首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: We have developed a rapid, high throughput method for single nucleotide polymorphism (SNP) genotyping that employs an oligonucleotide ligation assay (OLA) and flow cytometric analysis of fluorescent microspheres. METHODS: A fluoresceinated oligonucleotide reporter sequence is added to a "capture" probe by OLA. Capture probes are designed to hybridize both to genomic "targets" amplified by polymerase chain reaction and to a separate complementary DNA sequence that has been coupled to a microsphere. These sequences on the capture probes are called "ZipCodes". The OLA-modified capture probes are hybridized to ZipCode complement-coupled microspheres. The use of microspheres with different ratios of red and orange fluorescence makes a multiplexed format possible where many SNPs may be analyzed in a single tube. Flow cytometric analysis of the microspheres simultaneously identifies both the microsphere type and the fluorescent green signal associated with the SNP genotype. RESULTS: Application of this methodology is demonstrated by the multiplexed genotyping of seven CEPH DNA samples for nine SNP markers located near the ApoE locus on chromosome 19. The microsphere-based SNP analysis agreed with genotyping by sequencing in all cases. CONCLUSIONS: Multiplexed SNP genotyping by OLA with flow cytometric analysis of fluorescent microspheres is an accurate and rapid method for the analysis of SNPs.  相似文献   

2.
增强PCR和全基因组扩增是当前微量DNA分析的主要策略,但是,由于DNA模板量过少,受随机效应影响显著,往往不能得到可靠的DNA分型结果.本文提出一种新的检验策略:PLP-LDR-HRCA,尝试微量DNA检材的SNPs分型研究.选择rs17750303位点,并设计等位基因特异性锁式探针,采用连接酶检测反应来识别等位基因,而后采用超分支滚环扩增反应来放大检测信号.结果表明,PLP-LDR-HRCA反应特异性好,灵敏度高,能够直接鉴别微量基因组DNA模板中待测SNP位点,rs17750303纯合型样品(AA型或CC型)和杂合型样品(AC型)准确分型所需最少模板量分别为20pg和30pg.对于增强PCR和全基因组扩增技术不能有效检验的微量检材,PLP-LDR-PCR策略独具优势,可能具有较大的开发价值.  相似文献   

3.
The requirement for Watson-Crick base pairing surrounding a nick in duplex DNA to be sealed by DNA ligase is the basis for oligonucleotide ligation assays that distinguish single base mutations in DNA targets. Experiments in a model system demonstrate that the minimum length of oligonucleotide that can be joined differs for different ligases. Thermus thermophilus (Tth) DNA ligase is unable to join any oligonucleotide of length six or less, while T4 DNA ligase and T7 DNA ligase are both able to join hexamers. The rate of oligonucleotide ligation by Tth DNA ligase increases between heptamer and nonamer. Mismatches which cause the duplex to be shortened by fraying, at the end distal to the join, slow the ligation reaction. In the case of Tth DNA ligase, mismatches at the seventh and eighth position 5'to the nick completely inhibit the ligation of octamers. The results are relevant to mechanisms of ligation.  相似文献   

4.
We describe a non-isotopic, semi-automated method for large-scale multiplex analysis of nucleic acid sequences, using the cystic fibrosis transmembrane regulator (CFTR) gene as an example. Products of a multiplex oligonucleotide ligation assay (OLA) are resolved electrophoretically from one another and from unligated probes under denaturing conditions with fluorescence detection. One ligation probe for each OLA target carries a fluorescent tag, while the other probe carries an oligomeric non-nucleotide mobility modifier. Each OLA product has a unique electrophoretic mobility determined by the ligated oligonucleotides and the mobility-modifier oligomer arbitrarily assigned (coded) to its target. The mobility range for practical mobility modifiers is much wider than the accessible range from unmodified ligated oligonucleotides of practical length. Each mobility modifier is built from phosphoramidite monomers in a stepwise manner on its associated oligonucleotide using an automated synthesizer. The resulting mobility modifiers lower the probe-target duplex Tm by less than 3 degrees C and retard probe-target annealing by less than 50%, with negligible effect on OLA yield and specificity. This method is especially useful for allelic discrimination in highly polymorphic genes such as CFTR.  相似文献   

5.
Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE) using CFET tags and biotinylated dideoxynucleotides (biotin-ddNTPs). A library of CFET-labeled oligonucleotide primers was mixed with biotin-ddNTPs, DNA polymerase and the DNA templates containing the SNPs in a single tube. The nucleotide at the 3′-end of each CFET-labeled oligonucleotide primer was complementary to a particular SNP in the template. Only the CFET-labeled primer that is fully complementary to the DNA template was extended by DNA polymerase with a biotin-ddNTP. We isolated the DNA extension fragments that carry a biotin at the 3′-end by capture with streptavidin-coated magnetic beads, while the unextended primers were eliminated. The biotinylated fluorescent DNA fragments were subsequently analyzed in a multicolor fluorescence electrophoresis system. The distinct fluorescence signature and electrophoretic mobility of each DNA extension product in the electropherogram coded the SNPs without the use of a sizing standard. We simultaneously distinguished six nucleotide variations in synthetic DNA templates and a PCR product from the retinoblastoma tumor suppressor gene. The use of CFET-labeled primers and biotin-ddNTPs coupled with the specificity of DNA polymerase in SBE offered a multiplex method for detecting SNPs.  相似文献   

6.
The use of DNA typing in human genome analysis is increasing and finding widespread application in the area of forensic and paternity testing. In this report, we explore the feasibility of typing single nucleotide polymorphisms (SNPs) by using a semiautomated method for analyzing human DNA samples. In this approach, PCR is used to amplify segments of human DNA containing a common SNP. Allelic nucleotides in the amplified product are then typed by a colorimetric implementation of the oligonucleotide ligation assay (OLA). The results of the combined assay, PCR/OLA, are read directly by a spectrophotometer; the absorbances are compiled; and the genotypes are automatically determined. A panel of 20 markers has been developed for DNA typing and has been tested using a sample panel from the CEPH pedigrees (CEPH parents). The results of this typing, as well as the potential to apply this method to larger populations, are discussed.  相似文献   

7.
A novel DNA joining activity catalyzed by T4 DNA ligase.   总被引:2,自引:1,他引:1       下载免费PDF全文
The use of T4 and E. coli DNA ligases in genetic engineering technology is usually associated with nick-closing activity in double stranded DNA or ligation of 'sticky-ends' to produce recombinant DNA molecules. We describe in this communication the ability of T4 DNA ligase to catalyze intramolecular loop formation between annealed oligodeoxyribonucleotides wherein Watson-Crick base pairing is absent on one side of the ligation site. Enzyme concentration, loop size, substrate specificity, and base composition were explored in an effort to maximize yield. Amounts of T4 DNA ligase in large molar excess to DNA template and ligated product are necessary to achieve high yields.  相似文献   

8.
We have developed a rapid, cost-effective, high-throughput readout for single nucleotide polymorphism (SNP) genotyping using flow cytometric analysis performed on a Luminex 100 flow cytometer. This robust technique employs a PCR-derived target DNA containing the SNP, a synthetic SNP-complementary ZipCode-bearing capture probe, a fluorescent reporter molecule, and a thermophilic DNA polymerase. An array of fluorescent microspheres, covalently coupled with complementary ZipCode sequences (cZipCodes), was hybridized to the reaction products and sequestered them for flow cytometric analysis. The single base chain extension (SBCE) reaction was used to assay 20 multiplexed SNPs for 633 patients in 96-well format. Comparison of the microsphere-based SBCE assay results to gel-based oligonucleotide ligation assay (OLA) results showed 99.3% agreement in genotype assignments. Substitution of direct-labeled R6G dideoxynucleotide with indirect-labeled phycoerythrin dideoxynucleotide enhanced signal five- to tenfold while maintaining low noise levels. A new assay based on allele-specific primer extension (ASPE) was validated on a set of 15 multiplexed SNPs for 96 patients. ASPE offers both the advantage of streamlining the SNP analysis protocol and the ability to perform multiplex SNP analysis on any mixture of allelic variants.  相似文献   

9.
A mutation detection strategy based on multiplex PCR followed by multiplex allele-specific oligonucleotide probe ligation was developed to detect single nucleotide substitutions in ras oncogenes, a common genetic abnormality in many human cancers. Mutation-specific probes are synthesized for each possible single-base, nonsilent mutation in codons 12, 13, and 61 of H-, K-, and N-ras oncogenes. Mutations are identified by competitive oligonucleotide probe ligation to detect normal and /or mutant genotypes in one reaction. Three probes (one common and two allelic probes) are needed for analysis of each mutation. Probes hybridized to target ras oncogene DNA are joined by a thermostable ligase if there are no mismatches at their junctions; temperature cycling results in a linear increase in product. Common probes are labeled with fluorochromes, and allelic probes each have different lengths. Ligation products are analyzed by denaturing polyacrylamide gel electrophoresis on a fluorescent DNA sequencer. We have applied this technology to identify ras mutations in pancreatic cancers and lung cancers and in patients with myelodysplastic syndromes and leukemias.  相似文献   

10.
The present study reported proof-of-principle for a genotyping assay approach that can detect single nucleotide polymorphisms (SNPs) through the gold nanoparticle assembly and the ligase reaction. By incorporating the high-fidelity DNA ligase (Tth DNA ligase) into the allele-specific ligation-based gold nanoparticle assembly, this assay provided a convenient yet powerful colorimetric detection that enabled a straightforward single-base discrimination without the need of precise temperature control. Additionally, the ligase reaction can be performed at a relatively high temperature, which offers the benefit for mitigating the non-specific assembly of gold nanoparticles induced by interfering DNA strands. The assay could be implemented via three steps: a hybridization reaction that allowed two gold nanoparticle-tagged probes to hybrid with the target DNA strand, a ligase reaction that generates the ligation between perfectly matched probes while no ligation occurred between mismatched ones and a thermal treatment at a relatively high temperature that discriminate the ligation of probes. When the reaction mixture was heated to denature the formed duplex, the purple color of the perfect-match solution would not revert to red, while the mismatch gave a red color as the assembled gold nanoparticles disparted. The present approach has been demonstrated with the identification of a single-base mutation in codon 12 of a K-ras oncogene that is of significant value for colorectal cancers diagnosis, and the wild-type and mutant type were successfully scored. To our knowledge, this was the first report concerning SNP detection based on the ligase reaction and the gold nanoparticle assembly. Owing to its ease of operation and high specificity, it was expected that the proposed procedure might hold great promise in practical clinical diagnosis of gene-mutant diseases.  相似文献   

11.
胰岛素样生长因子 1(IGF 1)是一种多功能的细胞增殖调控因子 ,其表达水平受多种因素的影响 ,为了研究IGF 1基因在转录水平上的调控机制 ,建立了定量测定IGF 1mRNA的竞争性PCR方法 .同时 ,也建立了一种简便的制备同源性竞争模板的方法 .以构建好的重组pUC IGF 1质粒为基础 ,利用IGF 1mRNA序列上唯一存在 ,但是在pUC18质粒上多拷贝的MspⅠ酶切位点 ,以该限制性内切酶处理重组pUC IGF 1质粒 .在T4DNA连接酶作用下对酶切产物进行随机连接 ,以连接产物作为模板 ,用可扩增IGF 1cDNA的引物进行PCR ,由此得到因含有随机插入序列而与原IGF 1cDNA产生明显长度差别的重组IGF 1.以不同浓度的该DNA片段作为同源竞争模板与大鼠肝组织cDNA在同一反应体系中进行PCR ,对PCR产物进行分析 ,计算出样本中IGF 1cDNA的初始浓度 .成功地建立了IGF 1mRNA的竞争性PCR定量检测方法 ,为研究IGF 1基因的表达调控奠定了基础 ,同时也为对已克隆的基因进行mRNA定量测定提供了一种简便和灵敏的手段  相似文献   

12.
13.
Previous fluorescence melting curve analysis (FMCA) used intercalating dyes, and this method has restricted application. Therefore, FMCA methods such as probe-based FMCA and molecular beacons were studied. However, the usual dual-labeled probes do not possess adequate fluorescence quenching ability and sufficient specificity, and molecular beacons with the necessary stem structures are hard to design. Therefore, we have developed a peptide nucleic acid (PNA)-based FMCA method. PNA oligonucleotide can have a much higher melting temperature (Tm) value than DNA. Therefore, short PNA probes can have adequate Tm values for FMCA, and short probes can have higher specificity and accuracy in FMCA. Moreover, dual-labeled PNA probes have self-quenching ability via single-strand base stacking, which makes PNA more favorable. In addition, this method can facilitate simultaneous identification of multiple DNA templates. In conventional real-time polymerase chain reaction (PCR), one fluorescence channel can identify only one DNA template. However, this method uses two fluorescence channels to detect three types of DNA. Experiments were performed with one to three different DNA sequences mixed in a single tube. This method can be used to identify multiple DNA sequences in a single tube with high specificity and high clarity.  相似文献   

14.
The polymerase chain reaction (PCR) has been used to amplify DNA fragments by using eucaryotic genomic DNA as a template. We show that bacterial genomic DNA can be used as a template for PCR amplification. We demonstrate that DNA fragments at least as large as 4,400 base pairs can be amplified with fidelity and that the amplified DNA can be used as a substrate for most operations involving DNA. We discuss problems inherent in the direct sequencing of the amplified product, one of the important exploitations of this methodology. We have solved the problems by developing an "asymmetric amplification" method in which one of the oligonucleotide primers is used in limiting amounts, thus allowing the accumulation of single-stranded copies of only one of the DNA strands. As an illustration of the use of PCR in bacteria, we have amplified, sequenced, and subcloned several DNA fragments carrying mutations in genes of the histidine permease operon. These mutations are part of a preliminary approach to studying protein-protein interactions in transport, and their nature is discussed.  相似文献   

15.
Aberrant methylation of promoter CpG islands is causally linked with a number of inherited syndromes and most sporadic cancers, and may provide valuable diagnostic and prognostic biomarkers. In this report, we describe an approach to simultaneous analysis of multiple CpG islands, where methylation-specific oligonucleotide probes are joined by ligation and subsequently amplified by polymerase chain reaction (PCR) when hybridized in juxtaposition on bisulfite-treated DNA. Specificity of the ligation reaction is achieved by (i) using probes containing CpGpCpG (for methylated sequences) or CpApCpA (for unmethylated sequences) at the 3′ ends, (ii) including three or more probes for each target, and (iii) using a thermostable DNA ligase. The external probes carry universal tails to allow amplification of multiple ligation products using a common primer pair. As proof-of-principle applications, we established duplex assays to examine the FMR1 promoter in individuals with fragile-X syndrome and the SNRPN promoter in individuals with Prader-Willi syndrome or Angelman syndrome, and a multiplex assay to simultaneously detect hypermethylation of seven genes (ID4, APC, RASSF1A, CDH1, ESR1, HIN1 and TWIST1) in breast cancer cell lines and tissues. These data show that ligation of oligonucleotide probes hybridized to bisulfite-treated DNA is a simple and cost-effective approach to analysis of CpG methylation.  相似文献   

16.
Improving the fidelity of Thermus thermophilus DNA ligase.   总被引:4,自引:0,他引:4       下载免费PDF全文
J Luo  D E Bergstrom    F Barany 《Nucleic acids research》1996,24(15):3071-3078
The DNA ligase from Thermus thermophilus (Tth DNA ligase) seals single-strand breaks (nicks) in DNA duplex substrates. The specificity and thermostability of this enzyme are exploited in the ligase chain reaction (LCR) and ligase detection reaction (LDR) to distinguish single base mutations associated with genetic diseases. Herein, we describe a quantitative assay using fluorescently labeled substrates to study the fidelity of Tth DNA ligase. The enzyme exhibits significantly greater discrimination against all single base mismatches on the 3'-side of the nick in comparison with those on the 5'-side of the nick. Among all 12 possible single base pair mismatches on the 3'-side of the nick, only T-G and G-T mismatches generated a quantifiable level of ligation products after 23 h incubation. The high fidelity of Tth DNA ligase can be improved further by introducing a mismatched base or a universal nucleoside analog at the third position of the discriminating oligonucleotide. Finally, two mutant Tth DNA ligases, K294R and K294P, were found to have increased fidelity using this assay.  相似文献   

17.
Here we report the adaptation and optimization of an efficient, accurate and inexpensive assay that employs custom-designed silicon-based optical thin-film biosensor chips to detect unique transgenes in genetically modified (GM) crops and SNP markers in model plant genomes. Briefly, aldehyde-attached sequence-specific single-stranded oligonucleotide probes are arrayed and covalently attached to a hydrazine-derivatized biosensor chip surface. Unique DNA sequences (or genes) are detected by hybridizing biotinylated PCR amplicons of the DNA sequences to probes on the chip surface. In the SNP assay, target sequences (PCR amplicons) are hybridized in the presence of a mixture of biotinylated detector probes and a thermostable DNA ligase. Only perfect matches between the probe and target sequences, but not those with even a single nucleotide mismatch, can be covalently fixed on the chip surface. In both cases, the presence of specific target sequences is signified by a color change on the chip surface (gold to blue/purple) after brief incubation with an anti-biotin IgG horseradish peroxidase (HRP) to generate a precipitable product from an HRP substrate. Highly sensitive and accurate identification of PCR targets can be completed within 30 min. This assay is extremely robust, exhibits high sensitivity and specificity, and is flexible from low to high throughput and very economical. This technology can be customized for any nucleotide sequence-based identification assay and widely applied in crop breeding, trait mapping, and other work requiring positive detection of specific nucleotide sequences.  相似文献   

18.
Single nucleotide substitutions and unique insertions/deletions are the most common form of DNA sequence variation and disease-causing mutation in the human genome. Because of the biological and medical importance of these variations, a wide array of methods have been developed for their typing. We have applied an approach that combines the amplification of polymorphic regions by the polymerase chain reaction (PCR) with a system for typing diallelic variants using an oligonucleotide ligation assay (OLA). In this report, we describe a significant advance in this technology that permits the typing of two alleles in a single microtiter well. By marking each of the allele-specific primers with a unique hapten, i.e. digoxigenin and fluorescein, each OLA reaction can be detected by using hapten specific antibodies that are labeled with different enzyme reporters, alkaline phosphatase or horseradish peroxidase. This system permits the detection of the two alleles using a high throughput format that leads to the production of two different colors. We demonstrate the specificity, sensitivity and ease of data interpretation with this system. Furthermore, we show that multiplex PCR/OLA not only increases the throughput of DNA typing but also increases its accuracy in typing diallelic sequence variations using an approach that can be broadly applied for human genome analysis (in evaluating genotype/phenotype links), in typing infectious agents and in forensic analysis.  相似文献   

19.
A Masny  A Plucienniczak 《BioTechniques》2001,31(4):930-4, 936
A method for generating limited representations of total bacterial DNA, without prior knowledge of the DNA sequence, has been developed. This method consists of three steps: digestion with two restriction enzymes, ligation of two oligonucleotide adapters corresponding to the restriction sites, and selective PCR amplification of the ligation products. The method relies on the use of two restriction enzymes with considerable differences in cleavage frequency of the investigated DNA and the ligation of two different oligonucleotides, each corresponding to one of the two cohesive ends of DNA fragments. Three subsets of DNA fragments are generated during digestion and subsequent ligation: terminated with the same oligonucleotide on both 5' ends of DNA fragments (two subsets) and terminated with two different oligonucleotides. Suppression PCR allows only the third subset of DNA fragments to be amplified exponentially. The method allows bacterial species strain differentiation on the basis of the different DNA band patterns obtained after electrophoresis in polyacrylamide gels stained with ethidium bromide and visualized in UV light.  相似文献   

20.
Chemical and enzymatic ligation between the 5'-terminal phosphate of one oligonucleotide and the 3'-terminal 2',3'-cis-diol group of the other oligonucleotide on a complementary template was studied. Carbodiimide, imidazolide and N-hydroxybenzotriazole ester methods were used for chemical activation of the phosphate group, and T4 DNA ligase for enzymatic ligation. All the chemical activation methods produced 3',5'- and 2',5'-phosphodiester bonds (40-45 and 55-60%, resp.), whereas enzymatic ligation gave the product only with 3',5'-phosphodiester bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号