首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several BRCA2 mutations are found to occur in geographically diverse breast and ovarian cancer families. To investigate both mutation origin and mutation-specific phenotypes due to BRCA2, we constructed a haplotype of 10 polymorphic short tandem-repeat (STR) markers flanking the BRCA2 locus, in a set of 111 breast or breast/ovarian cancer families selected for having one of nine recurrent BRCA2 mutations. Six of the individual mutations are estimated to have arisen 400-2,000 years ago. In particular, the 6174delT mutation, found in approximately 1% of individuals of Ashkenazi Jewish ancestry, was estimated to have arisen 29 generations ago (1-LOD support interval 22-38). This is substantially more recent than the estimated age of the BRCA1 185delAG mutation (46 generations), derived from our analogous study of BRCA1 mutations. In general, there was no evidence of multiple origins of identical BRCA2 mutations. Our study data were consistent with the previous report of a higher incidence of ovarian cancer in families with mutations in a 3.3-kb region of exon 11 (the ovarian cancer cluster region [OCCR]) (P=.10); but that higher incidence was not statistically significant. There was significant evidence that age at diagnosis of breast cancer varied by mutation (P<.001), although only 8% of the variance in age at diagnosis could be explained by the specific mutation, and there was no evidence of family-specific effects. When the age at diagnosis of the breast cancer cases was examined by OCCR, cases associated with mutations in the OCCR had a significantly older mean age at diagnosis than was seen in those outside this region (48 years vs. 42 years; P=.0005).  相似文献   

2.
A population-based series of 649 unselected incident cases of ovarian cancer diagnosed in Ontario, Canada, during 1995-96 was screened for germline mutations in BRCA1 and BRCA2. We specifically tested for 11 of the most commonly reported mutations in the two genes. Then, cases were assessed with the protein-truncation test (PTT) for exon 11 of BRCA1, with denaturing gradient gel electrophoresis for the remainder of BRCA1, and with PTT for exons 10 and 11 of BRCA2. No mutations were found in all 134 women with tumors of borderline histology. Among the 515 women with invasive cancers, we identified 60 mutations, 39 in BRCA1 and 21 in BRCA2. The total mutation frequency among women with invasive cancers, 11.7% (95% confidence interval [95%CI] 9.2%-14.8%), is higher than previous estimates. Hereditary ovarian cancers diagnosed at age <50 years were mostly (83%) due to BRCA1, whereas the majority (60%) of those diagnosed at age >60 years were due to BRCA2. Mutations were found in 19% of women reporting first-degree relatives with breast or ovarian cancer and in 6.5% of women with no affected first-degree relatives. Risks of ovarian, breast, and stomach cancers and leukemias/lymphomas were increased nine-, five-, six- and threefold, respectively, among first-degree relatives of cases carrying BRCA1 mutations, compared with relatives of noncarriers, and risk of colorectal cancer was increased threefold for relatives of cases carrying BRCA2 mutations. For carriers of BRCA1 mutations, the estimated penetrance by age 80 years was 36% for ovarian cancer and 68% for breast cancer. In breast-cancer risk for first-degree relatives, there was a strong trend according to mutation location along the coding sequence of BRCA1, with little evidence of increased risk for mutations in the 5' fifth, but 8.8-fold increased risk for mutations in the 3' fifth (95%CI 3.6-22.0), corresponding to a carrier penetrance of essentially 100%. Ovarian, colorectal, stomach, pancreatic, and prostate cancer occurred among first-degree relatives of carriers of BRCA2 mutations only when mutations were in the ovarian cancer-cluster region (OCCR) of exon 11, whereas an excess of breast cancer was seen when mutations were outside the OCCR. For cancers of all sites combined, the estimated penetrance of BRCA2 mutations was greater for males than for females, 53% versus 38%. Past studies may have underestimated the contribution of BRCA2 to ovarian cancer, because mutations in this gene cause predominantly late-onset cancer, and previous work has focused more on early-onset disease. If confirmed in future studies, the trend in breast-cancer penetrance, according to mutation location along the BRCA1 coding sequence, may have significant impact on treatment decisions for carriers of BRCA1-mutations. As well, BRCA2 mutations may prove to be a greater cause of cancer in male carriers than previously has been thought.  相似文献   

3.
Ovarian cancer is a component of the autosomal-dominant hereditary breast-ovarian cancer syndrome and may be due to a mutation in either the BRCA1 or BRCA2 genes. Two mutations in BRCA1 (185delAG and 5382insC) and one mutation in BRCA2 (6174delT) are common in the Ashkenazi Jewish population. One of these three mutations is present in approximately 2% of the Jewish population. Each mutation is associated with an increased risk of ovarian cancer, and it is expected that a significant proportion of Jewish women with ovarian cancer will carry one of these mutations. To estimate the proportion of ovarian cancers attributable to founding mutations in BRCA1 and BRCA2 in the Jewish population and the familial cancer risks associated with each, we interviewed 213 Jewish women with ovarian cancer at 11 medical centers in North America and Israel and offered these women genetic testing for the three founder mutations. To establish the presence of nonfounder mutations in this population, we also completed the protein-truncation test on exon 11 of BRCA1 and exons 10 and 11 of BRCA2. We obtained a detailed family history on all women we studied who had cancer and on a control population of 386 Ashkenazi Jewish women without ovarian or breast cancer. A founder mutation was present in 41.3% of the women we studied. The cumulative incidence of ovarian cancer to age 75 years was found to be 6.3% for female first-degree relatives of the patients with ovarian cancer, compared with 2.0% for the female relatives of healthy controls (relative risk 3.2; 95% CI 1.5-6.8; P=.002). The relative risk to age 75 years for breast cancer among the female first-degree relatives was 2.0 (95% CI 1.4-3.0; P=.0001). Only one nonfounder mutation was identified (in this instance, in a woman of mixed ancestry), and the three founding mutations accounted for most of the observed excess risk of ovarian and breast cancer in relatives.  相似文献   

4.
Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide polymorphisms (SNPs) in FGFR2 (rs2981582), TNRC9 (rs3803662), and MAP3K1 (rs889312) are associated with increased breast cancer risks in the general population. To investigate whether these loci are also associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers, we genotyped these SNPs in a sample of 10,358 mutation carriers from 23 studies. The minor alleles of SNP rs2981582 and rs889312 were each associated with increased breast cancer risk in BRCA2 mutation carriers (per-allele hazard ratio [HR] = 1.32, 95% CI: 1.20-1.45, p(trend) = 1.7 x 10(-8) and HR = 1.12, 95% CI: 1.02-1.24, p(trend) = 0.02) but not in BRCA1 carriers. rs3803662 was associated with increased breast cancer risk in both BRCA1 and BRCA2 mutation carriers (per-allele HR = 1.13, 95% CI: 1.06-1.20, p(trend) = 5 x 10(-5) in BRCA1 and BRCA2 combined). These loci appear to interact multiplicatively on breast cancer risk in BRCA2 mutation carriers. The differences in the effects of the FGFR2 and MAP3K1 SNPs between BRCA1 and BRCA2 carriers point to differences in the biology of BRCA1 and BRCA2 breast cancer tumors and confirm the distinct nature of breast cancer in BRCA1 mutation carriers.  相似文献   

5.
The population of Pakistan has been reported to have the highest rate of breast cancer of any Asian population (excluding Jews in Israel) and one of the highest rates of ovarian cancer worldwide. To explore the contribution that genetic factors make to these high rates, we have conducted a case-control study of 341 case subjects with breast cancer, 120 case subjects with ovarian cancer, and 200 female control subjects from two major cities of Pakistan (Karachi and Lahore). The prevalence of BRCA1 or BRCA2 mutations among case subjects with breast cancer was 6.7% (95% confidence interval [CI] 4.1%-9.4%), and that among case subjects with ovarian cancer was 15.8% (95% CI 9.2%-22.4%). Mutations of the BRCA1 gene accounted for 84% of the mutations among case subjects with ovarian cancer and 65% of mutations among case subjects with breast cancer. The majority of detected mutations are unique to Pakistan. Five BRCA1 mutations (2080insA, 3889delAG, 4184del4, 4284delAG, and IVS14-1A-->G) and one BRCA2 mutation (3337C-->T) were found in multiple case subjects and represent candidate founder mutations. The penetrance of deleterious mutations in BRCA1 and BRCA2 is comparable to that of Western populations. The cumulative risk of cancer to age 85 years in female first-degree relatives of BRCA1-mutation-positive case subjects was 48% and was 37% for first-degree relatives of the BRCA2-mutation-positive case subjects. A higher proportion of case subjects with breast cancer than of control subjects were the progeny of first-cousin marriages (odds ratio [OR] 2.1; 95% CI 1.4-3.3; P=.001). The effects of consanguinity were significant for case subjects with early-onset breast cancer (age <40 years) (OR=2.7; 95% CI 1.5-4.9; P=.0008) and case subjects with ovarian cancer (OR=2.4; 95% CI 1.4-4.2; P=.002). These results suggest that recessively inherited genes may contribute to breast and ovarian cancer risk in Pakistan.  相似文献   

6.
We conducted a population-based study to determine the contribution of germline mutations in known candidate genes to ovarian cancer diagnosed at age <30 years. Women with epithelial ovarian cancer were identified through cancer registries. DNA samples were analyzed for mutations in BRCA1, the "ovarian cancer-cluster region" (nucleotides 3139-7069) of BRCA2, and the mismatch-repair genes hMSH2 and hMLH1. Probable germline mutations in hMLH1 were identified in 2 (2%; 95% confidence interval 1%-8%) of 101 women with invasive ovarian cancer diagnosed at age <30 years. No germline mutations were identified in any of the other genes analyzed. There were no striking pedigrees suggestive of families with either breast/ovarian cancer or hereditary nonpolyposis colorectal cancer (HNPCC). There was a significantly increased incidence of all cancers in first-degree relatives of women with invasive disease (relative risk [RR] = 1.6, P=.01) but not in second-degree relatives or in relatives of women with borderline cases. First-degree relatives of women with invasive disease had increased risks of ovarian cancer (RR = 4.8, P=.03), myeloma (RR = 10, P=.01), and non-Hodgkin lymphoma (RR = 7, P=.004). Germline mutations in BRCA1, BRCA2, msh2, and mlh1 contribute to only a minority of cases of early-onset epithelial ovarian cancer. Our data suggest that early-onset ovarian cancer is not associated with a greatly increased risk of cancer in close relatives.  相似文献   

7.
Dominant predisposition to early-onset breast cancer and/or ovarian cancer in many families is known to be the result of germ-line mutations in a gene on chromosome 17q, known as BRCA1. In this paper we use data from families with evidence of linkage to BRCA1 to estimate the age-specific risks of breast and ovarian cancer in BRCA1-mutation carriers and to examine the variation in risk between and within families. Under the assumption of no heterogeneity of risk between families, BRCA1 is estimated to confer a breast cancer risk of 54% by age 60 years (95% confidence interval [CI] 27%-71%) and an ovarian cancer risk of 30% by age 60 years (95% CI 8%-47%). Similar lifetime-risk estimates are obtained by examining the risks of contralateral breast cancer and of ovarian cancer, in breast cancer cases in linked families. However, there is significant evidence of heterogeneity of risk between families; a much better fit to the data is obtained by assuming two BRCA1 alleles, one conferring a breast cancer risk of 62% and an ovarian cancer risk of 11% by age 60 years, the other conferring a breast cancer risk of 39% and an ovarian cancer risk of 42%, with the first allele representing 71% of all mutations (95% CI 55%-87%). There is no evidence of clustering of breast and ovarian cancer cases within families.  相似文献   

8.
Based on breast cancer families with multiple and/or early-onset cases, estimates of the lifetime risk of breast cancer in carriers of BRCA1 or BRCA2 mutations may be as high as 85%. The risk for individuals not selected for family history or other risk factors is uncertain. We determined the frequency of the common BRCA1 (185delAG and 5382insC) and BRCA2 (6174delT) mutations in a series of 268 anonymous Ashkenazi Jewish women with breast cancer, regardless of family history or age at onset. DNA was analyzed for the three mutations by allele-specific oligonucleotide hybridization. Eight patients (3.0%, 95% confidence interval [CI] 1.5%-5.8%) were heterozygous for the 185delAG mutation, two (0.75%, 95% CI 0.20-2.7) for the 5382insC mutation, and eight (3.0%, 95% CI 1.5-5.8) for the 6174delT mutation. The lifetime risk for breast cancer in Ashkenazi Jewish carriers of the BRCA1 185delAG or BRCA2 6174delT mutations was calculated to be 36%, approximately three times the overall risk for the general population (relative risk 2.9, 95% CI 1.5-5.8). For the 5382insC mutation, because of the low number of carriers found, further studies are necessary. The results differ markedly from previous estimates based on high-risk breast cancer families and are consistent with lower estimates derived from a recent population-based study in the Baltimore area. Thus, presymptomatic screening and counseling for these common mutations in Ashkenazi Jewish women not selected for family history of breast cancer should be reconsidered until the risk associated with these mutations is firmly established, especially since early diagnostic and preventive-treatment modalities are limited.  相似文献   

9.
The penetrance of the BRCA2 gene on chromosome 13q12-13 has been estimated in two large, systematically ascertained, linked families, by use of a maximum-likelihood method to incorporate both cancer-incidence data and 13q marker typings in the families. The cumulative risk of breast cancer in female gene carriers was estimated to be 59.8% by age 50 years (95% confidence interval [95% CI] 25.9%-78.5%) and 79.5% by age 70 years (95% CI 28.9%-97.5%). The cumulative risk of breast cancer in male carriers was estimated to be 6.3% (95% CI 1.4%-25.6%) by age 70 years. There was no evidence of any risk difference between the two families. These results indicate that the lifetime breast cancer risk in BRCA2 carriers, for at least a subset of mutations, is comparable to that for BRCA1. A significant excess of ovarian cancer in gene carriers was observed (relative risk 17.69, based on three cases), but the absolute risk of ovarian cancer was less than that reported for BRCA1. Significant excesses of laryngeal cancer (relative risk 7.67, based on two possible carriers) and prostate cancer (relative risk 2.89, based on five possible carriers) were also observed. One case of ocular melanoma, as well as a second eye cancer of unspecified histology, occurred in obligate gene carriers.  相似文献   

10.
Germline mutations in BRCA1 and BRCA2 confer high risks of breast and ovarian cancer, but the average magnitude of these risks is uncertain and may depend on the context. Estimates based on multiple-case families may be enriched for mutations of higher risk and/or other familial risk factors, whereas risk estimates from studies based on cases unselected for family history have been imprecise. We pooled pedigree data from 22 studies involving 8,139 index case patients unselected for family history with female (86%) or male (2%) breast cancer or epithelial ovarian cancer (12%), 500 of whom had been found to carry a germline mutation in BRCA1 or BRCA2. Breast and ovarian cancer incidence rates for mutation carriers were estimated using a modified segregation analysis, based on the occurrence of these cancers in the relatives of mutation-carrying index case patients. The average cumulative risks in BRCA1-mutation carriers by age 70 years were 65% (95% confidence interval 44%-78%) for breast cancer and 39% (18%-54%) for ovarian cancer. The corresponding estimates for BRCA2 were 45% (31%-56%) and 11% (2.4%-19%). Relative risks of breast cancer declined significantly with age for BRCA1-mutation carriers (P trend.0012) but not for BRCA2-mutation carriers. Risks in carriers were higher when based on index breast cancer cases diagnosed at <35 years of age. We found some evidence for a reduction in risk in women from earlier birth cohorts and for variation in risk by mutation position for both genes. The pattern of cancer risks was similar to those found in multiple-case families, but their absolute magnitudes were lower, particularly for BRCA2. The variation in risk by age at diagnosis of index case is consistent with the effects of other genes modifying cancer risk in carriers.  相似文献   

11.
The contribution of BRCA1 and BRCA2 to inherited breast cancer was assessed by linkage and mutation analysis in 237 families, each with at least four cases of breast cancer, collected by the Breast Cancer Linkage Consortium. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16% (95% confidence interval [CI] 6%-28%), suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority of families with male and female breast cancer were due to BRCA2 (76%). The largest proportion (67%) of families due to other genes was found in families with four or five cases of female breast cancer only. These estimates were not substantially affected either by changing the assumed penetrance model for BRCA1 or by including or excluding BRCA1 mutation data. Among those families with disease due to BRCA1 that were tested by one of the standard screening methods, mutations were detected in the coding sequence or splice sites in an estimated 63% (95% CI 51%-77%). The estimated sensitivity was identical for direct sequencing and other techniques. The penetrance of BRCA2 was estimated by maximizing the LOD score in BRCA2-mutation families, over all possible penetrance functions. The estimated cumulative risk of breast cancer reached 28% (95% CI 9%-44%) by age 50 years and 84% (95% CI 43%-95%) by age 70 years. The corresponding ovarian cancer risks were 0.4% (95% CI 0%-1%) by age 50 years and 27% (95% CI 0%-47%) by age 70 years. The lifetime risk of breast cancer appears similar to the risk in BRCA1 carriers, but there was some suggestion of a lower risk in BRCA2 carriers <50 years of age.  相似文献   

12.

Background

Ovarian cancer is the leading cause of death worldwide among gynecologic malignancies. The recent approval of inhibitors of poly (ADP-ribose) polymerase (iPARP) in the treatment of ovarian cancer in the presence of a BRCA1/2 mutation has sparked the analysis of women with such diagnosis, which can further benefit from the detection of carriers in the family. Germline sequence and large rearrangements for BRCA1/2 were tested in 398 consecutive epithelial ovarian cancer (EOC) patients.The aim of this study was to identify the frequency and spectrum of germline BRCA1/2 pathogenic alterations in a cohort of patients with ovarian serous carcinoma, with a view to adequately selecting patients for prevention through family counseling and correlating this frequency with platinum sensitivity as a guidance to identify patients eligible for iPARP in our population.

Results

A total of 96 patients carried a pathogenic germline mutation, accounting for an overall 24.1% mutation incidence. Among mutation carriers, BRCA1 showed 62.5% incidence, BRCA2 rendered 36.5%, and one patient exhibited a mutation in both genes. Three pathogenic mutations were recurrent mutations detected five, three, and four times and represented 12.5% of the mutated samples. Worth highlighting, a 50% mutation incidence was detected when breast and ovarian cancer coexisted in the same patient. Novel mutations amounted to 9.4% of the total mutations, as compared to 4.7% in breast cancer. Forty out of 60 BRCA1 mutations were beyond the ovarian cancer cluster region (OCCR), in stark contrast with 22 out of 36 BRCA2 mutations being inside the OCCR. Taken together, germline BRCA1/2 mutations in EOC patients showed a distinct mutational spectrum compared to our previously published data on breast cancer patients.

Conclusions

In sum, our study provides novel data on ovarian BRCA1/2 mutation prevalence worldwide, enhances adequate patient selection for family counseling and prevention, and sheds light on the benefits of iPARP treatment.
  相似文献   

13.
RAD51 is an important component of double-stranded DNA–repair mechanisms that interacts with both BRCA1 and BRCA2. A single-nucleotide polymorphism (SNP) in the 5′ untranslated region (UTR) of RAD51, 135G→C, has been suggested as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers. We pooled genotype data for 8,512 female mutation carriers from 19 studies for the RAD51 135G→C SNP. We found evidence of an increased breast cancer risk in CC homozygotes (hazard ratio [HR] 1.92 [95% confidence interval {CI} 1.25–2.94) but not in heterozygotes (HR 0.95 [95% CI 0.83–1.07]; P=.002, by heterogeneity test with 2 degrees of freedom [df]). When BRCA1 and BRCA2 mutation carriers were analyzed separately, the increased risk was statistically significant only among BRCA2 mutation carriers, in whom we observed HRs of 1.17 (95% CI 0.91–1.51) among heterozygotes and 3.18 (95% CI 1.39–7.27) among rare homozygotes (P=.0007, by heterogeneity test with 2 df). In addition, we determined that the 135G→C variant affects RAD51 splicing within the 5′ UTR. Thus, 135G→C may modify the risk of breast cancer in BRCA2 mutation carriers by altering the expression of RAD51. RAD51 is the first gene to be reliably identified as a modifier of risk among BRCA1/2 mutation carriers.  相似文献   

14.
We investigate the familial risks of cancers of the breast and ovary, using data pooled from three population-based case-control studies of ovarian cancer that were conducted in the United States. We base estimates of the frequency of mutations of BRCA1 (and possibly other genes) on the reported occurrence of breast cancer and ovarian cancer in the mothers and sisters of 922 women with incident ovarian cancer (cases) and in 922 women with no history of ovarian cancer (controls). Segregation analysis and goodness-of-fit testing of genetic models suggest that rare mutations (frequency .0014; 95% confidence interval .0002-.011) account for all the observed aggregation of breast cancer and ovarian cancer in these families. The estimated risk of breast cancer by age 80 years is 73.5% in mutation carriers and 6.8% in noncarriers. The corresponding estimates for ovarian cancer are 27.8% in carriers and 1.8% in noncarriers. For cancer risk in carriers, these estimates are lower than those obtained from families selected for high cancer prevalence. The estimated proportion of all U.S. cancer diagnoses, by age 80 years, that are due to germ-line BRCA1 mutations is 3.0% for breast cancer and 4.4% for ovarian cancer. Aggregation of breast cancer and ovarian cancer was less evident in the families of 169 cases with borderline ovarian cancers than in the families of cases with invasive cancers. Familial aggregation did not differ by the ethnicity of the probands, although the number of non-White and Hispanic cases (N = 99) was sparse.  相似文献   

15.
The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163 filtered SNPs genotyped were available on 899 young (<40 years) affected and 804 unaffected carriers of European ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (λ) was 1.011. The stage 1 association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values<10(-5) and 39 SNPs had p-values<10(-4). These variants included several previously associated with sporadic breast cancer risk and two novel loci on chromosome 20 (rs311499) and chromosome 10 (rs16917302). The chromosome 10 locus was in ZNF365, which contains another variant that has recently been associated with breast cancer in an independent study of unselected cases. In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR) and 95% confidence intervals (CI) for stage 1 and 2 were combined and estimated using a retrospective likelihood approach, stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66-0.86, ) and for rs311499 was 0.72 (95% CI 0.61-0.85, ). FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95% CI 1.18-1.39, ). These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer.  相似文献   

16.
In most cases of families with breast and ovarian cancer, the pattern of cancers in the family can be attributed to mutations in the BRCA1 and BRCA2 genes. Genetic testing for these cancer susceptibility genes typically takes place in the context of comprehensive genetic counseling. Strategies have been developed for the medical management of women at high risk of developing breast cancer, including options for screening and prophylactic surgery. BRCA1 and BRCA2 carriers are recommended to undergo prophylactic bilateral salpingo-oophorectomy by age 35-40 years or when childbearing is complete. This surgery significantly reduces the risk of ovarian cancer and also reduces the risk of breast cancer when performed in premenopausal mutation carriers. For breast cancer management, BRCA1 and BRCA2 carriers are offered the options of increased surveillance, with or without chemoprevention, or prophylactic surgery. Currently, BRCA carrier status is not used as an independent prognostic factor regarding systemic treatment options.  相似文献   

17.
Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03–1.16), p = 2.7×10−3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03–1.21, p = 4.8×10−3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.  相似文献   

18.
CHEK2 (previously known as "CHK2") is a cell-cycle-checkpoint kinase that phosphorylates p53 and BRCA1 in response to DNA damage. A protein-truncating mutation, 1100delC in exon 10, which abolishes the kinase function of CHEK2, has been found in families with Li-Fraumeni syndrome (LFS) and in those with a cancer phenotype that is suggestive of LFS, including breast cancer. In the present study, we found that the frequency of 1100delC was 2.0% among an unselected population-based cohort of 1,035 patients with breast cancer. This was slightly, but not significantly (P=.182), higher than the 1.4% frequency found among 1,885 population control subjects. However, a significantly elevated frequency was found among those 358 patients with a positive family history (11/358 [3.1%]; odds ratio [OR] 2.27; 95% confidence interval [CI] 1.11-4.63; P=.021, compared with population controls). Furthermore, patients with bilateral breast cancer were sixfold more likely to be 1100delC carriers than were patients with unilateral cancer (95% CI 1.87-20.32; P=.007). Analysis of the 1100delC variant in an independent set of 507 patients with familial breast cancer with no BRCA1 and BRCA2 mutations confirmed a significantly elevated frequency of 1100delC (28/507 [5.5%]; OR 4.2; 95% CI 2.4-7.2; P=.0002), compared with controls, with a high frequency also seen in patients with only a single affected first-degree relative (18/291 [6.2%]). Finally, tissue microarray analysis indicated that breast tumors from patients with 1100delC mutations show reduced CHEK2 immunostaining. The results suggest that CHEK2 acts as a low-penetrance tumor-suppressor gene in breast cancer and that it makes a significant contribution to familial clustering of breast cancer-including families with only two affected relatives, which are more common than families that include larger numbers of affected women.  相似文献   

19.
BRCA1/BRCA2 germline mutations are associated with an increased breast/ovarian cancer risk. Offspring gender ratios may be skewed against male births in BRCA1 mutation carriers. In addition, the lack of viable homozygous BRCA1/BRCA2-mutation carriers implies that recurrent miscarriages may be associated with homozygous fetuses. Jewish Israeli high-risk women who were tested for being carriers of the predominant BRCA1/BRCA2 mutations in Jewish high-risk families were analyzed for the sex of offspring and the rate of spontaneous miscarriages. Overall, 817 women participated: 393 BRCA1/BRCA2-mutation carriers (229 with breast/ovarian cancer) and 424 high-risk noncarriers (208 with breast/ovarian cancer). No differences between the male-to-female offspring ratios of all study groups were noted. Among mutation carriers, the offspring male-to-female ratio was 0.97 (444 : 460), and among mutation carriers with cancer it was 0.92 (262 : 284). Similarly, no offspring gender skewing was noted among high-risk noncarriers, regardless of health status. The rates of three or more spontaneous miscarriages among participants with at least one live birth were 4.37% (15/343) among mutation carriers and 3% (12/401) among high-risk women (P = not significant). In conclusion, the offspring gender ratio is similar in high-risk Jewish families and in the general population. The issue of the rate of recurrent miscarriages in high-risk Jewish women is unresolved.  相似文献   

20.
The possibility of a genetic relationship between ovarian, breast, and endometrial cancer was investigated in data from a large multicenter, population-based, case-control study, the Cancer and Steroid Hormone Study conducted by the Centers for Disease Control (CDC). Age-adjusted relative risks (RRs) for mothers and sisters of 493 ovarian cancer cases, 895 breast cancer cases, and 143 endometrial cancer cases versus 4,754 controls were calculated. Significantly elevated age-adjusted RRs were found for ovarian cancer (RR = 2.8; 95% confidence interval [CI] = 1.6-4.9) and breast cancer (RR = 1.6; 95% CI = 1.1-2.1) among relatives of ovarian cancer probands and for breast cancer (RR = 2.1; 95% CI = 1.7-2.5) and ovarian cancer (RR = 1.7; 95% CI = 1.0-2.0) among relatives of breast cancer probands. Relatives of endometrial cancer probands had an elevated RR for endometrial cancer only (RR = 2.7; 95% CI = 1.6-4.8). The genetic relationship between ovarian, breast, and endometrial cancer was tested using a multivariate polygenic threshold model developed by Smith (1976), which was modified to accommodate three classes of probands. Estimates of heritability for ovarian, breast, and endometrial cancer were 40%, 56%, and 52%, respectively. There was a significant genetic correlation between ovarian and breast cancer (R12 = .484). Evidence for significant genetic overlap between endometrial cancer and either ovarian or breast cancer was not found. These results suggest the existence of a familial breast/ovarian cancer syndrome. Endometrial cancer, while heritable, appears to be genetically unrelated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号