首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taste and smell have a primary role in food ingestion. Therefore, to understand why eating habits alter in elderly people, age-related differences in the chemical senses should be investigated. In early anatomical studies, substantial decreases in numbers of taste buds in old human and mouse circumvallate papillae were observed. However, recent investigations in humans, monkeys, and rats indicate that there is not a significant loss of taste buds in old age. Neurophysiological recordings from the chorda tympani nerve, innervating taste buds in fungiform papillae, demonstrate significant but small differences in response magnitudes for some chemicals in old rats. Greater age-related differences have been observed in the olfactory sense. Numbers of receptor neurons in the rat olfactory epithelium initially increase in adults and then decline in old animals; this decline is reflected in subsequent changes in the olfactory bulb. However, numbers of synapses in the bulb per receptor neuron are increased in the oldest rats, suggesting some compensatory mechanism. Differences in degree of aging effects in taste and smell might relate to the nature of receptors: a modified epithelial cell in taste versus a neuron in smell. However, in both sensory systems, large numbers of receptors remain even in old age. Since taste bud cells and olfactory receptors turn over and are replaced throughout life, the peripheral taste and smell systems might be relatively resistant to aging effects.  相似文献   

2.
Centrifugal spread of the prion agent to peripheral tissues is postulated to occur by axonal transport along nerve fibers. This study investigated the distribution of the pathological isoform of the protein (PrP(Sc)) in the tongues and nasal cavities of hamsters following intracerebral inoculation of the HY strain of the transmissible mink encephalopathy (TME) agent. We report that PrP(Sc) deposition was found in the lamina propria, taste buds, and stratified squamous epithelium of fungiform papillae in the tongue, as well as in skeletal muscle cells. Using laser scanning confocal microscopy, PrP(Sc) was localized to nerve fibers in each of these structures in the tongue, neuroepithelial taste cells of the taste bud, and, possibly, epithelial cells. This PrP(Sc) distribution was consistent with a spread of HY TME agent along both somatosensory and gustatory cranial nerves to the tongue and suggests subsequent synaptic spread to taste cells and epithelial cells via peripheral synapses. In the nasal cavity, PrP(Sc) accumulation was found in the olfactory and vomeronasal epithelium, where its location was consistent with a distribution in cell bodies and apical dendrites of the sensory neurons. Prion spread to these sites is consistent with transport via the olfactory nerve fibers that descend from the olfactory bulb. Our data suggest that epithelial cells, neuroepithelial taste cells, or olfactory sensory neurons at chemosensory mucosal surfaces, which undergo normal turnover, infected with the prion agent could be shed and play a role in the horizontal transmission of animal prion diseases.  相似文献   

3.
The structure of catecholamine-containing dumb-bell shaped cells of the taste buds was studied by luminescent microscopy in the epithelial layer of the frog's tongue (Rana temporaria). On the unilateral section of the lingual nerve, a maintained adrenergic innervation of vessels and of the epithelium was observed, a decreased number of dumb-bell shaped cells in the taste bud, and their significant enlargement, and increased cathecholamine luminescence. With desympathization, no adrenergic nerves were observed on the vessels and the epithelium of the tongue. The size of the taste buds in desympathized cells of the tongue is sharply decreased and their number is increased. There is a tendency to grouping of the dumbbell shaped cells into 3--4 taste buds in one fungiform papillina. The experiments with sensory and sympathetic denervation of the frog tongue distinctly showed the trophic action of sensory and sympathetic nerves on the taste organ of the frog.  相似文献   

4.
The immunohistochemical localization of EGF and NGF receptors has been studied in the olfactory epithelium of human foetuses from 8 to 12 weeks of age. A positivity for EGF receptor, increasing with the age, was detected in the apical portion of the sensory epithelium. The NGF receptor was well detectable also at 8 weeks and localized both in differentiated olfactory cells and in some basal cells. From primary cultures of olfactory epithelium, a cell clone positive for Enolase, Neurofilaments and S-100 Protein was identified. These cells were shown to be reactive for EGF and NGF receptors. The addition of Retinoic acid to the culture medium induces a morphological differentiation of these cells that become positive for the Olfactory Marker Protein.  相似文献   

5.
By immunocytochemistry, we have identified two novel cell types, olfactory and supporting cells of lamb olfactory epithelium, expressing S-100 beta beta protein. S-100 immune reaction product was observed on ciliary and plasma membranes, on axonemes and in the cytoplasm adjacent to plasma membranes and to basal bodies of olfactory vesicles. A brief treatment of olfactory mucosae with Triton X-100 before fixation is necessary for detection of S-100 beta beta protein within olfactory vesicles. In the absence of such a treatment, the immune reaction product is restricted to ciliary and plasma membranes. On the other hand, irrespective of pre-treatment of olfactory mucosae, S-100 beta immune reaction product in supporting cells is restricted to microvillar and plasma membranes. The anti-S-100 beta antiserum used in these studies does not bind to basal cells of the olfactory epithelium or to cells of the olfactory glands, whereas it binds to Schwann cells of the olfactory nerve. An anti-S-100 alpha antiserum does not bind to cellular elements of the olfactory mucosa, Schwann cells, or axons of the olfactory nerve. The present data provide, for the first time, evidence for the presence of S-100 beta beta protein in mammalian neurons (olfactory cells).  相似文献   

6.
Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.  相似文献   

7.
8.
In all vertebrates, taste buds are the last sensory receptorsto appear late in embryonic development. They are thought toarise locally from the oropharyngeal epithelium, although thishypothesis has not been tested experimentally. Alternatively,taste buds have been proposed to arise from neurocctodermalcells that migrate from peripheral neurogenic sources to theoropharyngeal epithelium and give rise to taste bud precursorcells. In order to determine the exact embryonic lineage ofthe cells of vertebrate taste buds, we have employed a combinationof endogenous and exogenous cell marking techniques to followneuroectodermal and endodermal cells through development. Wefind, in the ambystomatid salamander used in our studies, tastebuds arise locally within the endodermally-derived epitheliumlining the oropharyngeal cavity, and do not receive a contributionfrom neuroectodermal sources, i.e. ectodermal placodes or cephalicneural crest.  相似文献   

9.
M. Whitear    R. M. Moate 《Journal of Zoology》1994,232(2):295-312
Examination by scanning and transmission electron microscopy (SEM and TEM) has found no actual taste buds in the mouth of Raja clavata. Prominences of the epithelium on the roof and floor of the mouth, and on the oral valves, contain large numbers of innervated bipolar cells, not associated in the form of taste buds, with a cytology intimating that they have a chemosensory function. The apices of these sensory cells, each bearing a group of microvilli, protrude between the superficial epithelial cells. Neurite profiles are associated with the sensory cells; synaptic specializations are marked by a cluster of vesicles with inconspicuous dense cores and some densities on the cell membrane. Shrunken, electron-dense, cell profiles are interpreted as apoptotic. Shrunken sensory cell profiles are commoner than similar epithelial cells, especially in young individuals, indicating a relatively rapid turnover of sensory cells. The epithelium contains a variety of granulocytic leucocytes, some of which contain large phagosomes.  相似文献   

10.
The morphology and distribution of taste buds in the outer integument of the body and in the oral cavity of two forms (blind cave and sighted terrestrial ones) of the astyanax Astyanax fasciatus and in intact and blinded individuals of the Buenos Aires tetra Hyphessobrycon anisitsi have been studied using electronic scanning and light microscopy. In sighted individuals of both species, the morphometric parameters of the taste apparatus and the distribution of taste receptors are similar; the taste apparatus in the oral cavity is more developed than in the outer covers. Morphologically different taste zones were found in the oral cavity of characins. In blind fish, the taste apparatus of the maxillary zones is distinguished by smaller taste buds and a greater density of their distribution. The sensory field of taste buds in blind and sighted individuals of astyanax and tetra has a similar ultrastructure; it is formed by taste cells of three types. In blind astyanaxes and blinded individuals of tetra, numerous modified epidermal cells were found for the first time in the epithelium of the taste zones and in contact with taste buds, which are regarded as tactile receptors and a constituent element of polysensory taste-tactile complexes localized in blind fish in mainly ventral sensory zones.  相似文献   

11.
In fish, nerve fibers of taste buds are organized within the bud's nerve fiber plexus. It is located between the sensory epithelium consisting of light and dark elongated cells and the basal cells. It comprises the basal parts and processes of light and dark cells that intermingle with nerve fibers, which are the dendritic endings of the taste sensory neurons belonging to the cranial nerves VII, IX or X. Most of the synapses at the plexus are afferent; they have synaptic vesicles on the light (or dark) cells side, which is presynaptic. In contrast, the presumed efferent synapses may be rich in synaptic vesicles on the nerve fibers (presynaptic) side, whereas the cells (postsynaptic) side may contain a subsynaptic cistern; a flat compartment of the smooth endoplasmic reticulum. This structure is regarded as a prerequisite of a typical efferent synapse, as occurring in cochlear and vestibular hair cells. In fish taste buds, efferent synapses are rare and were found only in a few species that belong to different taxa. The significance of efferent synapses in fish taste buds is not well understood, because efferent connections between the gustatory nuclei of the medulla with taste buds are not yet proved.  相似文献   

12.
Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8–12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2′-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.  相似文献   

13.
Summary Immunohistochemical examination for neuronspecific enolase (NSE), neurofilament protein (NFP), and S-100 protein was performed in the olfactory mucosa of human fetuses. NSE and NFP immunoreactivities were found in the olfactory receptor cells, while no S-100 immunoreactive cells were recognized within the olfactory epithelium. The anti-NSE serum stained various types of nerve bundles in the lamina propria mucosae; a population of the NSE-positive nerve bundles was also immunoreactive for NFP. The anti-S-100 serum clearly demonstrated Schwann cells associated with the nerve fibers in the lamina propria mucosae. These findings 1) suggest a possibility of NSE and NFP as new marker substances for olfactory cells and 2) indicate that immunohistochemistry is a useful tool to analyse the cellular components of the olfactory organs in normal and pathological conditions.  相似文献   

14.
Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosensory prominence within a cluster of cells expressing the p75 neurotrophin receptor (p75NTR), rather than terminating among the adjacent cells that secrete neurotrophin 3. The p75NTR on special specialized clusters of epithelial cells may promote axonal arborization in vivo since its over-expression by fibroblasts enhances neurite outgrowth from overlying somatosensory neurons in vitro. Two classical observations have implicated gustatory neurons in the development and maintenance of mammalian taste buds—the early arrival times of embryonic innervation and the loss of taste buds after their denervation in adults. In the modern era more than a dozen experimental studies have used early denervation or neurotrophin gene mutations to evaluate mammalian gustatory organ development. Necessary for taste organ development, brain-derived neurotrophic factor sustains developing gustatory neurons. The cardinal conclusion is readily summarized: taste buds in the palate and tongue are induced by innervation. Taste buds are unstable: the death and birth of taste receptor cells relentlessly remodels synaptic connections. As receptor cells turn over, the sensory code for taste quality is probably stabilized by selective synapse formation between each type of gustatory axon and its matching taste receptor cell. We anticipate important new discoveries of molecular interactions among the epithelium, the underlying mesenchyme and gustatory innervation that build the gustatory papillae, their specialized epithelial cells, and the resulting taste buds.  相似文献   

15.
16.
Substance P (SP)-containing fibers in the incisive papillae of rat hard palates, which include various components of sensory receptors, i.e. mechanoreceptors, free nerve endings and chemosensory corpuscles (taste buds), were examined using immunoperoxidase techniques and light and electron microscopes. Immunolabeled fibers were consistently distributed in the medial part of the orifice of the incisive canals, i.e. in the taste-bud-enriched region. Dense immunolabeled fibers were found in subgemmal regions and in the lamina propria papillae. Some fine fibers entered and ascended the taste buds or occasionally the epithelium outside the taste buds. In addition, a rich innervation by SP-containing fibers close to blood capillaries was clearly identified. Electron microscopy revealed no specialized synaptic contact between the immunolabeled fibers and taste bud cells. Synaptic-like images could be found only between nonimmunolabeled nerve endings and the underlying taste bud cells. In the lamina propria papillae, mechanoreceptors observed in the present study contained no immunoperoxidase end products, whereas free nerve endings with an immunolabeled small-diameter axon (630-730 nm in diameter) were frequent. Similar axons were located at the adventitia of the blood capillaries. The possible functional role of SP-containing fibers in the incisive papillae was given attention.  相似文献   

17.
A method to prepare suspensions of taste bud cells is described. Bovine circumvallate papillae, which contain most of the taste buds in this animal, are incubated in collagenase-containing medium and the epidermal sidewall tissue is then dissected from the inner gelatinous dermis. The sidewall tissue, which contains the taste buds, is gently homogenized by manual operation of an all-glass homogenizer with a loose-fitting pestle. The suspended material is separated on a discontinous Ficoll gradient (2%, 8%, 10%, 12% w/w). The material banding at the 8-2% interface is greatly enriched in spindle-shaped cells that are morphologically similar to taste bud cells as they appear in situ. These cells are not seen when the procedure is done with tissues devoid of taste buds, namely the upper surface of the circumvallate papilla or epithelium from the intermolar eminence. Fluorescence analysis indicates that the hydrophobic probe, 8-anilino-1-naphthalenesulfonate (ANS), binds to relatively nonpolar sites in the suspension. It is postulated that the probe is adsorbing onto the surface membrane of the cell. These preparations may be useful in studying specificity and transduction in taste sensation.  相似文献   

18.
Taste buds are specialized epithelial cell clusters in the oral squamous cell epithelium. Although taste buds have been reported to renew rapidly, the mechanism of cell cycle control in these specialized structures remains unresolved. To clarify the cell cycle status and role of cyclin-dependent kinase inhibitors (CDKI) for cell cycle control in the taste buds, we analyzed cell proliferation activity using bromodeoxyuridine (BrdU) and Ki-67 immunostainings and the expression of the Cip/Kip family of CDKI (p21Cip1, p27Kip1, and p57Kip2) in the circumvallate papillae of mouse and hamster. BrdU-positive cells were detected in the basal layer of the oral epithelium. In the taste buds, Ki-67-positive cells were seen in the basal area, with only a very few positive cells in the taste buds. Both p21Cip1 and p27Kip1 positive cells were seen in the suprabasal layer of the non-gustatory oral epithelium. In the taste buds, stronger p27Kip1 staining was detected than in the non-gustatory epithelium. Western blotting analysis revealed that p27Kip1 was abundant in the mucosal tissues from circumvallate papillae. Thus, our study suggests that the taste bud cells except for basal cells are post-mitotic cells and that the cell cycle arrest associated with taste bud cell differentiation could be regulated predominantly by p27Kip1.  相似文献   

19.
20.
Hoon MA  Adler E  Lindemeier J  Battey JF  Ryba NJ  Zuker CS 《Cell》1999,96(4):541-551
Taste represents a major form of sensory input in the animal kingdom. In mammals, taste perception begins with the recognition of tastant molecules by unknown membrane receptors localized on the apical surface of receptor cells of the tongue and palate epithelium. We report the cloning and characterization of two novel seven-transmembrane domain proteins expressed in topographically distinct subpopulations of taste receptor cells and taste buds. These proteins are specifically localized to the taste pore and are members of a new group of G protein-coupled receptors distantly related to putative mammalian pheromone receptors. We propose that these genes encode taste receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号