occur, its relative rate and direction, and if correlated change will occur in other related and unrelated structures. The appropriate genetic model should reflect the relevant genetical and developmental biology of the organisms, yet be simple enough in its parameters so that deductions can be made and hypotheses tested. As a consequence, the choice of the most appropriate genetic model for polygenically controlled traits is a complex tissue and the eventual choice of model is often a compromise between completeness of the model and computational expediency. Herein, we discuss several developmental quantitative genetic models for the evolution of development and morphology. The models range from the classical direct effects model to complex epigenetic models. Further, we demonstrate the algebraic equivalency of the Cowley and Atchley epigenetic model and Wagner's developmental mapping model. Finally, we propose a new multivariate model for continuous growth trajectories. The relative efficacy of these various models for understanding evolutionary change in developmental and morphological traits is discussed. © 1994 Wiley-Liss, Inc.  相似文献   

14.
There has been minimal theoretical exploration of the role of epigenetic variation in the response to natural selection. Using a population genetic model, I derive formulae that characterize the response of epigenetic variation to selection over multiple generations. Unlike genetic models in which mutation rates are assumed to be low relative to the strength of selection, the response to selection decays quickly due to a rapid lowering of parent-offspring epiallelic correlation. This effect is separate from the slowing response caused by a reduction in epigenetic variation. These results suggest that epigenetic variation may be less responsive to natural selection than is genetic variation, even in cases where levels of heritability appear similar.  相似文献   

15.
Asymmetric cell division produces two cells that are genetically identical but each have distinctly different cell fates. During this process, epigenetic mechanisms play an important role in allowing the two daughter cells to have unique gene expression profiles that lead to their specific cell identities. Although the process of duplicating and segregating the genetic information during the cell cycle has been well studied, the question of how epigenetic information is duplicated and partitioned still remains. In this review, we discuss recent advances in understanding how epigenetic states are established and inherited, with emphasis on the asymmetric inheritance patterns of histones, DNA methylation, nonhistone proteins, RNAs, and organelles. We also discuss how misregulation of these processes may lead to diseases such as cancer and tissue degeneration.  相似文献   

16.
17.
Epigenetic reprogramming in mammalian nuclear transfer   总被引:6,自引:0,他引:6  
With the exception of lymphocytes, the various cell types in a higher multicellular organism have basically an identical genotype but are functionally and morphologically different. This is due to tissue-specific, temporal, and spatial gene expression patterns which are controlled by genetic and epigenetic mechanisms. Successful cloning of mammals by transfer of nuclei from differentiated tissues into enucleated oocytes demonstrates that these genetic and epigenetic programs can be largely reversed and that cellular totipotency can be restored. Although these experiments indicate an enormous plasticity of nuclei from differentiated tissues, somatic cloning is a rather inefficient and unpredictable process, and a plethora of anomalies have been described in cloned embryos, fetuses, and offspring. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. In this review, we discuss the roles of various epigenetic mechanisms, including DNA methylation, chromatin remodeling, imprinting, X chromosome inactivation, telomere maintenance, and epigenetic inheritance in normal embryonic development and in the observed abnormalities in clones from different species. Nuclear transfer represents an invaluable tool to experimentally address fundamental questions related to epigenetic reprogramming. Understanding the dynamics and mechanisms underlying epigenetic control will help us solve problems inherent in nuclear transfer technology and enable many applications, including the modulation of cellular plasticity for human cell therapies.  相似文献   

18.
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein–protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's “mystery of mysteries,” this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.  相似文献   

19.
It is postulated that cancer is the result of genetic and epigenetic changes that occur mainly in stem (precursor) cells of various cell types. I propose that there are three classes of genes which are involved in the development of cancer. These are: Class I, II and III oncogenes. The classification is based on the way the oncogene acts at the cellular level to further the development of cancer. Genetic changes, that is point mutations, deletions, inversions, amplifications and chromosome translocations, gains or losses in the genes themselves or epigenetic changes in the genes (e.g. DNA hypomethylation) or in the gene products (RNA or protein) are responsible for the development of cancer. Changes of oncogene activity have a genetic or epigenetic origin or both and result in quantitative or qualitative differences in the oncogene products. These are involved in changing normal cells into the cells demonstrating a cancer phenotype (usually a form of dedifferentiated cell) in a multistep process. There are several pathways to cancer and the intermediate steps are not necessarily defined in an orderly fashion. Activation of a particular Class I or II oncogene and inactivation of a Class III oncogene could occur at any step during the development of cancer. Most benign or malignant tumors consist of a heterogeneous mixture of dedifferentiated cells arising from a single cell.  相似文献   

20.
Genetic information embedded in DNA sequence and the epigenetic information marked by modifications on DNA and histones are essential for the life of eukaryotes. Cells have evolved mechanisms of DNA duplication and chromatin restoration to ensure the inheritance of genetic and epigenetic information during cell division and development. In this review, we focus on the maintenance of epigenetic landscape during chromatin dynamics which requires the orchestration of histones and their chaperones. We discuss how epigenetic marks are re-established in the assembly of new chromatin after DNA replication and repair, highlighting the roles of CAF-1 in the process of changing chromatin state. The functions of CAF-1 provide a link between chromatin assembly and epigenetic restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号