首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupling of photosynthetic reaction centers (RCs) with inorganic surfaces is attractive for the identification of the mechanisms of interprotein electron transfer (ET) and for possible applications in construction of photo- and chemosensors. Here we show that RCs from Rhodobacter sphaeroides can be immobilized on gold surfaces with the RC primary donor looking towards the substrate by using a genetically engineered poly-histidine tag (His7) at the C-terminal end of the M-subunit and a Ni---NTA terminated self-assembled monolayer (SAM). In the presence of an electron acceptor, ubiquinone-10, illumination of this RC electrode generates a cathodic photocurrent. The action spectrum of the photocurrent coincides with the absorption spectrum of RC and the photocurrent decreases in response to the herbicide, atrazine, confirming that the RC is the primary source of the photoresponse. Disruption of the Ni---NTA---RC bond by imidazole leads to about 80% reduction of the photocurrent indicating that most of the photoactive protein is specifically bound to the electrode through the linker.  相似文献   

2.
Abstract

The present study focusses on the enhancement of the catalytic activity and stability of an acetylesterase enzyme isolated from Staphylococcus spp. as Cross-Linked Enzyme Aggregates (CLEAs). The various parameters governing the activity of CLEAs were optimized. The magnetite and graphene oxide nanoparticles were successfully prepared via the chemical co-precipitation and Hummer's method, respectively. These nanoparticles supported the preparation as magnetite nanoparticle-supported cross-Linked Enzyme Aggregates (MGNP-CLEAs) and graphene oxide-supported Cross-Linked Enzyme Aggregates (GO-CLEAs). The activity and stability of these immobilized CLEAs were compared with the free enzyme at various temperature, pH, and organic solvents along with its storage stability and reusability. The immobilized preparations were analyzed by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FT-IR) techniques. Acetylesterase precipitated with 60% saturated ammonium sulfate salt (SAS) solution and cross-linked with 100?mM glutaraldehyde for 4?h at 30?°C was found to be optimal to produce CLEAs with highest activity recovery of 99.8%. The optimal pH at 8.0 and temperature at 30?°C remained the same for both the free and immobilized enzyme, respectively. Storage stability significantly improved for the immobilized enzyme as compared to free enzyme. SEM showed type-I aggregate and FT-IR revealed the successful immobilization of the enzyme. MGNP-CLEAs were found to have better activity and stability in comparison to other immobilized preparations.  相似文献   

3.
The present study reports on the retention of conformational flexibility of a model allosteric protein upon immobilization on self-assembled monolayers (SAMs) on gold. Organothiolated SAMs of different compositions were utilized for adsorptive and covalent attachment of bovine liver glutamate dehydrogenase (GDH), a well-characterized allosteric enzyme. Sensitive fluorimetric assays were developed to determine immobilization capacity, specific activity, and allosteric properties of the immobilized preparations as well as the potential for repeated use and continuous catalytic transformations. The allosteric response of the free and immobilized forms towards ADP, L-leucine and high concentrations of NAD(+), some of the well-known activators for this enzyme, were determined and compared. The enzyme immobilized by adsorption or chemical binding responded similarly to the activators with a greater degree of activation, as compared to the free form. Also loss of activity involving the two immobilization procedures were similar, suggesting that residues essential for catalytic activity or allosteric properties of GDH remained unchanged in the course of chemical modification. A recently established method was used to predict GDH orientation upon immobilization, which was found to explain some of the experimental results presented. The general significance of these observations in connection with retention of native properties of protein structures upon immobilization on SAMs is discussed.  相似文献   

4.
Prostate-specific antigen (PSA) is a valuable biomarker for prostate cancer screening. We developed a PSA immunoassay on a commercially available surface plasmon resonance biosensor. Our PSA receptor molecule consists of a single domain antigen-binding fragment, cAbPSA-N7, derived from dromedary heavy-chain antibodies and identified after phage display. It binds PSA with a high k(on) value of 1.9x10(6) M-1 s-1, and was covalently immobilised on a gold substrate via a mixed self-assembled monolayer (SAM) of alkanethiols by using carbodiimide-coupling chemistry in 10mM acetate buffer pH 5.5 to obtain an optimal pre-concentration. The best performing and optimised mixed SAM consisted of (10%) 16-mercapto-1-hexadecanoic acid (16-MHA) for covalent cAbPSA-N7 immobilisation and (90%) 11-mercapto-1-undecanol (11-MUOH) to minimise non-specific adsorption of the analyte. In this way, two advantages are incorporated in a single coupling layer. Up to 28 fmol/mm2 of cAbPSA-N7 could be immobilised and 30% of its binding sites participate actively in PSA interaction. In addition, the optimised layer showed also optimal performance to assess physiological samples. Although PSA concentrations as low as 10 ng/ml could be detected directly, this detection limit could be enhanced to PSA levels in the sub ng/ml range by introducing a sandwich assay involving a biotinylated secondary antibody and streptavidin modified gold nanoparticles. This approach realizes the PSA detection at clinical relevant concentrations.  相似文献   

5.
Commercially available nanoparticles have been employed as high mass labels for enhancing the binding signals and improving the detection sensitivity of surface plasmon resonance (SPR) assays. Such a signal enhancement is affected by the size and distance of the nanoparticles from the sensing surface. High signal amplifications are expected with increasing nanoparticle size and as the distance between the sensing surface and the nanoparticle is decreased. This paper describes a new way to improve the SPR assay sensitivity of small molecules using a mixed self-assembled monolayer (mSAM) surface to bring the nanogold particles close to the sensing surface. Progesterone (P4) was conjugated to ovalbumin (OVA) with an oligoethylene glycol (OEG) linker to form protein conjugate (P(4)-OEG-OVA), which was immobilized onto the mSAM surface. Inhibition immunoassays based on this mSAM/P4-OEG-OVA surface have demonstrated that 10nm nanogold dramatically improved the assay sensitivity of progesterone, lowering its limit of detection (LOD) from the original 372.7 to 4.9 ng L(-1). In addition, the high stability of the mSAM/P4-OEG-OVA surface was demonstrated by the use of a single chip for over 400 binding/regeneration cycles without any significant drop in antibody binding capacity and baseline shift.  相似文献   

6.
A novel scheme for the fabrication of gold nanoparticle modified cholesterol oxidase based bioelectrode is presented and its application potential for cholesterol biosensor is investigated. The fabrication procedure is based on the deposition of gold nanoparticles on the 1,6-hexanedithiol modified gold electrode, functionalization of the surface of deposited gold nanoparticles with carboxyl groups using 11-mercaptoundecanoic acid and then covalent immobilization of cholesterol oxidase on the surface of gold nanoparticle film using the N-ethyl-N'-(3-dimethylaminopropyl carbodimide) and N-hydroxysuccinimide ligand chemistry. The assembly process of the bioelectrode is investigated using atomic force microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The gold nanoparticle film on the electrode surface provided an environment for the enhanced electrocatalytic activities and thus resulted in enhanced analytical response. The resulting bioelectrode is further applied to the amperometric detection of cholesterol and exhibited a linear response to cholesterol in the range of 0.04-0.22 mM with a detection limit of 34.6 μM, apparent Michaelis-Menten constant (K(m)(app)) of 0.062 mM and a high sensitivity of 9.02 μA mM(-1). The fabricated bioelectrode is successfully used for the selective determination of cholesterol in human serum samples.  相似文献   

7.
The work reported herein concerns the assembly of N-stearoyl L -cysteine methyl ester [CH3(CH2)16COCysOMe, 1] on the surface of gold. This compound serves as a simple model of a related polypeptide, which has been designed to adopt a β-sheet architecture on metallic and oxide surfaces. We describe the preparation of monolayers of 1, and characterization of these layers via ellipsometry, vibrational spectroscopy and X-ray photoelectron spectroscopy. The results are most consistent with a disordered array of the alkyl chains, in which close packing is frustated by a mismatch in the cross-sectional areas of the cysteinyl ester head group and the stearoyl chains of the thiol. Despite the disorder, the alkyl chains form a hydrophobic surface layer, with an advancing contact angle for water comparable to that observed for octadecanethiol on gold © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
Gold nanoparticles can be exploited to facilitate a highly sensitive and selective metal ion detection based on fluorescence anisotropy assay with metal ion-dependent DNA-cleaving DNAzyme. This assay allows rapid and accurate determination of metal ions in aqueous medium at room temperature. The method has been demonstrated for determination of Cu2+ and Pb2+ ions. The detection sensitivity can be significantly improved to 1 nM by using a “nanoparticle enhancement” approach. Moreover, the assay was also tested in 384-well plates for high-throughput routine determination of toxic metal ions in environmental samples. The method showed distinct advantages over conventional methods in terms of its potential sensitivity, specificity, and ability for rapid response.  相似文献   

9.
Bacterial biofilms cause serious problems, such as antibiotic resistance and medical device-related infections. To further understand bacterium-surface interactions and to develop efficient control strategies, self-assembled monolayers (SAMs) of alkanethiols presenting different functional groups on gold films were analyzed to determine their resistance to biofilm formation. Escherichia coli was labeled with green florescence protein, and its biofilm formation on SAM-modified surfaces was monitored by confocal laser scanning microscopy. The three-dimensional structures of biofilms were analyzed with the COMSTAT software to obtain information about biofilm thickness and surface coverage. SAMs presenting methyl, L-gulonamide (a sugar alcohol tethered with an amide bond), and tri(ethylene glycol) (TEG) groups were tested. Among these, the TEG-terminated SAM was the most resistant to E. coli biofilm formation; e.g., it repressed biofilm formation by E. coli DH5alpha by 99.5% +/- 0.1% for 1 day compared to the biofilm formation on a bare gold surface. When surfaces were patterned with regions consisting of methyl-terminated SAMs surrounded by TEG-terminated SAMs, E. coli formed biofilms only on methyl-terminated patterns. Addition of TEG as a free molecule to growth medium at concentrations of 0.1 and 1.0% also inhibited biofilm formation, while TEG at concentrations up to 1.5% did not have any noticeable effects on cell growth. The results of this study suggest that the reduction in biofilm formation on surfaces modified with TEG-terminated SAMs is a result of multiple factors, including the solvent structure at the interface, the chemorepellent nature of TEG, and the inhibitory effect of TEG on cell motility.  相似文献   

10.
Self-assembled monolayers designed to immobilize capture antibodies are usually prepared using a mixture of functional and inactive linkers. Here, using low molar ratios (1:1 to 1:100) of the two linkers resulted in loss of binding capability of the anti-EGFR (epidermal growth factor receptor) antibody nimotuzumab, as assessed by surface plasmon resonance imaging. We then developed a simple theoretical model to predict the optimal surface density of the functional linker, taking into account the antibody size and linker diameter. A high (1:1000) dilution of the functional linker yielded the best results. As an advantage, this approach does not require chemical modification of the protein.  相似文献   

11.
A label-free immunosensor based on a modified gold electrode incorporated with silver (Ag) nanoparticles (NPs) to enhance the capacitive response to microcystin-LR (MCLR) has been developed. Anti-microcystin-LR (anti-MCLR) was immobilized on silver nanoparticles bound to a self-assembled thiourea monolayer. Interaction of anti-MCLR and MCLR were directly detected by capacitance measurement. Under optimum conditions, MCLR could be determined with a detection limit of 7.0pgl(-1) and linearity between 10pgl(-1) and 1mugl(-1). The immobilized anti-MCLR on self-assembled thiourea monolayer incorporated with silver nanoparticles was stable and good reproducibility of the signal could be obtained up to 43 times with an R.S.D. of 2.1%. Comparing to the modified electrode without silver nanoparticles it gave 1.7-fold higher sensitivity and lower limit of detection. The developed immunosensor was applied to analyze MCLR in water samples and the results were in good agreement with those obtained by high-performance liquid chromatography (HPLC) (P<0.05).  相似文献   

12.
The adsorption properties, amount and specific activity of lipase D from Rhizopus delemar were investigated by employing a gold substrate modified with seven kinds of thiol monolayer. Quartz crystal microbalance measurements revealed that the amount of the enzyme adsorbed to the hydrophobic monolayers (e.g. benzenethiol) was much higher than that to the hydrophilic monolayers (e.g. 3-mercaptopropanoic acid). In contrast, lipase D adsorbed to the hydrophilic, 2-amino-1-ethanethiol monolayer showed the highest specific activity, the value being 300-fold higher than for the same enzyme dissolved in an aqueous medium.  相似文献   

13.
The development of protein chips has suffered from problems regarding long-term protein stability and activity. We present a protein sensor surface for immunodetection that is prepared by a DNA-directed protein immobilization method on a mixed self-assembled monolayer (SAM). By this approach, an immobilized single-stranded DNA (ssDNA) surface can be transferred/modified into a protein chip by flowing in ssDNA-conjugated protein when the protein chip measurement is needed. Therefore, the long-term stability of the protein chip will not be a problem for various applications. We tried various compositions for the SAM layer, the length of the ssDNA spacer, the end-point nucleotide composition, and the processes of ssDNA immobilization of the SAM for an optimized condition for shifting the DNA chip to a protein chip. The evaluations were made by using surface plasmon resonance. Our results indicated that a 50:1 ratio of oligo(ethylene glycol) (OEG)/COOH-terminated OEG and DNA sequences with 20mer are the best conditions found here for making a protein chip via a DNA-directed immobilization (DDI) method. The designed end-point nucleotide composition contains a few guanines or cytosines, and ssDNA immobilization of the SAM by dehybridizing immobilized double-stranded DNA (dsDNA) can improve the hybridization efficiency.  相似文献   

14.
15.
We investigated the enhancement properties of the photocurrent generation from self-assembled monolayers of porphyrin fabricated on periodic structures of gold half-shells. Tuning the surface plasmon frequency of the nanostructures led to correlated wavelength dependences of the external quantum efficiencies of the photocurrents, as well as fluorescence intensities resulting from effective electronic excitation of porphyrin molecules.  相似文献   

16.
We synthesized a library of polymer-coated gold nanoparticles (AuNPs) with well-defined sizes (5, 10, and 20 nm) and surface properties, and investigated their efficiency to cross the Caco-2 epithelial barrier and disrupt tight junctions connecting the cellular barrier. The positively charged and hydrophobic polymer-coated AuNPs showed little or no translocation across the model Caco-2 monolayer. Most of these positive and hydrophobic nanoparticles were either bound to the surface or internalized within the cell. The neutral and negatively charged polymer-coated AuNPs with a size of 5 nm showed a significantly higher translocation. All polymer-coated AuNPs induced the translocation of small molecules across the cellular monolayer, suggesting the loosening of the paracellular tight junction joining individual cells. The decrease in the TEER values of the monolayers supported the opening of the tight junctions. These tight junctions fully recovered for most polymer-coated AuNPs 12 h after removal of the nanoparticles. The exception was the cationic polymer-coated AuNPs in which the barrier function only recovered up to 62%. The library of polymer-coated AuNPs showed no apparent signs of hemolysis to erythrocytes at physiological pH. Our investigation has provided insight on the influence of polymer coatings on the epithelial barrier.  相似文献   

17.
We succeeded in regulating the growth of diatom cells on chemically modified glass surfaces. Glass surfaces were functionalized with -CF3, -CH3, -COOH, and -NH2 groups using the technique of self-assembled monolayers (SAM), and diatom cells were subsequently cultured on these surfaces. When the samples were rinsed after the adhesion of the diatom cells on the modified surfaces, the diatoms formed two dimensional arrays; this was not possible without the rinsing treatment. Furthermore, we examined the number of cells that grew and their motility by time-lapse imaging in order to clarify the interaction between the cells and SAMs. We hope that our results will be a basis for developing biodevices using living photosynthetic diatom cells.  相似文献   

18.
Bacterial cell immobilization is a novel technique used in many areas of biosciences and biotechnology. Iron oxide nanoparticles have attracted much attention in bacterial cell immobilization due to their unique properties such as superparamagnetism, large surface area to volume ratio, biocompatibility and easy separation methodology. Adhesion is the basis behind many immobilization techniques and various types of interactions determine bacterial adhesion. Efficiency of bacterial cell immobilization using iron oxide nanoparticles (IONs) generally depends on the physicochemical properties of the IONs and surface properties of bacterial cells as well as environmental/culture conditions. Bacteria exhibit various metabolic responses upon interaction with IONs, and the potential applications of iron oxide nanoparticles in bacterial cell immobilization will be discussed in this work.  相似文献   

19.
A new gold nanoparticle-based construct has been designed to hydrophobic drugs delivery into cancer cells. Cyclodextrin scaffolds adsorbed on polyethyleneimine-coated gold nanoparticles (AuNP@PEI@CD) have been used to encapsulate hydrophobic tetrapyrrolic compounds consisting of gold complexes of 5,10,15,20-tetraphenyl porphyrin (AuTPPCl) and 5-(4-acetoxyphenyl)-10,15,20-triphenyl porphyrin (AuTPPOAcCl). These two nanoparticles have been tested for their cytotoxic activities against the two colorectal cancer cell lines HT-29 and HCT-116 and have shown significant increases in toxicity when compared to the corresponding non-vectorized tetrapyrrolic macrocycles.  相似文献   

20.
Here, we present a simple method for controlling the density of Au nanoparticles (Au NPs) on a modified silicon substrate, by destabilizing the colloidal Au NPs with 3-mercaptopropyltrimethoxylsilane (3-MPTMS) for microelectromechanical-system-based applications to reduce tribological issues. A silicon surface was pretreated with a 3-MPTMS solution, immediately after which thiolated Au NPs were added to it, resulting in their uniform deposition on the silicon substrate. Without any material property change of the colloidal Au NPs, we observed the formation of large clusters Au NPs on the modified silicon surface. Analysis by scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that the addition of 3-MPTMS resulted in an alternation of the chemical characteristics of the solution. Atomic force microscopy imaging supported the notion that silicon surface modification is the most important factor on tribological properties of materials along with ligand-modified Au NPs. The density of Au NPs on a silicon surface was significantly dependent on several factors, including the concentration of colloidal Au NPs, deposition time, and concentration of 3-MPTMS solution, while temperature range which was used throughout experiment was determined to have no significant effect. A relatively high density of Au NPs forms on the silicon surface as the concentrations of Au NPs and 3-MPTMS are increased. In addition, the maximum deposition of Au NPs on silicon wafer was observed at 3 h, while the effects of temperature variation were minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号