首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Seeds of Sesbania virgata (Cav.) Pers. (Leguminosae) contain galactomannan as a cell wall storage polysaccharide in the endosperm. After germination, it is hydrolysed by three enzymes: α-galactosidase (EC 3.2.1.22), endo-β-mannanase (EC 3.2.1.78) and β-mannosidase (EC 3.2.1.25). This work aimed at studying the role of the testa (seed coat) on galactomannan degradation during and after germination. Seeds were imbibed in water, with and without the testa, and used to evaluate the effect of this tissue on storage mobilisation, as well as its possible role in the galactomannan hydrolases activities. Immunocytochemistry and immunodotblots were used to follow biochemical events by detecting and localising endo-β-mannanase in different tissues of the seed. Endo-β-mannanase and α-galactosidase activities were found in the testa and latter in the endosperm during galactomannan degradation. The former enzyme was immunologically detected in the testa, mainly during germination. The absence of the testa during imbibition led to the anticipation of protein mobilisation and increased of the α-galactosidase activity and galactomannan degradation. Thus, the testa appears to play a role during storage mobilisation in the legume seed of S. virgata probably by participating in the control of the production, modification and/or storage of the hydrolases.  相似文献   

2.
Seeds of Sesbania virgata (Cav.) Pers. (Leguminosae) have an endosperm which accumulates galactomannan as a storage polysaccharide in the cell walls. After germination, it is hydrolysed by three enzymes: α-galactosidase (EC 3.2.1.22), endo-β-mannanase (EC 3.2.1.78) and β-mannosidase (EC 3.2.1.25). This work aimed at studying the effect of abscisic acid (ABA) on galactomannan degradation during and after germination. Seeds were imbibed in water or in 10−4 M ABA, and used to evaluate the effect of exogenous and endogenous ABA. Tissue printing was used to follow biochemical events by detecting and localising endo-β-mannanase in different tissues of the seed. The presence of exogenous ABA provoked a delay in the cellular disassembly of the endosperm and disappearance of endo-β-mannanase in the tissue. This led to a delay in galactomannan degradation. The testa (seed coat) of S. virgata contains endogenous ABA, which decreases ca. fourfold during storage mobilisation after germination, permitting the galactomannan degradation in the endosperm. Furthermore, endo-β-mannanase was immunolocalised in the testa, which has a living cell layer. The ABA appears to modulate storage mobilisation in the legume seed of S. virgata, and a cause–effect relationship between ABA (probably through testa) and activities of hydrolases is proposed.  相似文献   

3.
Imposition of water stress on germinated fenugreek (Trigonella foenum-graecum L.) seeds and isolated fenugreek endosperms after the beginning of galactomannan mobilisation caused a reduction in the rate of breakdown of the polysaccharide relative to unstressed controls. The activities, measured in vitro, of the three hydrolytic enzymes involved in the breakdown process (-d-galactosidase, EC 3.2.1.22;endo--d-mannanase, EC 3.2.1.78;exo--d-mannanase, EC 3.2.1.25) were not decreased. Although there was some accumulation of galactomannan-hydrolysis products in endosperms under stress, there was no clear correlation between sugar levels and the inhibition of galactomannan breakdown. When water stress was applied to fenugreek seeds after germination but before the beginning of galactomannan hydrolysis, both galactomannan breakdown and the development of the hydrolytic enzyme activities were inhibited. Washing of newly germinated seeds for 2 h in water prior to the imposition of stress gave partial relief of the inhibition of galactomannan mobilisation, partial recovery ofendo--d-mannanase levels, and full recovery of -d-galactosidase levels. It is argued: 1) that water stress after germination but before the beginning of galactomannan hydrolysis inhibits the production of hydrolytic enzymes in the endosperm, probably via decreased removal at lowered water content of diffusible inhibitory substances; and 2) that water stress after the beginning of galactomannan hydrolysis decreases the rate of galactomannan breakdown in vivo principally via decreased diffusion at lowered water content of enzymes from the aleurone layer through the storage tissue of the endosperm.Abbreviation PEG polyethyleneglycol  相似文献   

4.
5.
When endosperms were isolated from fenugreek seeds 5 h after sowing and incubated in a small volume of water, the development of α-galactosidase activity and the breakdown of the galactomannan storage polysaccharide were both inhibited relative to control endosperms incubated in larger volumes. The inhibition could be relieved by pre-washing the endosperms, and reimposed by the wash-liquors. If the endosperms were isolated 24 h after sowing, no inhibition was observed. Removal of the embryonic axis from germinating fenugreek seeds and from germinated seedlings also inhibited the development of α-galactosidase activity and galactomannan breakdown in the endosperms; the inhibition was more pronounced the earlier the axis was removed. Axis excision 5 h after sowing caused a delay in the onset of galactomannan breakdown and of the appearance of α-galactosidase activity in the endosperms. It also led to a decrease in the rates of galactomannan breakdown and α-galactosidase production. Axis excision 24 h after sowing caused only a slowing of the rates of galactomannan breakdown and α-galactosidase increase. The inhibition caused by axis removal at 5 h could be relieved partially by gibberellin (10-4 M), benzyladenine (10-5 M), mixtures of these and by the herbicide SAN 9789 [4-chloro-5-(methylamine)-2-(α,α,α-trifluoro-m-tolyl)-3-(2H)-pyridazinone]. These substances had no effect on the inhibition caused by axis-removal at 24 h. Excision of the cotyledons at 5 h-leaving the separated axis and the endosperm-also caused inhibition of galactomannan breakdown and α-galactosidase development. The results are consistent with the presence in the fenugreek seed endosperm of diffusible inhibitors of galactomannan mobilisation which are removed or inactivated during normal germination and early seedling development. They are also consistent with a role for the seedling axis in the control of galactomannan breakdown in the endosperm. Initially the axis appears to have a regulatory function (via gibberellins and/or cytokinins?) in determining the onset of α-galactosidase production in the endosperm. Thereafter its continued presence is necessary to ensure maximal rates of α-galactosidase production and galactomannan hydrolysis. The role of the axis may be initially to counteract the endogenous inhibitors in the endosperm and then to act as a sink for the galactomannan breakdown products released in the endosperm and taken up by the cotyledons.  相似文献   

6.
7.
Summary The reserve endosperm galactomannans of fenugreek (Trigonella foenum-graecum L.), crimson clover (Trifolium incarnatum L.) and lucerne (Medicago sativa L.) are broken down to free galactose and mannose in dry-isolated endosperms (devoid of embryo) incubated under germination conditions. Breakdown is prevented by inhibition of protein synthesis or of oxidative phosphorylation in the aleurone layer. Resting aleurone cells contain inter alia a large number of ribosomes more or less regularly distributed in the ground plasma. At the onset of germination, before galactomannan breakdown begins, polysomes are formed and seem, at least partly, to become associated with vesicles and flat cisternae both probably newly formed and derived from ER. Concurrently with galactomannan breakdown in the reserve cells, wall corrosion occurs in the aleurone layer, the contents of the aleurone grains disappear and the rough vesicles and cisternae proliferate. Later a large central vacuole is formed which incorporates smaller vacuoles emerging from the cytoplasm, and at the same time the rough ER vesicles and cisternae become highly distended.It is concluded that the cells of the aleurone layer are responsible for the synthesis and secretion into the storage cells of the enzymes necessary for galactomannan degradation. The physiology of galactomannan breakdown is compared and contrasted with that of starch mobilisation in the endosperm of germinating cereal grains.This is part three in a series of papers dealing with galactomannan metabolism. Part two: Planta (Berl.) 100, 131–142 (1971).  相似文献   

8.
During germination of winter vetch (Vicia villosa Roth.) seeds, the degradation of raffinose family oligosaccharides and galactosyl pinitols occurred faster in axis than in cotyledons. After 7 days of germination, all α-d-galactosides disappeared and the soluble carbohydrates in seedling tissues consisted of d-pinitol, sucrose, fructose, glucose and myo-inositol. Osmotic stress caused by incubation of seedlings in PEG 8000 solution (−0.5, −1.0, and −1.5 MPa) for 48 h induced the activity of crucial enzymes of the RFOs pathway, i.e. galactinol synthase and raffinose synthase, in both the root and epicotyl but not in cotyledons. The root and epicotyl accumulated elevated amounts of galactinol and raffinose as the osmotic potential was lowered. This process was transient because when PEG solution was replaced with water, galactinol and raffinose were degraded, thus confirming their direct involvement in the response of tissues to osmotic stress. Among other soluble carbohydrates, only sucrose accumulated in response to stress. The results did not show potential role of d-pinitol in the adjustment of winter vetch seedlings to osmotic stress.  相似文献   

9.
Seed germination, one of the most important phases in the life cycle of a plant, is highly responsive to existing environment. Hydrolyzing enzymes play a major role in the mobilization of food reserves by hydrolyzing carbohydrates, proteins and fats. This paper reports on the effect of Cd toxicity on seed germination and the activities of hydrolyzing enzymes, like acid phosphatases (ACPs), proteases and α-amylases in Sorghum bicolor (L.) Moench. The metal uptake by embryonic axes and seeds was quantified. We found that sorghum could tolerate up to 0.5 mM Cd. At concentrations above 3.0 mM, seed germination was adversely affected with a complete cessation of seedling growth. All investigated hydrolyzing enzymes exhibited a significant decrease in activity with increasing Cd concentrations. The isozyme profiles indicated the loss of one or two isozymes of ACP, induction of a new isozyme for total protease (at 3.0 mM Cd) and a decline in the intensity of α-amylase isozymes. SEM studies revealed that Cd affected a change in root hair density. SEM investigations also confirmed the assay results of the inhibition of starch mobilization from endosperm. This suggested an inhibition of the hydrolysis of reserve carbohydrates and translocation of hydrolyzed sugars, ultimately resulting in decreased germination and disruption of seedling growth. Because sorghum is an important dryland crop, its response to the presence of Cd in agro-ecosystems and Cd-induced phytotoxicity during seed germination and seedling growth needs critical investigation.  相似文献   

10.
The insoluble carbohydrate and lipid fractions, and -D-galactosidase,ß-D-mannosidase and isocitrate lyase activities werestudied in the various tissues of oil palm (Elaeis guineensisJacq.) kernels prior to and during germination. In ungerminatedkernels insoluble carbohydrate and lipid constituted 36 and47% of endosperm dry weight respectively. During germinationthe thick endosperm cell walls became markedly thinner, concurrentwith a significant decrease in the percentage of insoluble carbohydrateand an increase in -galactosidase and ß-mannosidaseactivity in both degraded and residual endosperm. The proportionof lipid in degraded endosperm also increased significantly.The insoluble carbohydrate appears to be a galactomannan locatedin the secondary walls of the endosperm. No galactomannan wasdetected in oil palm embryos or haustoria. Isocitrate lyasewas present in, and confined to, tissues of the haustorium ofgerminating kernels. The enzyme was not active in endospermat any stage of germination, nor was it active in embryos beforeor at the end of imbibition. The results suggest that galactomannan is the second largestcomponent of oil palm endosperm and that it is utilized morerapidly than lipid during the early stages of germination. Thefact that isocitrate lyase activity is confined to the haustoriumsuggests that in Elaeis gluconeogenesis, the conversion of triglycerideto carbohydrate, takes place entirely within the cotyledon ofthe seed. Elaeis guineensis, galactomannan, galactosidase, germination, isocitrate lyase, mannosidase, oil palm  相似文献   

11.
J. S. Grant Reid  Hans Meier 《Planta》1973,112(4):301-308
Summary The activities of -galactosidase, -mannosidase and -mannosidase were determined in extracts from the endosperm and from the embryo of fenugreek seeds at different stages of germination. Endosperm homogenates contained little or no activity of the above enzymes in the early stages of germination, before the reserve galactomannan began to be mobilised. The onset of galactomannan breakdown coincided with the appearance of -galactosidase and -mannosidase activities, which increased throughout the period of galactomannan degradation and then remained constant. A similar rise in -galactosidase and -mannosidase activities occurred during galactomannan breakdown in dry-isolated endosperms incubated under germination conditions. The increase could be suppressed by metabolic inhibitors which also inhibit galactomannan breakdown. Embryo homogenates contained high -galactosidase, high -mannosidase and some -mannosidase activity at all stages of germination.No oligomannosyl -1,4 phosphorylase activity could be detected either in the endosperm or in the embryo.It is concluded that the galactomannan of fenugreek is broken down by a series of hydrolases secreted by the aleurone layer of the endosperm. They include -galactosidase, -mannosidase and probably also endo--mannanase.This is part four in a series of papers dealing with galactomannan metabolism. Part three: Planta (Berl.) 106, 44–60 (1972).  相似文献   

12.
In cereals and some legumes the aleurone layer is a site of synthesis of enzymes which mobilize endosperm reserves. It has been established whether or not the aleurone cells of the seed endosperm of Cyamopsis tetragonaloba are a site of synthesis of -galactosidase. The isolation and cultivation of aleurone cells demonstrated that they contain mRNA which directs the synthesis and secretion of -galactosidase into the endosperm where along with a -mannanase it is responsible for the degradation of the galactomannan storage polymer. A method was developed to purify the mRNA from the aleurone cells of germinating seeds. This mRNA was analysed by: i) Northern blot hybridization using oligo-nucleotide mixed probes derived from the protein's NH2-terminal amino acid sequence and ii) in vitro translation in a wheat germ system and detection of the -galactosidase protein using antibodies. The molecular mass of the protein synthesized in vitro is slightly larger (44 kDa) than that of the mature -galactosidase (40.5 kDa) which is as expected for the precursor of a secreted protein.  相似文献   

13.
An acid α-galactosidase from the seeds of the jack fruit seed (Artocarpus integrifolia) has been purified to homogeneity by affinity chromatography on a matrix formed by cross-linking the soluble α-galactose-bearing guar seed galactomannan. The 35kDa enzyme was a homotetramer of 9.5kDa subunits. Its carbohydrate part (5.5%) was composed of galactose and arabinose. TheK m withp-nitrophenyl α-D-galactoside as substrate was 0.35 mM. TheK i values indicated inhibition by galactose, 1-O-methyl α-galactose and melibiose in the decreasing order. Among α-galactosides, the enzyme liberated galactose from melibiose, but not from raffinose or stachyose at its pH optimum (5.2). The guar seed galactomannan was however efficiently degalactosidated; limited enzyme treatment abolished the precipitability of the polysaccharide by the α-galactose-specific jack fruit seed lectin, and complete hydrolysis yielded insoluble polysaccharide. Though similar in sugar specificity and subunit assembly, α-galactosidase and the lectin coexisting in the jack fruit seed gave no indication of immunological identity.  相似文献   

14.
Sucrose presence and concentration modulated in different ways and to different extents the activity of six plant glycoside hydrolases (PGHs) extracted from apple callus cultures, both in the water soluble fraction (WS-F) and in the NaCl-released fraction (NaCl-F). β-d-Glucosidase activity increased because of sucrose starvation and the addition of sucrose decreased both WS-F and NaCl-F β-d-glucosidase from calli grown in a Murashige and Skoog’s basal medium with (MSH) or without (MS0) plant growth regulators (PGRs). WS-F and NaCl-F α-l-arabinofuranosidase, NaCl-F β-d-galactosidase and NaCl-F β-d-xylosidase activity reached a maximum when 0.045 M sucrose was added to the MS0 medium with an ensuing decline at higher sucrose concentrations. α-d-Galactosidase and α-d-xylosidase activity reached a maximum when 0.045 M sucrose was supplied and did not decline significantly in 0.09 M sucrose-supplied calli. When the effects of PGR presence or absence were analysed, NaCl-F β-d-glucosidase, α-d-galactosidase, β-d-galactosidase, α-d-xylosidase and β-d-xylosidase activities were found to be higher in MS0 than in MSH. To assess whether sugar effects were sucrose-specific, other sugars (glucose, fructose, galactose, maltose, lactose, raffinose, sorbitol and mannitol) were tested, with or without PGR supplementation. In general, sugar alcohols (mannitol, sorbitol) and some monosaccharides (fructose and glucose in particular) were better inducers of NaCl-F α-l-arabinofuranosidase, β-d-galactosidase and β-d-xylosidase activity than disaccharides (sucrose, maltose, and lactose) or the trisaccharide raffinose. This trend was not widespread to all PGHs assessed since sucrose-supplemented calli displayed higher NaCl-F α-d-galactosidase than those supplemented with glucose, galactose, sorbitol or mannitol. These results show that sugars supplied to callus tissue cultures as a carbon source can also modulate PGH activity. Modulation is different for each PGH, sugar-specific and, at least in the case of sucrose, concentration-dependent. Results also suggest the existence of regulatory interactions between PGRs and sugars as part of an intricate sensing and signalling network. Combination of PGR, sugar type and concentration should be taken into account to maximize each PGH activity for further enzyme studies.  相似文献   

15.
An α-galactosidase was isolated from a culture filtrate of Lenzites elegans (Spreng.) ex Pat. MB445947 grown on citric pectin as carbon source. It was purified to electrophoretic homogeneity by ammonium sulfate precipitation, gel filtration chromatography and anion-exchange chromatography. The relative molecular mass of the native purified enzyme was 158 kDa determined by gel filtration and it is a homodimer (Mr subunits = 61 kDa). The optimal temperature for enzyme activity was in the range 60–80 °C. This α-galactosidase showed a high thermostability, retaining 94 % of its activity after preincubation at 60 °C for 2 h. The optimal pH for the enzyme was 4.5 and it was stable from pH 3 to 7.5 when the preincubation took place at 60 °C for 2 h. It was active against several α-galactosides such as p-nitrophenyl-α-d-galactopyranoside, α-d-melibiose, raffinose and stachyose. The α-galactosidase is a glycoprotein with 26 % of structural sugars. Galactose was a non-competitive inhibitor with a Ki = 22 mM versus p-nitrophenyl-α-d-galactoside and 12 mM versus α-d-melibiose as substrates. Glucose was a simple competitive inhibitor with a Ki = 10 mM. Cations such as Hg2+ and p-chloromercuribenzoate were also inhibitors of this activity, suggesting the presence of –SH groups in the active site of the enzyme. On the basis of the sequence of the N-terminus (SPDTIVLDGTNFALN) the studied α-galactosidase would be a member of glycosyl hydrolase family 36 (GH 36). Given the high optimum temperature and heat stability of L. elegans α-galactosidase, this fungus may become a useful source of α-galactosidase production for multiple applications.  相似文献   

16.
Galactomannan deposition was investigated in developing endosperms of three leguminous species representative of taxonomic groups which have galactomannans with high, medium and low galactose content. These were fenugreek (Trigonella foenum-graecum L.; mannose/galactose (Man/Gal) = 1.1), guar (Cyamopsis tetragonoloba (L.) Taub.; Man/Gal = 1.6) and Senna occidentalis (L.) Link. (Man/Gal = 3.3), respectively. Endosperms were analysed at different stages of seed development for galactomannan content and the levels, in cell-free extracts, of a mannosyltransferase and a galactosyltransferase which have been shown to catalyse galactomannan biosynthesis in vitro (M. Edwards et al., 1989, Planta 178, 41–51). There was a close correlation in each case between the levels of the biosynthetic mannosyl- and galactosyltransferases and the deposition of galactomannan. The relative in vitro activities of the mannosyl- and galactosyltransferases in fenugreek and guar were similar, and almost constant throughout the period of galactomannan deposition. In Senna the ratio mannosyltransferase/galactosyltransferase was always higher than in the other two species, and it increased substantially throughout the period of galactomannan deposition. In fenugreek and guar the galactomannans present in the endosperms of seeds at different stages of development had the Man/Gal ratios characteristic of the mature seeds. By contrast the galactomannan present in Senna endosperms at the earliest stages of deposition had a Man/Gal ratio of about 2.3. During late deposition this ratio increased rapidly, stabilising at about 3.3, the ratio characteristic of the mature seed. The levels of -galactosidase in the developing endosperms of fenugreek and guar were low and remained fairly constant throughout the deposition of the galactomannan. In Senna, -galactosidase activity in the endosperm was low during early galactomannan deposition, but increased subsequently, peaking during late galactomannan deposition. The developmental patterns of the -galactosidase activity and of the increase in Man/Gal ratio of the Senna galactomannan were closely similar, indicating a cause-and-effect relationship. The endosperm -galactosidase activity in Senna was capable, in vitro, of removing galactose from guar galactomannan without prior depolymerisation of the molecule. In fenugreek and in guar the genetic control of the Man/Gal ratio in galactomannan is not the result of a post-depositional modification, and must reside in the biosynthetic process. In Senna, the Man/Gal ratio of the primary biosynthetic galactomannan product is controlled by the biosynthetic process. Yet the final Man/Gal ratio of the galactomannan in the mature seed is, to an appreciable extent, the result of galactose removal from the primary biosynthetic product by an -galactosidase activity which is present in the endosperm during late galactomannan deposition.Abbreviations al galactose - Man mannose This work was carried out with the aid of a Cooperative Research Grant (No. CRG 1) awarded by the Agricultural and Food Research Council, UK.  相似文献   

17.
O-α-D-Galactopyranosyl-(1→2)-D-chiro-inositol, herein named fagopyritol B1, was identified as a major soluble carbohydrate (40% of total) in buckwheat (Fagopyrum esculentum Moench, Polygonaceae) embryos. Analysis of hydrolysis products of purified compounds and of the crude extract led to the conclusion that buckwheat embryos have five α-galactosyl D-chiro-inositols: fagopyritol A1 and fagopyritol B1 (mono-galactosyl D-chiro-inositol isomers), fagopyritol A2 and fagopyritol B2 (di-galactosyl D-chiro-inositol isomers), and fagopyritol B3 (tri-galactosyl D-chiro-inositol). Other soluble carbohydrates analyzed by high-resolution gas chromatography included sucrose (42% of total), D-chiro-inositol, myo-inositol, galactinol, raffinose and stachyose (1% of total), but no reducing sugars. All fagopyritols were readily hydrolyzed by α-galactosidase (EC 3.2.1.22) from green coffee bean, demonstrating α-galactosyl linkage. Retention time of fagopyritol B1 was identical to the retention time of O-α-D-galactopyranosyl-(1→2)-D-chiro-inositol from soybean (Glycine max (L.) Merrill, Leguminosae), suggesting that the α-ga-lactosyl linkage is to the 2-position of D-chiro-inositol. Accumulation of fagopyritol B1 was associated with acquisition of desiccation tolerance during seed development and maturation in planta, and loss of fagopyritol B1 correlated with loss of desiccation tolerance during germination. Embryos of seeds grown at 18 °C, a condition that favors enhanced seed vigor and storability, had a sucrose-to-fagopyritol B1 ratio of 0.8 compared to a ratio of 2.46 for seeds grown at 25 °C. We propose that fagopyritol B1 facilitates desiccation tolerance and storability of buckwheat seeds. Received: 21 May 1997 / Accepted: 5 June 1997  相似文献   

18.
Successful revegetation necessarily requires the establishment of a vegetation cover and one of the challenges for this is the scarce knowledge about germination and seedling establishment of wild tree species. Priming treatments (seed hydration during a specific time followed by seed dehydration) could be an alternative germination pre-treatment to improve plant establishment. Natural priming (via seed burial) promotes rapid and synchronous germination as well as the mobilisation of storage reserves; consequently, it increases seedling vigour. These metabolic and physiological responses are similar to those occurring as a result of the laboratory seed priming treatments (osmopriming and matrix priming) applied successfully to agricultural species. In order to know if natural priming had a positive effect on germination of tropical species we tested the effects of natural priming on imbibition kinetics, germination parameters (mean germination time, lag time and germination rate and percentage) and reserve mobilisation in the seeds of two tree species from a tropical deciduous forest in south-eastern México: Tecoma stans (L Juss. Ex Kunth) and Cordia megalantha (S.F Blake). The wood of both trees are useful for furniture and T. stans is a pioneer tree that promotes soil retention in disturbed areas. We also compared the effect of natural priming with that of laboratory matrix priming (both in soil). Matrix priming improved germination of both studied species. Natural priming promoted the mobilisation of proteins and increased the amount of free amino acids and of lipid degradation in T. stans but not in C. megalantha. Our results suggest that the application of priming via the burial of seeds is an easy and inexpensive technique that can improve seed germination and seedling establishment of tropical trees with potential use in reforestation and restoration practices.  相似文献   

19.
A xylanolytic yeast strain Aureobasidium pullulans NRRL Y 2311-1, was found to produce all enzymes required for complete degradation of galactomannan and galactoglucomannan. The enzymes differed in function and cellular localization: endo-β-1,4-mannanase was secreted into the culture fluid, β-mannosidase was strictly intracellular, and α-galactosidase and β-glucosidase were found both extracellularly and intracellularly. Among these enzyme components, only extracellular β-mannanase and intracellular β-mannosidase were inducible. The production of β-mannanase and β-mannosidase was 10- to 100-fold higher in galactomannan medium than in medium with one of the other carbon sources. β-mannanase and β-mannosidase were coinduced in glucose-grown cells by galactomannan, galactoglucomannan, and β-1,4-manno-oligosaccharides. The natural inducer of extracellular β-mannanase and intracellular β-mannosidase appeared to be β-1,4-mannobiose. Synthesis of both enzymes was completely repressed by glucose, mannose, or galactose. The synthetic glycoside methyl β-d-mannopyranoside served as a nonmetabolizable inducer of both β-mannosidase and β-mannanase. Received: 24 June 1996 / Accepted: 26 September 1996  相似文献   

20.
The tripeptide antioxidant glutathione (γ-l-glutamyl-l-cysteinyl-glycine; GSH) essentially contributes to thiol-disulphide conversions, which are involved in the control of seed development, germination, and seedling establishment. However, the relative contribution of GSH metabolism in different seed structures is not fully understood. We studied the GSH/glutathione disulphide (GSSG) redox couple and associated low-molecular-weight (LMW) thiols and disulphides related to GSH metabolism in bread wheat (Triticum aestivum L.) seeds, focussing on redox changes in the embryo and endosperm during germination. In dry seeds, GSH was the predominant LMW thiol and, 15?h after the onset of imbibition, embryos of non-germinated seeds contained 12 times more LMW thiols than the endosperm. In germinated seeds, the embryo contained 17 and 11 times more LMW thiols than the endosperm after 15 and 48?h, respectively. This resulted in the embryo having significantly more reducing half-cell reduction potentials of GSH/GSSG and cysteine (Cys)/cystine (CySS) redox couples (EGSSG/2GSH and ECySS/2Cys, respectively). Upon seed germination and early seedling growth, Cys and CySS concentrations significantly increased in both embryo and endosperm, progressively contributing to the cellular LMW thiol-disulphide redox environment (Ethiol-disulphide). The changes in ECySS/2Cys could be related to the mobilisation of storage proteins in the endosperm during early seedling growth. We suggest that EGSSG/2GSH and ECySS/2Cys can be used as markers of the physiological and developmental stage of embryo and endosperm. We also present a model of interaction between LMW thiols and disulphides with hydrogen peroxide (H2O2) in redox regulation of bread wheat germination and early seedling growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号